The significance of chloroplast movement in leaves of tropical plants

Braulio Arturo Saenz, Florida International University

Abstract

The purpose of this research project was to contribute to the understanding of chloroplast movement in plants. Chloroplast movement in leaves from twenty tropical plant species ranging from cycads to monocots and varying in shade tolerance was examined by measuring changes in transmittance following 30 min. of exposure to white light at 1000 μmol m−2 s −1 in the wavelength range of 400–700 nm (photosynthetically active radiation, PAR). Leaf anatomical characteristics were also measured. Eighteen species increased significantly in transmittance (Δ T) at this level of illumination. ^ Chloroplast movement was significantly correlated with palisade cell width suggesting that cell dimensions are a significant constraint on chloroplast movement in the species examined. In addition, Δ T values were strongly correlated with values of an index of shade tolerance. ^ To further examine the relationship between palisade width and chloroplast movement, additional studies were conducted with a tropical aroid vine, Scindapsus aureus Schott. Scindapsus plants were grown under three different light treatments: 63% (control), 9.0% and 2.7% of full sunlight. Under these growing conditions plants produced markedly different palisade cell widths. Palisade cell width was again found to be correlated with transmittance changes. In addition, the observed increases in transmittance following exposure to the above illumination condition were correlated with absorbance of PAR. Fluorescence studies demonstrated that chloroplast movement helps protect Scindapsus aureus from the effects of photoinhibition when it is exposed to light at a higher intensity relative to the intensity of its normal environment. Ratios of variable fluorescence (Fv) to maximal fluorescence (Fm ) were higher in plants exposed to high light when chloroplasts moved than in plants where chloroplasts did not. ^ To further explore the role of chloroplast movement, studies were conducted to determine if transmittance changes could be induced in ten xerophytes at (1000 μmol m−2 s−1), as well as two stronger light intensities (1800 μmol m−2 s−1 and 2200 μmol m−2 s −1). Transmittance changes in the ten xerophytes were dependent upon the illumination intensity; nine out of the ten xerophytes changed in transmittance at 1800 μmol m−2 s−1. For the other two intensity levels, only three out of the ten xerophytes tested exhibited transmittance changes, and for two species, a negative Δ T value was obtained at 1000 μmol m−2 s−1 . No relationship was found between cell dimensions and chloroplast movement, although all species had large enough chlorenchyma cells to allow such movements. ^ The results of the study clearly show that in non-xerophytes, palisade cell anatomy is a strong constraint on chloroplast movement. This relationship may be the basis for the relationship between chloroplast movement and shade tolerance. Although absorbance changes are relatively small, chloroplast movement was clearly shown to reduce photoinhibition. ^

Subject Area

Biology, Botany|Agriculture, Plant Culture|Biology, Plant Physiology

Recommended Citation

Braulio Arturo Saenz, "The significance of chloroplast movement in leaves of tropical plants" (January 1, 2002). ProQuest ETD Collection for FIU. Paper AAI3059788.
http://digitalcommons.fiu.edu/dissertations/AAI3059788

Files over 15MB may be slow to open. For best results, right-click and select "Save as..."

Share

COinS