Use of structural equation modeling to examine the association between breast cancer risk perception and repeat screening mammography among United States women

Gillian Haber, Florida International University

Abstract

Breast cancer is the second leading cause of cancer death in United States women, estimated to be diagnosed in 1 out of 8 women in their lifetime. Screening mammography detects breast cancer in its pre-clinical stages when treatment strategies have the greatest chance of success, and is currently the only population-wide prevention method proven to reduce the morbidity and mortality associated with breast cancer. Research has shown that the majority of women are not screened annually, with estimates ranging front 6% - 30% of eligible women receiving all available annual mammograms over a 5-year or greater time frame. Health behavior theorists believe that perception of risk/susceptibility to a disease influences preventive health behavior, in this case, screening mammography The purpose of this dissertation is to examine the association between breast cancer risk perception and repeat screening mammography using a structural equation modeling (SEM) framework. A series of SEM multivariate regressions were conducted using self-reported, nationally representative data from the 2005 National Health Interview Survey. Interaction contrasts were tested to measure the potential moderating effects of variables which have been shown to be predictive of mammography use (physician recommendation, economic barriers, structural barriers, race/ethnicity) on the association between breast cancer risk perception and repeat mammography, while controlling for the covariates of age, income, region, nativity, and educational level. Of the variables tested for moderation, results of the SEM analyses identify physician recommendation as the only moderator of the relationship between risk perception and repeat mammography, thus the potentially most effective point of intervention to increase mammography screening, and decrease the morbidity and mortality associated with breast cancer. These findings expand the role of the physician from recommendation to one of attenuating the effect of risk perception and increasing repeat screening. The long range application of the research is the use of the SEM methodology to identify specific points of intervention most likely to increase preventive behavior in population-wide research, allowing for the most effective use of intervention funds.

Subject Area

Public health|Epidemiology

Recommended Citation

Haber, Gillian, "Use of structural equation modeling to examine the association between breast cancer risk perception and repeat screening mammography among United States women" (2010). ProQuest ETD Collection for FIU. AAI3447447.
https://digitalcommons.fiu.edu/dissertations/AAI3447447

Share

COinS