Document Type

Dissertation

Degree

Doctor of Philosophy (PhD)

Major/Program

Biomedical Engineering

First Advisor's Name

Chenzhong Li

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Anthony J. McGoron

Second Advisor's Committee Title

Committee Member

Third Advisor's Name

Helen Tempest

Third Advisor's Committee Title

Committee Member

Fourth Advisor's Name

Nikolaos Tsoukias

Fourth Advisor's Committee Title

Committee Member

Fifth Advisor's Name

Shuliang Jiao

Fifth Advisor's Committee Title

Committee Member

Keywords

8-hydroxy-2'-deoxyguanosine, Biomarker detection, Biosensor, Cancer biomarker, Electrochemical detection, Glucose meter, Lateral flow strip, Oxidative DNA damage, Paper-based sensor, Point-of-care testing

Date of Defense

4-22-2015

Abstract

Point-of-care testing (POCT) is defined as medical testing at or near the site of patient care and has become a critical component of the diagnostic industry. POCT has many advantages over tests in centralized laboratories including small reagent volumes, small size, rapid turnaround time, cost-effectiveness, low power consumption and functional integration of multiple devices. Paper-based POCT sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for clinical diagnosis.

The focus of this dissertation was to develop simple, rapid and low cost paper-based POCT sensors with high sensitivity and portability for disease biomarker detection. Lateral flow strips (LFS) were used as the basic platform as it provides several key advantages such as simplicity, fast response time, on site and cost-effectiveness, and it can be used to detect specific substances including small molecules, large proteins and even whole pathogens, in a sample by immunological reactions. Earlier designs of paper strips lacked the quantitative information of the analyte concentration and could only provide single analyte detection at a time. In this study, a series of modifications were made to upgrade the platform to compensate for these limitations.

First, we developed a gold nanoparticle based LFS for qualitative colorimetrical detection of bladder cancer related biomarkers in standard solutions and in urine samples. Second, by incorporating an image processing program “ImageJ”, a semi-quantitative LFS platform was established. The capability of the strip was evaluated by testing a small DNA oxidative damage biomarker in urine and cell culture models. Third, we combined the electrochemical method and colorimetrical method for quantitative biomarker detection. Finally, we integrated a commercialized blood glucose meter to quantitatively detection of two non-glucose biomarkers by converting their signals to that of glucose. The upgraded sensor could provide a noninvasive, rapid, visual, quantitative and convenient detection platform for various disease biomarkers. In addition, this platform does not require expensive equipments or trained personnel, deeming it suitable for use as a simple, economical and portable field kit for on-site biomarker monitoring in a variety of clinical settings.

Identifier

FIDC000063

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).