Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Civil Engineering
First Advisor's Name
Assefa M. Melesse
First Advisor's Committee Title
Co-Committee chair
Second Advisor's Name
Hector R. Fuentes
Second Advisor's Committee Title
Co-Committee chair
Third Advisor's Name
Michael C. Sukop
Third Advisor's Committee Title
Committee member
Fourth Advisor's Name
Walter Z. Tang
Fourth Advisor's Committee Title
Committee member
Fifth Advisor's Name
Seung J. Lee
Fifth Advisor's Committee Title
Committee member
Keywords
Water quality, Multivariate statistical analysis, Remote Sensing, Pollutants, Spatiotemporal modelling, Source apportionments, Landsat, Nutrients, South Florida.
Date of Defense
11-7-2016
Abstract
The overall objective of this dissertation research is to understand the spatiotemporal dynamics of water quality parameters in different water bodies of South Florida. Two major approaches (multivariate statistical techniques and remote sensing) were used in this study. Multivariate statistical techniques include cluster analysis (CA), principal component analysis (PCA), factor analysis (FA), discriminant analysis (DA), absolute principal component score-multiple linear regression (APCS-MLR) and PMF receptor modeling techniques were used to assess the water quality and identify and quantify the potential pollution sources affecting the water quality of three major rivers of South Florida. For this purpose, a 15-year (2000–2014) data set of 12 water quality variables, and about 35,000 observations were used. Agglomerative hierarchical CA grouped 16 monitoring sites into three groups (low pollution, moderate pollution, and high pollution) based on their similarity of water quality characteristics. DA, as an important data reduction method, was used to assess the water pollution status and analysis of its spatiotemporal variation. PCA/FA identified potential pollution sources in wet and dry seasons, respectively, and the effective mechanisms, rules, and causes were explained. The APCS-MLR and PMF models apportioned their contributions to each water quality variable.
Also, the bio-physical parameters associated with the water quality of the two important water bodies of Lake Okeechobee and Florida Bay were investigated based on remotely sensed data. The principal objective of this part of the study is to monitor and assess the spatial and temporal changes of water quality using the application of integrated remote sensing, GIS data, and statistical techniques. The optical bands in the region from blue to near infrared and all the possible band ratios were used to explore the relation between the reflectance of a waterbody and observed data. The developed MLR models appeared to be promising for monitoring and predicting the spatiotemporal dynamics of optically active and inactive water quality characteristics in Lake Okeechobee and Florida Bay. It is believed that the results of this study could be very useful to local authorities for the control and management of pollution and better protection of water quality in the most important water bodies of South Florida.
Identifier
FIDC001230
Recommended Citation
Hajigholizadeh, Mohammad, "Water Quality Modelling Using Multivariate Statistical Analysis and Remote Sensing in South Florida" (2016). FIU Electronic Theses and Dissertations. 2992.
https://digitalcommons.fiu.edu/etd/2992
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).