Date of this Version
8-7-2014
Document Type
Article
Abstract
Disruption of axonal integrity during injury to the peripheral nerve system (PNS) sets into motion a cascade of responses that includes inflammation, Schwann cell mobilization, and the degeneration of the nerve fibers distal to the injury site. Yet, the injured PNS differentiates itself from the injured central nervous system (CNS) in its remarkable capacity for self-recovery, which, depending upon the length and type of nerve injury, involves a series of molecular events in both the injured neuron and associated Schwann cells that leads to axon regeneration, remyelination repair, and functional restitution. Herein we discuss the essential function of the second messenger, cyclic adenosine monophosphate (cyclic AMP), in the PNS repair process, highlighting the important role the conditioning lesion paradigm has played in understanding the mechanism(s) by which cyclic AMP exerts its proregenerative action. Furthermore, we review the studies that have therapeutically targeted cyclic AMP to enhance endogenous nerve repair.
Identifier
FIDC000617
Recommended Citation
Eric P. Knott, Mazen Assi, and Damien D. Pearse, “Cyclic AMP Signaling: A Molecular Determinant of Peripheral Nerve Regeneration,” BioMed Research International, vol. 2014, Article ID 651625, 8 pages, 2014. doi:10.1155/2014/651625
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Comments
Originally published in BioMed Research International.