Date of this Version


Document Type



Photovoltaic (PV) systems are weather-dependent. A solar eclipse causes significant changes in these parameters, thereby impacting PV generation profile, performance, and power quality of larger grid, where they connect to. This study presents a case study to evaluate the impacts of the solar eclipse of 21 August 2017, on two real-world grid-tied PV systems (1.4 MW and 355 kW) in Miami and Daytona, Florida, the feeders they are connected to, and the management areas they belong to. Four types of analyses are conducted to obtain a comprehensive picture of the impacts using 1 min PV generation data, hourly weather data, real feeder parameters, and daily reliability data. These analyses include: individual PV system performance measurement using power performance index; power quality analysis at the point of interconnection; a study on the operation of voltage regulating devices on the feeders during eclipse peak using an IEEE 8500 test case distribution feeder; and reliability study involving a multilayer perceptron framework for forecasting system reliability of the management areas. Results from this study provide a unique insight into how solar eclipses impact the behaviour of PV systems and the grid, which would be of concern to electric utilities in future high penetration scenarios.


Originally published in IET Smart Grid.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.



Rights Statement

Rights Statement

In Copyright - Non-Commmercial Use Permitted. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. In addition, no permission is required from the rights-holder(s) for non-commercial uses. For other uses you need to obtain permission from the rights-holder(s).