Date of this Version
2-11-2014
Document Type
Article
Abstract
In this paper we test the statistical probability models for breast cancer survival data for race and ethnicity. Data was collected frombreast cancer patients diagnosed in United States during the years 1973–2009.We selected a stratified randomsample of Black Hispanic female patients from the Surveillance Epidemiology and End Results (SEER) database to derive the statistical probability models. We used three common model building criteria which include Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC) to measure the goodness of fit tests and it was found that Black Hispanic female patients survival data better fit the exponentiated exponential probability model. A novel Bayesian method was used to derive the posterior density function for the model parameters as well as to derive the predictive inference for future response.We specifically focused on Black Hispanic race. Markov Chain Monte Carlo (MCMC) method was used for obtaining the summary results of posterior parameters. Additionally, we reported predictive intervals for future survival times. These findings would be of great significance in treatment planning and healthcare resource allocation.
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Recommended Citation
Hafiz M. R. Khan, Anshul Saxena, Elizabeth Ross, Venkataraghavan Ramamoorthy, and Diana Sheehan, “Inferential Statistics from Black Hispanic Breast Cancer Survival Data,” The Scientific World Journal, vol. 2014, Article ID 604581, 13 pages, 2014. doi:10.1155/2014/604581
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
Comments
Copyright © 2014 Hafiz M. R. Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
doi: 10.1155/2014/604581