Date of this Version

2012

Document Type

Article

Abstract

In this paper we have reviewed some existing and proposed some new estimators for estimating the ridge parameter k . All in all 19 different estimators have been studied. The investigation has been carried out using Monte Carlo simulations. A large number of different models were investigated where the variance of the random error, the number of variables included in the model, the correlations among the explanatory variables, the sample size and the unknown coefficients vectors b have been varied. For each model we have performed 2000 replications and presented the results both in term of figures and tables. Based on the simulation study, we found that increasing the number of correlated variable, the variance of the random error and increasing the correlation between the independent variables have negative effect on the MSE. When the sample size increases the MSE decreases even when the correlation between the independent variables and the variance of the random error are large. In all situations, the proposed estimators have smaller MSE than the ordinary least squared and some other existing estimators.

Comments

This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Spain (CC BY-NC-ND 3.0 ES).

Share

COinS