Date of this Version
7-4-2019
Document Type
Article
Abstract
In the present work, an experimental investigation is performed to assess the thermal and electrical performance of a photovoltaic solar panel cooling with multi-walled carbon nanotube–water/ethylene glycol (50:50) nano-suspension (MWCNT/WEG50). The prepared nanofluid was stabilized using an ultrasonic homogenizer together with the addition of 0.1vol% of nonylphenol ethoxylates at pH = 8.9. To reduce the heat loss and to improve the heat transfer rate between the coolant and the panel, a cooling jacket was designed and attached to the solar panel. It was also filled with multi-walled carbon nanotube–paraffin phase change material (PCM) and the cooling pipes were passed through the PCM. The MWCNT/WEG50 nanofluid was introduced into the pipes, while the nano-PCM was in the cooling jacket. The electrical and thermal power of the system and equivalent electrical–thermal power of the system was assessed at various local times and at different mass fractions of MWCNTs. Results showed that with an increase in the mass concentration of the coolant, the electricity and power production were promoted, while with an increase in the mass concentration of the nanofluid, the pumping power was augmented resulting in the decrease in the thermal–electrical equivalent power. It was identified that a MWCNT/WEG50 nano-suspension at 0.2wt% can represent the highest thermal and electrical performance of 292.1 W/m2. It was also identified that at 0.2wt%, ~45% of the electricity and 44% of the thermal power can be produced with a photovoltaic (PV) panel between 1:30 pm to 3:30 pm.
Identifier
FIDC008168
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Recommended Citation
Sarafraz, M. M.; Safaei, Mohammad Reza; Leon, Arturo S.; Tlili, Iskander; Alkanhal, Tawfeeq Abdullah; Tian, Zhe; Goodarzi, Marjan; and Arjomandi, M., "Experimental Investigation on Thermal Performance of a PV/T-PCM (Photovoltaic/Thermal) System Cooling with a PCM and Nanofluid" (2019). Department of Civil and Environmental Engineering Faculty Publications. 8.
https://digitalcommons.fiu.edu/cee_fac/8
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Comments
Originally published in Energies.