Document Type



Doctor of Philosophy (PhD)


Materials Science and Engineering

First Advisor's Name

Wonbong Choi

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Norman D. H. Munroe

Third Advisor's Name

Jiuhua Chen

Fourth Advisor's Name

Nezih Pala


Graphene, Raman Spectroscopy, functionalization, Electrocatalytic, work function, fermi level, solar cells, graphene-CNT hybrid

Date of Defense



Synthesis and functionalization of large-area graphene and its structural, electrical and electrochemical properties has been investigated. First, the graphene films, grown by thermal chemical vapor deposition (CVD), contain three to five atomic layers of graphene, as confirmed by Raman spectroscopy and high-resolution transmission electron microscopy. Furthermore, the graphene film is treated with CF4 reactive-ion plasma to dope fluorine ions into graphene lattice as confirmed by X-ray photoelectron spectroscopy (XPS) and UV-photoemission spectroscopy (UPS). Electrochemical characterization reveals that the catalytic activity of graphene for iodine reduction enhanced with increasing plasma treatment time, which is attributed to increase in catalytic sites of graphene for charge transfer. The fluorinated graphene is characterized as a counter-electrode (CE) in a dye-sensitized solar cell (DSSC) which shows ~ 2.56% photon to electron conversion efficiency with ~11 mAcm−2 current density. Second, the large scale graphene film is covalently functionalized with HNO3 for high efficiency electro-catalytic electrode for DSSC. The XPS and UPS confirm the covalent attachment of C-OH, C(O)OH and NO3- moieties with carbon atoms through sp2-sp3 hybridization and Fermi level shift of graphene occurs under different doping concentrations, respectively. Finally, CoS-implanted graphene (G-CoS) film was prepared using CVD followed by SILAR method. The G-CoS electro-catalytic electrodes are characterized in a DSSC CE and is found to be highly electro-catalytic towards iodine reduction with low charge transfer resistance (Rct ~5.05 Wcm2) and high exchange current density (J0~2.50 mAcm-2). The improved performance compared to the pristine graphene is attributed to the increased number of active catalytic sites of G-CoS and highly conducting path of graphene.

We also studied the synthesis and characterization of graphene-carbon nanotube (CNT) hybrid film consisting of graphene supported by vertical CNTs on a Si substrate. The hybrid film is inverted and transferred to flexible substrates for its application in flexible electronics, demonstrating a distinguishable variation of electrical conductivity for both tension and compression. Furthermore, both turn-on field and total emission current was found to depend strongly on the bending radius of the film and were found to vary in ranges of 0.8 – 3.1 V/μm and 4.2 – 0.4 mA, respectively.



Files over 15MB may be slow to open. For best results, right-click and select "Save as..."



Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).