Document Type

Dissertation

Degree

Doctor of Philosophy (PhD)

Department

Chemistry

First Advisor's Name

Kenneth G. Furton

First Advisor's Committee Title

Committee chair

Second Advisor's Name

Norman Munroe

Second Advisor's Committee Title

committee member

Third Advisor's Name

John Berry

Third Advisor's Committee Title

committee member

Fourth Advisor's Name

Watson Lees

Fourth Advisor's Committee Title

committee member

Fifth Advisor's Name

Anthony DeCaprio

Fifth Advisor's Committee Title

committee member

Keywords

synthetic cathinones, bath salts, synthetic drugs, headspace, odor profile, SPME, drug detection, canine, Controlled Odor Mimic Permeation System, mimic training aids

Date of Defense

6-1-2017

Abstract

Methylone, Ethylone, Methylenedioxypyrovalerone (MDPV), and α-Pyrrolidinopentiophenone (α-PVP) collectively referred to as bath salts are a new trend of illicit substances known as synthetic cathinones. Designed by chemically modifying the core structure of the compound cathinone, synthetic cathinones became prevalent within the United States around the mid-2000s. As a cheap and less controlled alternative to methylenedioxymethamphetamine (MDMA, ecstasy), it has become heavily abused, prompting emergency scheduling by federal regulators. Although regulations have been placed to halt incoming traffic of these drugs, lack of ground efforts still leave a large percentage of bath salts available.

This study is two-fold, as it seeks to develop an extraction method for the development of Volatile Organic Compound profiles associated with various synthetic cathinones; and also determine the odorant used for canine recognition. The initial goal of this dissertation was to develop an extraction method to characterize various cathinone derivatives. The present study concluded that by employing a Polydimethylsiloxane Divinylbenzene (PDMS/DVB) coated fiber along with complimentary soft ionization techniques, the volatile components and all parent drugs could be identified within sixteen synthetic cathinone cases.

The second goal of the dissertation was to assess and enhance the detection capabilities of narcotic detection teams. Canine field detection is routinely used to stop the increasing distribution influx of drugs into the United States that go undetected by standard procedures currently employed. Although currently canines can detect a multitude of drugs including heroin, cocaine, MDMA, and methamphetamine; this study revealed that more than ten canine teams (throughout south Florida) were not able to detect the presence of synthetic cathinones with current training material.

While concerns have grown concerning the safety and reliability of canines being trained on various illicit substances, this research aimed to develop a safe, efficient, controlled alternative to training any canine for detection in the form of a Controlled Mimic Permeation System (COMPS). Field examination concluded that 3,4-methylenedioxypriophenone was the odorant responsible for the canine recognition of the cathinone derivative odor. Therefore a mimic training aid was developed and deployed within the field to enhance the detection capabilities of various canine teams.

Identifier

FIDC001965

Available for download on Tuesday, July 24, 2018

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).