Document Type

Dissertation

Degree

Doctor of Philosophy (PhD)

Major/Program

Biomedical Sciences

First Advisor's Name

Dr. Nazira El-Hage

First Advisor's Committee Title

Committee chair

Second Advisor's Name

Dr. Alexander Agoulnik

Second Advisor's Committee Title

Committee member

Third Advisor's Name

Dr. Jeremy Chambers

Third Advisor's Committee Title

Committee member

Fourth Advisor's Name

Dr. Tomas Guilarte

Fourth Advisor's Committee Title

Committee member

Fifth Advisor's Name

Dr. Michal Toborek

Fifth Advisor's Committee Title

Committee member

Keywords

Autophagy, neurodegeneration, HIV Tat, neuroinflammation, opioid, Beclin 1, HAND, motor impairment

Date of Defense

11-8-2018

Abstract

Early in infection, HIV crosses the blood-brain barrier and induces neuropathology. Viral presence in the CNS coupled with secretion of neurotoxic proteins causes neuroinflammation, glial dysfunction, excitotoxicity, and neuronal death. Despite advances in combined antiretroviral therapy, HIV-infected patients present with a spectrum of cognitive and psychomotor deficits collectively referred to as HIV-associated neurological disorders (HAND). A subset of HAND patients abuses drugs such as opiates like heroin and morphine show an exacerbation and rapid progression of HIV neuropathology; however, the mechanisms of this synergy are not well understood. Autophagy is a lysosomal degradative process which eliminates and recycles cytosolic components and is implicated in facilitating HIV-1 replication in the CNS and periphery, and in Tat-induced neurodegeneration. When a key initiator of autophagy Beclin 1 was silenced using siRNAs, there was a marked reduction of HIV-1 replication in human microglia and astrocytes and the corresponding inflammatory response. As such, the goal of the current study is to determine if diminished Beclin 1 is neuroprotective against Tat and morphine-induced neurodegeneration using heterozygous Beclin 1 (Becn1+/-) mice. Examination of Tat and morphine-induced inflammatory molecule secretion revealed that Becn1+/- mixed astrocyte and microglia (glia) exhibited attenuated secretion of cytokine IL-6 and chemokines RANTES and MCP-1 compared to control (C57BL/6J) glia, an effect mediated through the μ-opioid receptor. Dysregulation of autophagy-related gene expression and excessive intracellular calcium accumulation were limited in Becn1+/- glia. When determining the effects of Tat-and morphine co-exposure on neuronal survival in vitro, we found Becn1+/- neurons were particularly sensitive to injury, excitotoxicity, and toxic exposures; however, when C57BL/6J neurons were exposed to conditioned media of C57BL/6J and Becn1+/- glia treated with Tat and morphine, neurons treated with Becn1+/- supernatant had better outcomes than those treated with C57BL/6J conditioned media. Furthermore, despite minimal difference between strains in locomotor assessment, we observed significantly greater striatal neuron losses in adult C57BL/6J mice exposed to intrastriatal Tat-and systemic morphine compared to Becn1+/- mice. Our studies demonstrate the potential of targeting Beclin 1 in glia for the prevention of Tat and opiate-induced CNS dysfunction.

Identifier

FIDC007019

ORCID

https://orcid.org/0000-0002-0606-9792

Available for download on Wednesday, July 24, 2019

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).