Thin films fabricated from a nanoparticle beam

Peter David Griffiths, Florida International University


As time advances, man has been able to control technology in finer and finer detail. The microelectronics era is an example of this, with control down to the micrometer. Experts agree that we may be entering a new era, controlling technology down to the nanometer. One aspect of such control is making materials in the nanometer range, i.e. nanoparticles. For this purpose, a new magnetron-sputtering gun, inert gas condensation, nanoparticle source has been designed, built, and tested. Films made from cobalt, nickel, tantalum, molybdenum, chromium, and aluminum have been investigated. Transmission Electron Microscope measurements done at the University of Illinois confirm the thin films are nanostructured. This was also confirmed by Atomic Force Microscope measurements made at the F.I.U. Thin Film Laboratory. Composition, optical and magnetic properties have been measured. In most cases, unique properties have been found that differ significantly from bulk properties. Rutherford Backscattering measurements done at the University of Illinois determined significant percentages of oxygen and carbon in the samples, possibly due to interactions with air. Because of this, optical properties are a composite of oxide, metal, and void properties. Magnetic materials were determined to have spin-glass properties below the irreversibility temperature and superparamagnetic properties above it. Indications of possible future uses for these nanostructured materials are discussed.

Subject Area

Electrical engineering|Materials science

Recommended Citation

Griffiths, Peter David, "Thin films fabricated from a nanoparticle beam" (2002). ProQuest ETD Collection for FIU. AAI3049801.