Document Type

Dissertation

Degree

Doctor of Philosophy (PhD)

Department

Chemistry

First Advisor's Name

Stanislaw F. Wnuk

First Advisor's Committee Title

Committee Chair

Second Advisor's Name

Kevin O'Shea

Second Advisor's Committee Title

Committee Member

Third Advisor's Name

David Becker

Third Advisor's Committee Title

Committee Member

Fourth Advisor's Name

Piero Gardinali

Fourth Advisor's Committee Title

Committee Member

Fifth Advisor's Name

M. Alejandro Barbieri

Fifth Advisor's Committee Title

Committee Member

Keywords

Nucleoside, Pd-catalyzed Cross-coupling, Palladium, Click Chemistry, Hydrogermylation, C-H activation, Direct Arylation

Date of Defense

11-5-2014

Abstract

The antiviral or anticancer activities of C-5 modified pyrimidine nucleoside analogues validate the need for the development of their syntheses. In the first half of this dissertation, I explore the Pd-catalyzed cross-coupling reaction of allylphenylgermanes with aryl halides in the presence of SbF5/TBAF to give various biaryls by transferring multiple phenyl groups, which has also been applied to the 5-halo pyrimidine nucleosides for the synthesis of 5-aryl derivatives. To avoid the use of organometallic reagents, I developed Pd-catalyzed direct arylation of 5-halo pyrimidine nucleosides. It was discovered that 5-aryl pyrimidine nucleosides could be synthesized by Pd-catalyzed direct arylation of N3-free 5-halo uracil and uracil nucleosides with simple arenes or heteroaromatics in the presence of TBAF within 1 h. Both N3-protected and N3-free uracil and uracil nucleosides could undergo base-promoted Pd-catalyzed direct arylation, but only with electron rich heteroaromatics.

In the second half of this dissertation, 5-acetylenic uracil and uracil nucleosides have been employed to investigate the hydrogermylation, hydrosulfonylation as well as hydroazidation for the synthesis of various functionalized 5-vinyl pyrimidine nucleosides. Hydrogermylation of 5-alkynyl uracil analogues with trialkylgermane or tris(trimethylsilyl)germane hydride gave the corresponding vinyl trialkylgermane, or tris(trimethylsilyl)germane uracil derivatives. During the hydrogermylation with triphenylgermane, besides the vinyl triphenylgermane uracil derivatives, 5-[2-(triphenylgermyl)acetyl]uracil was also isolated and characterized and the origin of the acetyl oxygen was clarified. Tris(trimethylsilyl)germane uracil derivatives were coupled to aryl halides but with decent yield. Iron-mediated regio- and stereoselective hydrosulfonylation of the 5-ethynyl pyrimidine analogues with sulfonyl chloride or sulfonyl hydrazine to give 5-(1-halo-2-tosyl)vinyluracil nucleoside derivatives has been developed. Nucleophilic substitution of the 5-(β-halovinyl)sulfonyl nucleosides with various nucleophiles have been performed to give highly functionalized 5-vinyl pyrimidine nucleosides via the addition-elimination mechanism. The 5-(β-keto)sulfonyluracil derivative has also been synthesized via the aerobic difunctionalization of 5-ethynyluracil analogue with sulfinic acid in the presence of catalytic amount of pyridine. Silver catalyzed hydroazidation of protected 2'-deoxy-5-ethynyluridine with TMSN3 in the presence of catalytic amount of water to give 5-(α-azidovinyl)uracil nucleoside derivatives was developed. Strain promoted Click reaction of the 5-(α-azidovinyl)uracil with cyclooctyne provide the corresponding fully conjugated triazole product.

Identifier

FI14110716

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).