Date of this Version

9-23-2019

Document Type

Article

Rights

default

Abstract

Glioblastoma (GBM) patients have an estimated survival of ~15 months with treatment, and the standard of care only modestly enhances patient survival. Identifying biomarkers representing vulnerabilities may allow for the selection of efficacious chemotherapy options to address personalized variations in GBM tumors. Irinotecan targets topoisomerase I (TOP1) by forming a ternary DNA-TOP1 cleavage complex (TOP1cc), inducing apoptosis. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a crucial repair enzyme that may reduce the effectiveness of irinotecan. We treated GBM cell lines with increasing concentrations of irinotecan and compared the IC values. We found that the TDP1/TOP1 activity ratio had the strongest correlation (Pearson correlation coefficient R = 0.972, based on the average from three sets of experiments) with IC values following irinotecan treatment. Increasing the TDP1/TOP1 activity ratio by the ectopic expression of wild-type TDP1 increased in irinotecan IC, while the expression of the TDP1 catalytic-null mutant did not alter the susceptibility to irinotecan. The TDP1/TOP1 activity ratio may be a new predictive indicator for GBM vulnerability to irinotecan, allowing for the selection of individual patients for irinotecan treatment based on risk-benefit. Moreover, TDP1 inhibitors may be a novel combination treatment with irinotecan to improve GBM patient responsiveness to genotoxic chemotherapies.

DOI

10.3390/cancers11101416

Identifier

31547492

Comments

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS