Document Type



Doctor of Philosophy (PhD)



First Advisor's Name

Geoff Potvin

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Zahra Hazari

Second Advisor's Committee Title

Committee Member

Third Advisor's Name

Joerg Reinhold

Third Advisor's Committee Title

Committee Member

Fourth Advisor's Name

Laird Kramer

Fourth Advisor's Committee Title

Committee Member


identity, physics education, engineering education, persistence, topological data analysis, student affect

Date of Defense



This dissertation explores how students’ beliefs and attitudes interact with their identities as physics people, motivated by calls to increase participation in science, technology, engineering, and mathematics (STEM) careers. This work combines several theoretical frameworks, including Identity theory, Future Time Perspective theory, and other personality traits to investigate associations between these factors. An enriched understanding of how these attitudinal factors are associated with each other extends prior models of identity and link theoretical frameworks used in psychological and educational research. The research uses a series of quantitative and qualitative methodologies, including linear and logistic regression analysis, thematic interview analysis, and an innovative analytic technique adapted for use with student educational data for the first time: topological data analysis via the Mapper algorithm.

Engineering students were surveyed in their introductory engineering courses. Several factors are found to be associated with physics identity, including student interest in particular engineering majors. The distributions of student scores on these affective constructs are simultaneously represented in a map of beliefs, from which the existence of a large “normative group” of students (according to their beliefs) is identified, defined by the data as a large concentration of similarly minded students. Significant differences exist in the demographic representation of this normative group compared to other students, which has implications for recruitment efforts that seek to increase diversity in STEM fields. Select students from both the normative group and outside the normative group were selected for subsequent interviews investigating their associations between physics and engineering, and how their physics identities evolve during their engineering careers.

Further analyses suggest a more complex model of physics and engineering identity which is not necessarily uniform for all engineering students, including discipline-specific differences that should be further investigated. Further, the use of physics identity as a model to describe engineering student choices may be limited in applicability to early college. Interview analysis shows that physics recognition beliefs become contextualized in engineering as students begin to view physics as an increasingly distinct domain from engineering.





Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).