Date of this Version
6-9-2014
Document Type
Article
Abstract
High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Recommended Citation
DeBord JD, Smith DF, Anderton CR, Heeren RMA, Paša-Tolić L, Gomer RH, et al. (2014) Secondary Ion Mass Spectrometry Imaging of Dictyostelium discoideum Aggregation Streams. PLoS ONE 9(6): e99319. doi:10.1371/journal.pone.0099319
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Comments
This article was originally published in PLoS One.