Document Type
Dissertation
Degree
Doctor of Philosophy (PhD)
Major/Program
Chemistry
First Advisor's Name
Kenneth G. Furton
First Advisor's Committee Title
Major Professor
Second Advisor's Name
José Almirall
Third Advisor's Name
David Becker
Fourth Advisor's Name
Yong Cai
Fifth Advisor's Name
DeEtta Mills
Keywords
decomposition odor, human remains, scent of death, human remains detection canines, cadaver dogs, human cadavers, forensics
Date of Defense
2-28-2014
Abstract
The manner in which remains decompose has been and is currently being researched around the world, yet little is still known about the generated scent of death. In fact, it was not until the Casey Anthony trial that research on the odor released from decomposing remains, and the compounds that it is comprised of, was brought to light. The Anthony trial marked the first admission of human decomposition odor as forensic evidence into the court of law; however, it was not “ready for prime time” as the scientific research on the scent of death is still in its infancy.
This research employed the use of solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) to identify the volatile organic compounds (VOCs) released from decomposing remains and to assess the impact that different environmental conditions had on the scent of death. Using human cadaver analogues, it was discovered that the environment in which the remains were exposed to dramatically affected the odors released by either modifying the compounds that it was comprised of or by enhancing/hindering the amount that was liberated. In addition, the VOCs released during the different stages of the decomposition process for both human remains and analogues were evaluated. Statistical analysis showed correlations between the stage of decay and the VOCs generated, such that each phase of decomposition was distinguishable based upon the type and abundance of compounds that comprised the odor.
This study has provided new insight into the scent of death and the factors that can dramatically affect it, specifically, frozen, aquatic, and soil environments. Moreover, the results revealed that different stages of decomposition were distinguishable based upon the type and total mass of each compound present. Thus, based upon these findings, it is suggested that the training aids that are employed for human remains detection (HRD) canines should 1) be characteristic of remains that have undergone decomposition in different environmental settings, and 2) represent each stage of decay, to ensure that the HRD canines have been trained to the various odors that they are likely to encounter in an operational situation.
Identifier
FI14040888
Recommended Citation
Caraballo, Norma Iris, "Identification of Characteristic Volatile Organic Compounds Released during the Decomposition Process of Human Remains and Analogues" (2014). FIU Electronic Theses and Dissertations. 1391.
https://digitalcommons.fiu.edu/etd/1391
Rights Statement
In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).