FCE LTER Journal Articles


The incomplete combustion of organic molecules produces a chemically diverse suite of pyrogenic residues termed black carbon (BC). The significance of BC cycling on land has long been recognized, and the recognition of dissolved BC (DBC) as a major component of the aquatic carbon cycle is developing rapidly. As we seek a greater understanding of DBC cycling, our interpretation of environmental DBC concentrations and molecular composition should take into account both the formation conditions of charred residues, and the physico‐chemical transformation of DBC that occurs during transit within aquatic systems. We present the current state of knowledge concerning sources, processing, and sinks of DBC in inland, coastal/estuarine, and ocean waters. We feature studies and new methodologies which focus specifically on the aquatic cycling of DBC, explore the relationship between particulate and dissolved BC, and highlight research gaps which should be targeted to advance our current knowledge of DBC biogeochemistry.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.


Originally published in Limnology and Oceanography Letters.

Included in

Life Sciences Commons



Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).