Date of this Version


Document Type



Pulmonary arterial hypertension (PAH) can be discovered in patients who have a loss of function mutation of activin A receptor-like type 1 (ACVRL1) gene, a bone morphogenetic protein (BMP) type 1 receptor. Additionally, ACVRL1 mutations can lead to hereditary hemorrhagic telangiectasia (HHT), also known as Rendu-Osler-Weber disease, an autosomal dominant inherited disease that results in mucocutaneous telangiectasia and arteriovenous malformations (AVMs). Transcriptional regulator Inhibitor of DNA-Binding/Differentiation-3 (ID3) has been demonstrated to be involved in both PAH and HTT; however, the role of its overlapping molecular mechanistic effects has yet to be seen. This review will focus on the existing understanding of how ID3 may contribute to molecular involvement and perturbations thus altering both PAH and HHT outcomes. Improved understanding of how ID3 mediates these pathways will likely provide knowledge in the inhibition and regulation of these diseases through targeted therapies.


Originally published in the International Journal of Vascular Medicine.





Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.



Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).