Document Type



Master of Science (MS)


Biomedical Engineering

First Advisor's Name

Sharan Ramaswamy

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Anuradha Godavarty

Third Advisor's Name

Yei-Chih Huang


vascular cells, periodontal ligament derived stem cells, cell migration, magnetic resonance imaging, bioreactor

Date of Defense



The design of a tissue engineered pulmonary valve (TEPV) involves cells source(s), scaffold, in vitro conditioning system and the functional stability of the TEPV in vivo. Vascular cells (pulmonary artery smooth muscle (SMCs) and endothelial cells (ECs)) and periodontal ligament derived stem cells (PDLSCs) are relevant sources for the designing of TEPVs. In this study, labeling of these cell populations with super paramagnetic iron oxide microparticles along with concomitant usage of transfection agents was followed by visualization using magnetic resonance, while Intracellular iron oxide was confirmed by prussian blue staining and fluorescence microscopy. Also, the potential of PDLSC as a feasible source for TEPVs was investigated, expressing differentiative capacity to both SMC and EC phenotypes by a combination of biochemical and mechanical stimulation. Flow conditioning in a u-shaped bioreactor augmented collagen production in SMC-EC (99.5% for n=3) and PDLSC (93.3% for n=3) seeded scaffolds after a 3-week culturing period (P<0.05).





Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).