Off-campus FIU users: To download campus-access content, please use the following link to log in to our proxy server with your FIU library username and password.

Non-FIU users: Please talk to your librarian about requesting this content through interlibrary loan.

Date of Award

Spring 5-5-2015

Degree Type





Most reef-building corals are known to engage in non-pathogenic symbiosis not only with unicellular dinoflagellates from the genus Symbiodinium, but also with other microscopic organisms such as bacteria, fungi, and viruses. The functional details of these highly complex associations remain largely unclear. The impetus of this study is to gain a better understanding of the symbiotic interaction between marine bacteria and their coral host. Studies have shown that certain bacterial orders associate with specific certain coral species, thus making the symbiotic synergy a non-random consortium. Consequently both corals and bacteria may be capable of emitting chemical cues that enable both parties to find one another and thus generate the symbiosis. The production of these cues by the symbionts may be the result of environmental stimuli such as elevated ocean temperatures, increased water acidity, and even predation. One potential chemical cue could be the compound DMSP

(Dimethylsulfoniopropionate) and its sulphur derivatives. Reef-building corals are believed to be the major producers of the DMSP during times of stress. Marine bacteria utilize DMSP as a source of sulfur and carbon. As a result corals could potentially attract their bacterial consortium depending on their DMSP production. This would enable them to adapt to fluctuating environmental conditions by changing their bacterial communities to that which may aid in survival. To test the hypothesis that coral-produced DMSP plays a role in attracting symbiotic bacteria, this study utilized the advent of high-throughput sequencing paired with chemotactic assays to determine the response of coral-associated bacterial isolates towards the DMSP compound at differing concentrations. Chemotaxis assays revealed that some isolates responded positively towards the DMSP compound. This finding adds to existing evidence suggesting that coral-associated pathogens utilize chemotaxis as a host colonization and detection mechanism. Thus the symbiotic bacteria that make up the coral microbiome may also employ this process. Furthermore this study demonstrates that bacterial motility may be a strong contributing factor in the response to the chemotactic cue. Swarming motility may be better suited for bacteria that need to respond to a chemical gradient on the surface of the coral. Therefore the isolates that were able to swarm seemed to respond more strongly to the DMSP.



Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).