Document Type

Thesis

Degree

Master of Science (MS)

Major/Program

Biomedical Engineering

First Advisor's Name

Juan Franquiz

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Anthony McGoron

Third Advisor's Name

Richard Schoephoerster

Date of Defense

7-24-2003

Abstract

The aim of this study was to develop a practical, versatile and fast dosimetry and radiobiological model for calculation of the 3D dose distribution and radiobiological effectiveness of radioactive stents. The algorithm was written in Matlab 6.5 programming language and is based on the dose point kernel convolution. The dosimetry and radiobiological model was applied for evaluation of the 3D dose distribution of 32P, 90Y, 188Re and 177Lu stents. Of the four, 32P delivers the highest dose, while 90Y, 188Re and 177Lu require high levels of activity to deliver a significant therapeutic dose in the range of 15-30 Gy. Results of the radiobiological model demonstrated that the same physical dose delivered by different radioisotopes produces significantly different radiobiological effects. This type of theoretical dose calculation can be useful in the development of new stent designs, the planning of animal studies and clinical trials, and clinical decisions involving individualized treatment plans.

Identifier

FI14052525

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).