Date of this Version

10-6-2014

Document Type

Article

Abstract

Quantitatively determining physiological parameters at a microscopic level in the retina furthers the understanding of the molecular pathways of blinding diseases, such as diabetic retinopathy and glaucoma. An essential parameter, which has yet to be quantified noninvasively, is the retinal oxygen metabolic rate (rMRO(2)). Quantifying rMRO(2) is challenging because two parameters, the blood flow rate and hemoglobin oxygen saturation (sO(2)), must be measured together. We combined photoacoustic ophthalmoscopy (PAOM) with spectral domain-optical coherence tomography (SD-OCT) to tackle this challenge, in which PAOM measured the sO(2) and SD-OCT mapped the blood flow rate. We tested the integrated system on normal wild-type rats, in which the measured rMRO(2) was 297.86 +/- 70.23 nl/minute. This quantitative method may shed new light on both fundamental research and clinical care in ophthalmology in the future.

Comments

This work was originally published in Scientific Reports

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 

Rights Statement

Rights Statement

In Copyright - Non-Commmercial Use Permitted. URI: http://rightsstatements.org/vocab/InC-NC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. In addition, no permission is required from the rights-holder(s) for non-commercial uses. For other uses you need to obtain permission from the rights-holder(s).