Document Type



Doctor of Philosophy (PhD)



First Advisor's Name

Rosemary Hickey-Vargas

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Grenville Draper

Third Advisor's Name

Andrew Macfarlane

Fourth Advisor's Name

Caroline Simpson


Mariana Trench forearc, Izu-Bonin-Mariana Arc, Plutonic Rocks, Boninite, Tonalite, Geochemistry, Ophiolite, Subduction, Island Arc Crust

Date of Defense



Two suites of intermediate-felsic plutonic rocks were recovered by dredges RD63 and RD64 (R/V KK81-06-26) from the northern wall of the Mariana trench near Guam, which is located in the southern part of the Izu-Bonin-Mariana (IBM) island arc system. The locations of the dredges are significant as the area contains volcanic rocks (forearc basalts and boninites) that have been pivotal in explaining processes that occur when one lithospheric plate initially begins to subduct beneath another. The plutonic rocks have been classified based on petrologic and geochemical analyses, which provides insight to their origin and evolution in context of the surrounding Mariana trench.

Based on whole rock geochemistry, these rocks (SiO2: 49-78 wt%) have island arc trace element signatures (Ba, Sr, Rb enrichment, Nb-Ta negative anomalies, U/Th enrichment), consistent with the adjacent IBM volcanics. Depletion of rare earth elements (REEs) relative to primitive mantle and excess Zr and Hf compared to the middle REEs indicate that the source of the plutonic rocks is similar to boninites and transitional boninites. Early IBM volcanic rocks define isotopic fields (Sr, Pb, Nd and Hf-isotopes) that represent different aspects of the subduction process (e.g., sediment influence, mantle provenance). The southern Mariana plutonic rocks overlap these fields, but show a clear distinction between RD63 and RD64. Modeling of the REEs, Zr and Hf shows that the plutonic suites formed via melting of boninite crust or by crystallization from a boninite-like magma rather than other sources that are found in the IBM system.

The data presented support the hypothesis that the plutonic rocks from RD63 and RD64 are products of subduction initiation and are likely pieces of middle crust in the forearc exposed at the surface by faulting and serpentine mudvolcanoes. Their existence shows that intermediate-felsic crust may form very early in the history of an intra-oceanic island arc system. Plutonic rocks with similar formation histories may exist in obducted suprasubduction zone ophiolites and would be evidence that felsic-intermediate forearc plutonics are eventually accreted to the continents.





Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).