Document Type




First Advisor's Name

Douglas Wartzok

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Maureen Donnelly

Third Advisor's Name

Michael Heithaus

Fourth Advisor's Name

Bennett Schwartz

Fifth Advisor's Name

Daniel Odell


leadership, dolphin, inclusive fitness, group movement, fission-fusion, Tursiops truncatus

Date of Defense



Consistent leadership of group travel by specific individuals has been documented in many animals. Most species exhibiting this type of leadership have relatively stable group membership. Animals using fission-fusion grouping are not expected to use specific leaders because associations would not be frequent. Certain conditions, however, may allow this type of control over group travel to occur. First, a population would need to be small enough to allow regular associations between individuals. Second, leadership may be useful if the environment where the population in question lives is complex and requires learning to access the resources efficiently. To determine whether fission-fusion species existing under these conditions utilize specific individual leadership, I examined a small residential population of bottlenose dolphins (Tursiops truncatus) in the Lower Florida Keys (LFK) where the benthic habitat is highly complex. My goals were to 1) determine whether specific individuals in this population led group travel more often than expected; 2) determine whether certain factors predicted which animals would lead most often and 3) investigate the benefits of leading to leaders and to followers in a fission-fusion society. Multiple types of data were collected to answer questions posed including dolphin behavior (for leadership analyses), fish sampling (to examine dolphin habitat use under leadership), and dolphin biopsy sampling (for genetic analyses). Results of analyses provided strong evidence for consistent leadership in this population. Leaders were female, most were mothers and on average they had larger measures of centrality within the LFK population. Leaders benefited by leading individuals who were more closely related than expected. Followers benefited from efficient access to profitable habitat. Results build on previous leadership research by expanding our knowledge about the type of species in which specific individuals lead and predictors for what types of individuals may lead. Additionally, results provide the first detailed information about benefits group members obtain by both leading and following.





Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).