Document Type



Doctor of Philosophy (PhD)


Electrical and Computer Engineering

First Advisor's Name

Nezih Pala

First Advisor's Committee Title

Committee chair

Second Advisor's Name

Chunlei Wang

Second Advisor's Committee Title

Committee co-chair

Third Advisor's Name

Shekhar Bhansali

Third Advisor's Committee Title

Committee member

Fourth Advisor's Name

Jean H. Andrian

Fourth Advisor's Committee Title

Committee member

Fifth Advisor's Name

Jessica Ramella-Roman

Fifth Advisor's Committee Title

Committee member


THz, Detector, Emitter, Sensor, Hardware cybersecurity

Date of Defense



Technical advancement is required to attain a high data transmission rate, which entails expanding beyond the currently available bandwidth and establishing a new standard for the highest data rates, which mandates a higher frequency range and larger bandwidth. The THz spectrum (0.1-10 THz) has been considered as an emerging next frontier for the future 5G and beyond technology. THz frequencies also offer unique characteristics, such as penetrating most dielectric materials like fabric, plastic, and leather, making them appealing for imaging and sensing applications. Therefore, employing a high-power room temperature, tunable THz emitters, and a high responsivity THz detector is essential. Dyakonov-theory Shur's was applied in this dissertation to achieve tunable THz detection and emission by plasma waves in high carrier density channels of field-effect devices. The first major contribution of this dissertation is developing graphene-based THz plasmonics detector with high responsivity. An upside-down free-standing graphene in a field effect transistor based resonant room temperature THz detector device with significantly improved mobility and gate control has been presented. The highest

achieved responsivity is ~3.1kV/W, which is more than 10 times higher than any THz detector reported till now. The active region is predominantly single-layer graphene with multi-grains, even though the fabricated graphene THz detector has the highest responsivity. The challenges encountered during the fabrication and measurement of the graphene-based detector have been described, along with a strategy to overcome them while preserving high graphene mobility. In our new design, a monolayer of hBN underneath the graphene layer has been deposited to increase the mobility and electron concentration rate further. We also investigated the diamond-based FETs for their potential characteristics as a THz emitters and detectors. Diamond's wide bandgap, high breakdown field, and high thermal conductivity attributes make it a potential semiconductor material for high voltage, high power, and high-temperature operation. Diamond is a good choice for THz and sub-THz applications because of its high optical phonon scattering and high momentum relaxation time. Numerical and analytical studies of diamond materials, including p-diamond and n-diamond materials, are presented, indicating their effectiveness as a prospective contender for high temperature and high power-based terahertz applications These detectors are expected to be a strong competitor for future THz on-chip applications due to their high sensitivity, low noise, tunability, compact size, mobility, faster response time, room temperature operation, and lower cost. Furthermore, when plasma wave instabilities are induced with the proper biasing, the same devices can be employed as THz emitters, which are expected to have a higher emission power.

Another key contribution is developing a method for detecting counterfeit, damaged, forged, or defective ICs has been devised utilizing a new non-destructive and unobtrusive terahertz testing approach to address the crucial point of hardware cybersecurity and system reliability. The response of MMICs, VLSI, and ULSIC to incident terahertz and sub-terahertz radiation at the circuit pins are measured and analyzed using deep learning. More sophisticated terahertz response profiles and signatures of specific ICs can be created by measuring a more significant number of pins under different frequencies, polarizations, and depth of focus. The proposed method has no effect on ICs operation and could provide precise ICs signatures. The classification process between the secure and unsecure ICs images has been explained using data augmentation and transfer learning-based convolution neural network with ~98% accuracy. A planar nanomatryoshka type core-shell resonator with hybrid toroidal moments is shown both experimentally and analytically, allowing unique characteristics to be explored. This resonator may be utilized for accurate sensing, immunobiosensing, quick switching, narrow-band filters, and other applications.







Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).