Off-campus FIU users: To download campus-access content, please use the following link to log in to our proxy server with your FIU library username and password.

Non-FIU users: Please talk to your librarian about requesting this content through interlibrary loan.

Document Type



Civil Engineering

First Advisor's Name

Albert Gan

First Advisor's Committee Title

Committee Member

Second Advisor's Name

David L. Shen

Second Advisor's Committee Title

Committee Member

Third Advisor's Name

Fang Zhao

Third Advisor's Committee Title

Committee Member

Fourth Advisor's Name

Mohammed Hadi

Fourth Advisor's Committee Title

Committee Member

Fifth Advisor's Name

Prasad V. Bidarkota

Fifth Advisor's Committee Title

Committee Member


Traffic Forecasting, Short-term Forecasting, Time Series Model, ARIMA Model, VARMA Model

Date of Defense



In China in particular, large, planned special events (e.g., the Olympic Games, etc.) are viewed as great opportunities for economic development. Large numbers of visitors from other countries and provinces may be expected to attend such events, bringing in significant tourism dollars. However, as a direct result of such events, the transportation system is likely to face great challenges as travel demand increases beyond its original design capacity. Special events in central business districts (CBD) in particular will further exacerbate traffic congestion on surrounding freeway segments near event locations. To manage the transportation system, it is necessary to plan and prepare for such special events, which requires prediction of traffic conditions during the events. This dissertation presents a set of novel prototype models to forecast traffic volumes along freeway segments during special events. Almost all research to date has focused solely on traffic management techniques under special event conditions. These studies, at most, provided a qualitative analysis and there was a lack of an easy-to-implement method for quantitative analyses. This dissertation presents a systematic approach, based separately on univariate time series model with intervention analysis and multivariate time series model with intervention analysis for forecasting traffic volumes on freeway segments near an event location. A case study was carried out, which involved analyzing and modelling the historical time series data collected from loop-detector traffic monitoring stations on the Second and Third Ring Roads near Beijing Workers Stadium. The proposed time series models, with expected intervention, are found to provide reasonably accurate forecasts of traffic pattern changes efficiently. They may be used to support transportation planning and management for special events.





Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).