Document Type

Dissertation

Degree

Doctor of Philosophy (PhD)

Major/Program

Physics

First Advisor's Name

Bernard Gerstman

First Advisor's Committee Title

major professor

Second Advisor's Name

Prem Chapagain

Second Advisor's Committee Title

co-major professor

Third Advisor's Name

Jaroslava Miksovska

Third Advisor's Committee Title

committee member

Fourth Advisor's Name

Jin He

Fourth Advisor's Committee Title

committee member

Keywords

Steckmann, Gerstman, Chapagain, Rate, kinetics, molecular, dynamics, structural, transitions, amyloid

Date of Defense

2016

Abstract

Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer’s, Creutzfeld-Jacob, diabetes, Parkinson’s and others. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. Amyloid fibrils are composed of proteins that originate in an innocuous α-helix or random-coil structure. The α-helices convert their structure to β-strands that aggregate into β-sheets, and then into protofibrils, and ultimately into fully formed amyloid fibrils. On the basis of experimental data, I have developed a mathematical model for the kinetics of the reaction pathways and determined rate parameters for peptide secondary structural conversion and aggregation during the entire fibrillogenesis process from random coil to fibrils, including the molecular species that accelerate the conversions. The specific steps of the model and the rate constants that are determined by fitting to experimental data provide insight on the molecular species involved in the fibril formation process. To better understand the molecular basis of the protein structural transitions and aggregation, I report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccβ, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the subsequent formation of interchain hydrogen bonds during aggregation into amyloid fibrils. For my MD simulations, I found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccβ protein experiences during the process of forming protofibrillar structures. Both the mathematical modeling of the kinetics and the MD simulations show that molecular structural heterogeneity is a major factor in the process. The MD simulations also show that intrachain and interchain hydrogen bonds breaking and forming is strongly correlated to the process of amyloid formation.

Identifier

FIDC001247

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).