Date of this Version


Document Type




Starch is an inexpensive and renewable raw material for numerous industrial applications. However, most starch-based products are not cost-efficient due to high-energy input needed in traditional enzymatic starch conversion processes. Therefore, α-amylase with high efficiency to directly hydrolyze high concentration raw starches at a relatively lower temperature will have a profound impact on the efficient application of starch.


A novel raw starch digesting α-amylase (named AmyZ1) was screened and cloned from a deep-sea bacterium Pontibacillus sp. ZY. Phylogenetic analysis showed that AmyZ1 was a member of subfamily 5 of glycoside hydrolase family 13. When expressed in Escherichia coli, the recombinant AmyZ1 showed high activity at pH 6.0–7.5 and 25–50 °C. Its optimal pH and temperature were 7.0 and 35 °C, respectively. Similar to most α-amylases, AmyZ1 activity was enhanced (2.4-fold) by 1.0 mM Ca2+. Its half-life time at 35 °C was also extended from about 10 min to 100 min. In comparison, AmyZ1 showed a broad substrate specificity toward raw starches, including those derived from rice, corn, and wheat. The specific activity of AmyZ1 towards raw rice starch was 12,621 ± 196 U/mg, much higher than other reported raw starch hydrolases. When used in raw starch hydrolyzing process, AmyZ1 hydrolyzed 52%, 47% and 38% of 30% (w/v) rice, corn, and wheat starch after 4 h incubation. It can also hydrolyze marine raw starch derived from Chlorella pyrenoidosa, resulting in 50.9 mg/g DW (dry weight of the biomass) of reducing sugars after 4 h incubation at 35 °C. Furthermore, when hydrolyzing raw corn starch using the combination of AmyZ1 and commercial glucoamylase, the hydrolysis rate reached 75% after 4.5 h reaction, notably higher than that obtained in existing starch-processing industries.


As a novel raw starch-digesting α-amylase with high specific activity, AmyZ1 efficiently hydrolyzed raw starches derived from both terrestrial and marine environments at near ambient temperature, suggesting its application potential in starch-based industrial processes.


Originally published in Biotechnology for Biofuels.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Chemistry Commons



Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).