Memory-Aware Scheduling for Fixed Priority Hard Real-Time Computing Systems
Abstract
As a major component of a computing system, memory has been a key performance and power consumption bottleneck in computer system design. While processor speeds have been kept rising dramatically, the overall computing performance improvement of the entire system is limited by how fast the memory can feed instructions/data to processing units (i.e. so-called memory wall problem). The increasing transistor density and surging access demands from a rapidly growing number of processing cores also significantly elevated the power consumption of the memory system. In addition, the interference of memory access from different applications and processing cores significantly degrade the computation predictability, which is essential to ensure timing specifications in real-time system design. The recent IC technologies (such as 3D-IC technology) and emerging data-intensive real-time applications (such as Virtual Reality/Augmented Reality, Artificial Intelligence, Internet of Things) further amplify these challenges. We believe that it is not simply desirable but necessary to adopt a joint CPU/Memory resource management framework to deal with these grave challenges. In this dissertation, we focus on studying how to schedule fixed-priority hard real-time tasks with memory impacts taken into considerations. We target on the fixed-priority real-time scheduling scheme since this is one of the most commonly used strategies for practical real-time applications. Specifically, we first develop an approach that takes into consideration not only the execution time variations with cache allocations but also the task period relationship, showing a significant improvement in the feasibility of the system. We further study the problem of how to guarantee timing constraints for hard real-time systems under CPU and memory thermal constraints. We first study the problem under an architecture model with a single core and its main memory individually packaged. We develop a thermal model that can capture the thermal interaction between the processor and memory, and incorporate the periodic resource sever model into our scheduling framework to guarantee both the timing and thermal constraints. We further extend our research to the multi-core architectures with processing cores and memory devices integrated into a single 3D platform. To our best knowledge, this is the first research that can guarantee hard deadline constraints for real-time tasks under temperature constraints for both processing cores and memory devices. Extensive simulation results demonstrate that our proposed scheduling can improve significantly the feasibility of hard real-time systems under thermal constraints.
Subject Area
Computer Engineering|Engineering|Electrical engineering
Recommended Citation
Chaparro-Baquero, Gustavo, "Memory-Aware Scheduling for Fixed Priority Hard Real-Time Computing Systems" (2018). ProQuest ETD Collection for FIU. AAI10976551.
https://digitalcommons.fiu.edu/dissertations/AAI10976551