Document Type

Dissertation

Major/Program

Geosciences

First Advisor's Name

Gautam Sen

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Andrew Macfarlane

Second Advisor's Committee Title

Committee Member

Third Advisor's Name

Grenville Draper

Third Advisor's Committee Title

Committee Member

Fourth Advisor's Name

Michael Sukop

Fourth Advisor's Committee Title

Committee Member

Fifth Advisor's Name

Stephen Haggerty

Fifth Advisor's Committee Title

Committee Member

Keywords

diffusion modeling, Flood Basalts, isotope zoning, plagioclase zoning, Deccan Traps

Date of Defense

11-7-2007

Abstract

The Deccan Trap basalts are the remnants of a massive series of lava flows that erupted at the K/T boundary and covered 1-2 million km2 of west-central India. This eruptive event is of global interest because of its possible link to the major mass extinction event, and there is much debate about the duration of this massive volcanic event. In contrast to isotopic or paleomagnetic dating methods, I explore an alternative approach to determine the lifecycle of the magma chambers that supplied the lavas, and extend the concept to obtain a tighter constraint on Deccan’s duration. My method relies on extracting time information from elemental and isotopic diffusion across zone boundary in an individual crystal. I determined elemental and Sr-isotopic variations across abnormally large (2-5 cm) plagioclase crystals from the Thalghat and Kashele “Giant Plagioclase Basalts” from the lowermost Jawhar and Igatpuri Formations respectively in the thickest Western Ghats section near Mumbai. I also obtained bulk rock major, trace and rare earth element chemistry of each lava flow from the two formations. Thalghat flows contain only 12% zoned crystals, with 87Sr/86Sr ratios of 0.7096 in the core and 0.7106 in the rim, separated by a sharp boundary. In contrast, all Kashele crystals have a wider range of 87Sr/86Sr values, with multiple zones. Geochemical modeling of the data suggests that the two types of crystals grew in distinct magmatic environments. Modeling intracrystalline diffusive equilibration between the core and rim of Thalghat crystals led me to obtain a crystal growth rate of 2.03x10-10 cm/s and a residence time of 780 years for the crystals in the magma chamber(s). Employing some assumptions based on field and geochronologic evidence, I extrapolated this residence time to the entire Western Ghats and obtained an estimate of 25,000 – 35,000 years for the duration of Western Ghats volcanism. This gave an eruptive rate of 30 – 40 km3/yr, which is much higher than any presently erupting volcano. This result will remain speculative until a similarly detailed analytical-modeling study is performed for the rest of the Western Ghats formations.

Identifier

FI08081505

Comments

If you are the rightful copyright holder of this dissertation or thesis and wish to have it removed from the Open Access Collection, please submit a request to dcc@fiu.edu and include clear identification of the work, preferably with URL.

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).