Document Type



Doctor of Philosophy (PhD)



First Advisor's Name

Kevin E. O'Shea

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Bruce R. McCord

Second Advisor's Committee Title

Committee member

Third Advisor's Name

Stanislaw Wnuk

Third Advisor's Committee Title

Committee member

Fourth Advisor's Name

Jaroslava Miksovska

Fourth Advisor's Committee Title

Committee member

Fifth Advisor's Name

Wenzhi Li

Fifth Advisor's Committee Title

Committee member


Advanced oxidation processes, Reactive oxygen species, Hydroxyl radical, water treatment, TiO2 photocatalysis, Cyanotoxin, Environmental science, Biological activity

Date of Defense



The occurrences of cyanotoxin and organic contaminants threaten drinking water sources and are a serious human health and environmental concern. The control of these problematic contaminants and the remediation of the associated contaminants are critical for ensuring safe drinking water to significant populations. Advanced oxidation processes (AOPs) have received considerable attention as a potential water treatment for various pollutants. In this dissertation, advanced oxidative degradation of four problematic water toxic contaminants (CYN, iopamidol, 4-methylcyclohexane methanol and propylene glycol phenyl ether) were studied to develop the fundamental understanding required to assess AOPs as a potential water treatment process.

UV and visible light activated (VLA) TiO2 photocatalysis using nitrogen and fluorine-TiO2 (NF-TiO2), phosphorus and fluorine-TiO2 (PF-TiO2) and sulfur-TiO2 (S-TiO2) were employed for degradation of 6-hydroxymethyl uracil (6-HOMU), a model compound for the potent cyanotoxin cylindrospermopsin (CYN). NF-TiO2 exhibits the most photoactive, followed by marginally active PF-TiO2 and inactive S-TiO2 under visible light irradiation. Our results indicate that O2-• plays an important role in VLA TiO2 photocatalysis.

Fe (VI), an environmentally friendly oxidant, was employed for the degradation of CYN and 6-HOMU over a range of pH (7 ~ 9.5). The second order rate constants for the reaction of Fe (VI) with CYN decrease from 38.83 ± 0.07 M-1s-1 at pH 7 to 5.02 ± 0.04 M-1s-1 at pH 9.5. Fe (VI) mediated reactions primarily occur via oxidation of the uracil ring in CYN. ELISA results demonstrate that Fe (VI) oxidation process leads to a significant decrease in the bioactivity of CYN as a function of treatment time.

Fe (III)-oxalate/H2O2 process was employed for the remediation of iopamidol, a model for ICM, to determine the formation rates and steady concentrations of •OH and O2-• under UV and visible light irradiation. Reduction by CO2-• and oxidation by •OH contribute to the degradation pathways.

Pulse and gamma radiolysis of 4-methylcyclohexane methanol (MCHM) and propylene glycol phenyl ether (PPh) were studied to determine the bimolecular rate constants and reaction pathways. •OH addition to ortho and para positions in PPh are the predominant reaction pathways; H-abstraction are the primary reaction mechanisms for OH mediated oxidation of MCHM





Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).