Document Type



Master of Science (MS)


Materials Science and Engineering

First Advisor's Name

Arvind Agarwal

First Advisor's Committee Title

Committee Co-Chair

Second Advisor's Name

Benjamin Boesl

Second Advisor's Committee Title

Committee Co-Chair

Third Advisor's Name

Chunlei Wang

Third Advisor's Committee Title

Committee Member


graphene nanoplatelets, 2D materials, cementation process, single displacement reaction, parametric study, copper nanoparticles, spark plasma sintering, nacre

Date of Defense



The main goal of this thesis is to deposit metal particles on the surface of 2D nanoplatelets using a controlled cementation process. As a proof of concept, copper (Cu) and Graphene Nanoplatelets (GNP) were chosen as the representative metal and 2D nanoplatelets, respectively. Specific goals of this study include depositing nanometer scale Cu particles on the surface of GNP at a low concentration (approximately 5 vol.%) while maintaining clustering and impurities at a minimum. Parametric studies were done to attain these goals by investigating various metallic reducer types and morphologies, GNP surface activation process, acid volume % and copper (II) sulfate concentrations. Optimal conditions were obtained with Mg ribbon as a reducer, 3 minutes of activation, 1 vol.% of acetic acid and 0.01 M CuSO4. The GNP-Cu powder synthesized in this work is a precursor material to be consolidated via spark plasma sintering (SPS) to make a nacre-like, layered structure for future studies.





Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).