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ABSTRACT OF THE DISSERTATION
DESIGN AND SYNTHESIS OF 4-N-ALKANOYL AND 4-N-ALKYL GEMCITABINE ANALOGUES SUITABLE FOR POSITRON EMISSION TOMOGRAPHY
by 
Jesse E. Pulido
Florida International University, 2014
Miami, Florida
Professor Stanislaw F. Wnuk, Major Professor
Gemcitabine is a highly potent chemotherapeutic nucleoside agent used in the treatment of several cancers and solid tumors. However, it is therapeutically limitated because of toxicity to normal cells and its rapid intracellular deamination by cytidine deaminase into the inactive uracil derivative. Modification at the 4-(N) position of gemcitabine's exocyclic amine to an -amide functionality is a well reported prodrug strategy which has been that confers a resistance to intracellular deamination while also altering pharmacokinetics of the parent drug. Coupling of gemcitabine to carboxylic acids with varying terminal moieties afforded the 4-N-alkanoylgemcitabines whereas reaction of 4-N-tosylgemcitabine with the corresponding alkyl amines gave the 4-N-alkylgemcitabines. The 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues with a terminal hydroxyl group on the 4-N-alkanoyl or 4-N-alkyl chain were efficiently fluorinated either with diethylaminosulfur trifluoride or under conditions that are compatible with the synthetic protocols for 18F labeling, such as displacement of the corresponding mesylate with KF/Kryptofix 2.2.2. The 4-N-alkanoylgemcitabine analogues displayed potent cytostatic activities against murine and human tumor cell lines with 50% inhibitory concentration  (IC50) values in the range of low nM, whereas cytotoxicity of the 4-N-alkylgemcitabine derivatives were in the low to modest µM range. The cytostatic activity of the 4-N-alkanoylgemcitabines was reduced by several orders of magnitude in the 2'-deoxycytidine kinase (dCK)-deficient CEM/dCK- cell line while the 4-N-alkylgemcitabines were only lowered by 2-5 times. None of the 4-N-modified gemcitabines were found to be substrates for cytosolic dCK, however all were found to inhibit DNA synthesis. As such, the 4-N-alkanoyl gemcitabine derivatives likely need to be converted to gemcitabine prior to achieving their significant cytostatic potential, whereas the 4-N-alkylgemcitabines reach their modest activity without "measurable" conversion to gemcitabine. Thus, the 4-N-alkylgemcitabines provide valuable insight on the metabolism of 4-N-modified gemcitabine prodrugs.
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[bookmark: _Toc384825360]1. INTRODUCTION
[bookmark: _Toc384825361]1.1. Nucleoside analogues and their application as chemotherapeutic agents.
Cancer is the second leading cause of death in the US, accounting for nearly 1 in 4 deaths.1,2 Treatment strategies typically employ surgery, radiation, chemotherapy or some combination thereof. Cancers are characterized by unregulated cell division and growth, resulting in higher metabolic rates in comparison to normal cells.3 Nucleotides, and by extension nucleosides, are critical building blocks for DNA and RNA replication and repair processes essential to cellular metabolism. Exploitation of a cancer cell's higher cellular metabolism in comparison to normal cells and the fundamental requirements for cell replication has been a strategic focal point in the development of nucleoside-based chemotherapeutic agents. Although many general topics may apply to both purine- and pyrimidine-based anticancer agents, the following discussion will mainly focus on pyrimidine-derived nucleoside analogues as it pertains to the core of my research.   
[bookmark: _Toc384825362]1.1.1. Nucleoside analogues for the treatment of cancer.
Nucleoside analogues (NA) are an important class of antimetabolites used in the treatment of cancer. There are currently over 40 nucleoside drugs approved by the FDA as anticancer and antiretroviral agents. Fourteen of the most important purine- and pyrimidine-based antimetabolites used in the treatment of cancer, accounting for nearly 20% of all drugs used to treat cancer at the time, were described by Parker in 2009 (Table 1).4,5


[bookmark: _Toc384826978]Table 1. FDA approved purine and pyrimidine antimetabolites for treatment of cancer.
	Drug
	date approved

	6-mercaptopurine
	1953

	5-fluorouracil**(5-FU)
	1962

	6-thioguanine
	1966

	arabinofuranosylcytosine (Cytarabine)*
	1969

	5-fluoro-2'-deoxyuridine (Floxuridine)**
	1970

	2'-deoxycoformycin (Pentostatin)
	1991

	Arabinofuranosyl-2-fluoroadenine (Fludarabine)
	1991

	2-chloro-2'-deoxyadenosine (Cladribine)
	1992

	2',2'-difluoro-2'-deoxycytidine (Gemcitabine)**
	1996

	N4-pentyloxycarbonyl-5'-deoxy-5-fluorocytidine (Capecitabine)**
	1998

	5-aza-cytidine (Vidaza)*
	2004

	2'-fluoro-2'-deoxyarabinofuranosyl-2-chloroadenine (Clofarabine)
	2004

	O6-methylarabinofuranosyl guanine (Nelarabine)
	2005

	5-aza-2'-deoxycytidine (Decitabine)*
	2006


*Denotes pyrimidine NA. **Denotes fluoropyrimidine NAs.
The fundamental uptake and metabolism for most NAs typically parallel the natural physiological nucleosides for which they are modeled after. Moreover, many NAs are similarly hydrophilic and require the aid of specialized membrane-bound transport proteins for entry into cells.5 Initial phosphorylation of NAs is facilitated by intracellular kinases and, typically, subsequent phosphorylation events by intracellular kinases lead to generation of active phosphate analogues.6 Nucleoside analogues characteristically achieve their cytotoxic activity by incorporation of the active phosphate analogue into DNA of cells actively undergoing replication or repair processes, leading to DNA damage and induction of apoptosis. However, many drugs also have specific target interactions which help explain the diversity of observed activities, with several possessing "self-potentiating" modes of action. Therapeutic applications of NAs are generally limited by toxicity of the drug associated with the non-specific activation in proliferating normal, non-cancerous cells. Nucleoside analogues rely on enhanced proliferation rates for their preferential uptake in cancer cells and are known to cause lethal damage in normal cells during prolonged treatments.7 Moreover, NAs also suffer from induction of resistance attributed to insufficient intracellular concentrations, inadequate attenuation of deoxynucleotide triphosphate (dNTP) pools, or unreliable induction of apoptosis.6 A subtype of NAs that has demonstrated a wide spectrum of biological activity and managed to generate significant attention in the scientific community and carving out its own niche anticancer therapy and diagnosis are fluorinated nucleoside analogues (FNA). 
[bookmark: _Toc384825363]1.1.2. Anticancer activity of fluorinated pyrimidine nucleoside analogues.
Introduction of a fluorine group into either the sugar or base components of a nucleoside can considerably alter its biological and therapeutic properties.8 As such, substitution of hydrogen atoms or hydroxyl groups for fluorine has become a common practice in the search for and design of chemotherapeutically applicable compounds.8,9 A fluorine atom is a close steric match for a hydrogen atom, still having sufficient electronegativity to effect electronic changes without causing distortion of conformational geometry.8,9 Moreover, fluorine atoms also have a similar polarity in comparison to a hydroxyl group and as such can act as a hydrogen bond acceptor. Since the C-F bond length (1.35Ǻ) so closely resembles that of the C-O bond length of a hydroxyl group (1.43Ǻ), a fluorine atom can serve as an isopolar and isosteric replacement for a hydroxyl group.8,9 The C-F bond strength (116 kcal/mol) is also greater than that of a C-H bond (100 kcal/mol), offering a measure of increased biological and chemical stability to the structure.9 These are significant characteristics for FNAs as incorporation of a fluorine in the furanosyl moiety restricts the conformation of the sugar ring.8 In many cases the stability of a NA or FNA with particular emphasis on the stability of the glycosidic bond, is a key factor for its evaluation as a drug candidate. Incorporation of a fluorine atom at either the 2'- or 3'-position in the sugar moiety of a NA has been reported to increase chemical stability.10 Moreover, incorporation of the fluorine at the 2'-position has been shown to suppress in vivo decomposition by stabilization of the anomeric bond effectively increasing metabolic stability.9,11,12 The chemical structures of selected FNAs are shown in Figure 1.  


[bookmark: _Toc377913743][bookmark: _Toc384826984]Figure 1. Chemical structures of relevant selected fluorinated nucleoside analogues.
A landmark in the development of FNAs, 5-fluorouracil (5-FU, Figure 1) was approved by the FDA in 1962 and is perhaps one of the first examples of a FNA which was designed based on much of the aforementioned characteristics associated with incorporation a fluorine atom. In its conceptualization, Heidelberger et al. also took into consideration available biochemical information, postulating that replacement of the 5-H of the uracil ring with an F-atom would interfere with thymidylate synthases' (TS) ability to methylate deoxyuridine monophosphate (dUMP).13 
The metabolism of 5-FU is well characterized and is shown in Figure 2 as a representative mechanism of action (MOA) for the pyrimidine-based FNAs.5 Dihydropyrimidine dehydrogenase is responsible for the intracellular deactivation of 5-FU, whereas orotate phosphoribosyl transferase leads to its initial activation by conversion to the 5-FU monophosphate nucleotide F-UMP.5 Subsequent phosphorylation events by intracellular kinases give the diphophaste (F-UDP) and the active triphosphate (F-UTP) nucleotides of 5-FU. Incorporation of F-UTP in RNA has been shown to disrupt associated RNA repair processess however is considered a lesser mode of action.5 The 5-fluorouridine diphosphate can act as a substrate for ribonucleotide reductase (RNR), the enzyme responsible for the conversion of ribonucleotides to deoxyribonucleotides, to give the 2'-deoxy-5-fluorouridine diphosphate (F-dUDP), which can also undergo phosphorylation to give the 2'-deoxy-5-fluorouridine triphosphate (F-dUTP). The F-dUTP is a good substrate for DNA polymerases and is actively incorporated into DNA. The F-dUTP can be removed from the DNA by uracil glycosylase, the enzyme responsible for the uracil excision and repair in DNA. However, accumulation of repeated single strand breaks during excision repair inevitably causes apoptosis. Action by dUTPase on F-dUTP gives the deoxy- monophosphate F-dUMP which potently inhibits TS, as mentioned above, and ultimately reduces intracellular levels of thymidine triphosphate (TTP). The reduced level of TTP available to compete with F-dUTP propagates its incorporation into DNA, removal by uracil glycosylase and triggering of an apoptotic event. 
The FNA 2'-deoxy-5-fluorouridine (5-FdU, Figure 1), FDA approved in 1970 and marketed as Floxuridine, mimics the MOA of 5-FU (Figure 2). Following entry into the cell, 5-FdU is an efficient substrate for thymidine kinase and is directly converted into F-dUMP, which either inhibits thymidylate synthase (decreasing TTP pools) or is phosphorylated further to F-dUTP for incorporation into DNA. The 5-FdU can also participate in the same reaction pathway as 5-FU after its direct conversion into 5-FU by thymidine phosphorylase. 
The FNA Capecitabine (N4-pentyloxycarbonyl-5'-deoxy-5-fluorocytidine, Figure 1), marketed as Xeloda®, was later developed as an oral prodrug of 5-FU and is used in the treatment of colon and metastatic breast cancers.5 First approved by the FDA in 1998, capecitabine undergoes three intracellular transformations for its conversion to 5-FU (Figure 2). Cleavage of the N4-pentyloxycarbonyl moiety by carboxylesterases in the liver gives 5'-deoxy-5-fluorodeoxycytidine. Intracellular deamination of 5'-deoxy-5-fluorodeoxycytidine by cytidine deaminase (CDA) leads to the uracil derivative 5'-deoxy-5-fluorodeoxyuridine.5 As is similarly observed for 5-FdU, action by thymidine phosphorylase facilitates the conversion of 5'-deoxy-5-fluorodeoxyuridine into 5-FU. The advantage of using capecitabine instead of 5-FU is the increased bioavailability and also because the overexpression of thymidine phosphorylase in tumor cells offers better selectivity. 
Some NAs, and FNAs, have even more complex MOAs or even different spectrums of activities and applications. The FNA 2'-fluoro-2'-deoxy-5-methyluridine (FMAU, Figure 1) was shown to have potent anticancer activity in murine leukemia models however is more commonly associated with its utility as an antiviral agent.8  The significance of FMAU and other such FNAs, as it pertains to this discussion, lies in their application for diagnosis of cancers and prognosis to chemotherapy, as discussed in later sections (Section 1.1.2.).  


[bookmark: _Toc377913744][bookmark: _Toc384826985]Figure 2. Mechanism of action for 5-fluorouracil (5-FU), 2'-deoxy-5-fluorouridine (5-FdU) and (N4-pentyloxycarbonyl-5'-deoxy-5-fluorocytidine (Capecitabine).

Another milestone in the development of chemotherapeutic FNAs was the making of gemcitabine (2'-deoxy-2',2'-difluorocytidine, Gemzar®, 1, Figure 1). First synthesized by Hertel et al. in 1988,14  gemcitabine received FDA approval in 1996 as first-line therapy in the treatment of pancreatic cancer. Clinical studies revealed that patients treated with gemcitabine vs 5-FU demonstrated significantly improved clinical responses, including decreased rates of mortality and progression of the disease.15,16
[image: ]
[bookmark: _Toc377913745][bookmark: _Toc384826986]Figure 3. Kaplan-Meier survival curve, gemcitabine vs 5-fluorouracil.{NOTE:Elihttp://www.fda.gov/ohrms/dockets/ac/06/briefing/2006-4254b_11_04_KP%20GemcitabineFDAlabel42005.pdf}17 Gemzar® prescription form of gemcitabine.

Gemcitabine exhibits a wide spectrum of activity and is commonly used in the treatment of solid tumors in various cancers including bladder, breast, pancreatic and non-small cell lung cancer.18-25 It is administered intravenously at 1000 to 1250 mg/m2 over 30 minutes weekly, the schedule of administration however varies with cancer type.26,27 The metabolism of gemcitabine has been an area of great interest and as such is well characterized, as shown in Figure 4.28  


[bookmark: _Toc377913746][bookmark: _Toc384826987]Figure 4. Mechanism of action for gemcitabine.28 
Gemcitabine is hydrophilic by nature and therefore its cellular uptake requires the aid of membrane bound nucleoside transport proteins.29 Cellular uptake of gemcitabine is primarily facilitated by human equilibrative nucleoside transporter-1 (hENT1) and to a lesser extent human concentrative nucleoside transporter-1 (hCNT1) and transporter-2 (hCNT2).30 Chemosensitivity to gemcitabine and response to treatment has been shown to correlate to amounts of hENT1 and its level of gene expression.31-34 Patients with higher levels of hENT1 had significant increases in survival time in comparison to patients with low levels of hENT1, making hENT1 a prognostic marker for treatment response to gemcitabine.34 Following uptake into the cell, gemcitabine is activated via initial phosphorylation by deoxycytidine kinase (dCK), and to a lesser extent thymidine kinase 2 (TK2), to gemcitabine monophosphate (dFdCMP). Subsequent phosphorylations by nucleoside monophosphate and diphosphate kinases give the active di- and tri-phosphorylated gemctabines dFdCDP and dFdCTP.35,36 The pre-treatment level of deoxycytidine kinase, known for its role in the nucleotide salvage pathway, is another marker for prognosis to gemcitabine-based therapy as improved response to treatment correlate to higher than average levels of deoxycytidine kinase.37-40 As dFdCTP, gemcitabine behaves similarly to other NAs in its incorporation and inhibition of DNA replication and repair processes which causes apoptosis.32,33 Subsequent to its incorporation one additional deoxynucleotide is added after gemcitabine prior to interruption or inhibition of the DNA polymerases, a process described as a "masked chain termination." The “masked chain termination” is suggested to enhance gemcitabines inhibitory activity as exonucleases have been reportedly unable to remove it.41 The dFdCTP has additional minor activity as it can also participate in potentiating its incorporation into RNA by inhibiting CTP-synthase by depleting the competing cytidine triphosphate pools.42,43 Moreover, as dFdCD(T)P, gemcitabine is a potent stoichiometric inhibitor of  both R1 and R2 subunits in RNR, enacting the release of two fluorine atoms and one cytosine base (Figure 5).44-50 The current proposed mechanism for inhibition of ribonucleotide reductase (RNR) by dFdCDP in the presence and absence or reductant as reported by the Stubbe group is shown in Figure 5.50 Since RNR is responsible for providing the basic monomeric subunits for DNA replication and repair processes,51,52 its inhibition reduces the available pool of nucleosides to able compete with dFdCTP for incorporation into DNA available.44,46 
[bookmark: _Toc377913747][bookmark: _Toc384826988][image: ]Figure 5. Current proposed mechanism for the inactivation of RNR by dFdCDP in the absence and in the presence of reductant.50

Inhibition of DNA (and RNA) replication and repair processes, taken together with modulation of nucleoside pools by inhibition of RNR and CTP synthase, explains the efficacious potency of gemcitabine as a chemotherapeutic agent. However, gemcitabine is therapeutically restricted because of its high toxicity to normal cells.53 Moreover, gemcitabine is rapidly inactivated in plasma via enzymatic deamination by cytidine deaminase (CDA) and deoxycytidylate deaminase (DCTD) to corresponding inactive uridine derivatives, which are later excreted in urine.54  Over expression in either R1 or R2 subunits has been correlated with resistance to gemcitabine treatment in pancreatic cancer both in vitro and in vivo.55,56 Clinical studies have shown that prolonged infusion times with lower doses of gemcitabine remains an effective treatment while reducing toxicity to normal cells.57-59 As such, various strategies have been developed in an effort to overcome some of the disadvantages associated with gemcitabine while increasing its bioavailability.60
[bookmark: _Toc384825364]1.1.3. Gemcitabine prodrug design, acyl modification at the 4-(N)- and 5'-(O)-positions.
 
In an effort to increase the bioavailability of gemcitabine, various oral prodrug strategies have been developed featuring lipophilic acyl modifications on either (or both) the exocyclic 4-(N)- or 5'-(O)-positions of gemcitabine (Figure 1).60 The acyl prodrug strategy usually exploits some enzymatic or chemical process to release the active metabolite while, in the case of the 4-(N)-modification, first conferring a resistance to deamination. 
The synthesis of lipophilic 4-(N)- and 5'-(O)-acyl derivatives of gemcitabine with  C18- and/or C20-acyl groups was patented in 1998 (Figure 6).61 The 4-(N)- and 5'-(O)-acyl derivatives were described as having better cytotoxicity in comparison to the parent gemcitabine, and the hydrolyzable amide or ester modification(s) were suggested to completely alter pharmacokinetics of the gemcitabine by providing a resistance to deamination. Immordino et al. later reported the synthesis of 4-N-acyl gemcitabine derivatives, including 4-N-stearoyl gemcitabine, to evaluate the prodrugs for encapsulation in liposomes and other particles.62 The 4-N-acyl gemcitabine derivatives described therein demonstrated increased anticancer properties to the parent metabolite (gemcitabine) and were markedly more resistant to deamination in plasma.62 Further work within the Cattel group with these 4-N-acyl gemcitabine derivatives demonstrated that the encapsulation efficiency correlated to the lipophilicity afforded by the 4-N-acyl modification.63 More recent work, carried out in large part in the Cui group, has demonstrated 4-N-strearoylgemcitabine-loaded nanoparticles overcoming gemcitabine resistance in cell lines overexpressing the R1 subunit in RNR.64 
The Couvreur group later developed the 4-N-squalenoylgemcitabine (SqGem, Figure 6) as chemotherapeutic, self-assembling nano-assemblies that would release gemcitabine after localization in the endoplasmic reticulum.65,66 The SqGem demonstrated superior anticancer activity to gemcitabine in resistant murine and human leukemia cell lines; the cell lines having been characterized with reduced expression of deoxycytidine kinase and a deficiency in hENT1 respectively.67 In similar in vitro studies with pancreatic cell lines and in vivo pancreatic tumor (Panc-1) models, SqGem was shown to overcome the low efficacy of gemcitabine in chemoresistant cancer cells.68  Currently, SqGem is undergoing preclinical development for advancement to Phase I clinical trials.68 
Eli Lilly's orally active 4-N-valproylgemcitabine prodrug (LY2334737, Figure 6, 2) was designed to increase the bioavailability of gemcitabine by circumventing deamination during first pass metabolism and facilitating a slow release of the parent drug.69 The gemcitabine prodrug LY2334737 was evaluated under conditions similar (and harsher) to those found in the human digestive system and was shown to be highly stable even at a low pH = 2. Carboxylesterase 2 was later identified as the enzyme responsible for the systematic release of gemcitabine from LY2334737,70 which is now undergoing Phase I clinical trials.71,72 
Recently, synthesis of a 4-(N)-PEGgemcitabine conjugate (PEG-gemcitabine, Figure 6) was reported with increased bioavailability of gemcitabine sustained in vivo and showing superior anticancer activity in pancreatic cell lines.73 Pasut et al. later modified the PEG-moiety of PEG-gemcitabine by conjugation to a folic acid (folate-PEG-gemcitabine, Figure 6) to evaluate the active targeting of cells overexpressing the folic acid receptor.74 Therein, release of gemcitabine was shown to proceed in a pH dependent manner in the folate-PEG-gemcitabine. The folate-PEG-gemcitabine was found to be less cytotoxic than gemcitabine alone in most cases (marginally 2-5 times less potent), however held its activity and displayed an increased affinity towards the cancer cells with increased folic acid receptors when compared to PEG-gemcitabine without the folic acid modification.74 
As mentioned earlier in the discussion, 4-(N)-acyl modification at the 5'-(O)-position was also developed as a means to increase bioavailability of gemcitabine, however without the resistance to deamination afforded by the 4-(N)-acyl modification. Quite probably the most notable of the 5'-(O)-acyl gemcitabine prodrugs is CP-4126, (Figure 6) esterified with an elaidic acid at the 5'-position of gemcitabine's sugar moiety. CP-4126 can be orally administered and has displayed antitumor activity in various xenograft models.75 Localization in the cell membrane and superior cytotoxic activity in comparison to gemcitabine in cancer cells deficient in hENT1 suggests an alternative mode of entry for CP-4126.76 However, similar activity profiles for CP-4126 and gemcitabine in non-deficient cancer cells suggests the MOA is dCK dependent pending release of gemcitabine from CP-4126 via unidentified esterases.76 Although CP-4126 had difficulties during Phase I clinical trials,77 it is currently undergoing evaluation in Phase II clinical trials for the treatment of metastatic pancreatic cancer.78


[bookmark: _Toc384826989]Figure 6. Chemical structures of representative 4-(N)- and 5'-(O)-acylated gemcitabine prodrugs.

Other recent examples of 4-(N)- or 5'-(O)-acylated gemcitabine derivatives are the Hoechst conjugated 4-(N)-acyl derivative H-gemcitabine79 (Figure 7), with low toxicity but high tumor efficacy, and the  5'-(O)-acyl gemcitabine prodrugs with coumarin-80 (Figure 7, GMC) or boron-dipyrromethene-81 (not shown) biotin conjugates. These analogues  have been reported for the monitoring of drug delivery at subcellular levels by fluorescence imaging. Although GMC appears more complex in its design, each of these 4-(N)- and 5'-(O)-acylated gemcitabine derivatives were similarly engineered with thiol-specific disulfide bonds, a cancer-targeting unit (Hoechst or Biotin), a fluorescent reporter and a chemotherapeutic agent (gemcitabine) as a theranostic approach to the treatment of cancer.


[bookmark: _Toc384826990]Figure 7. Chemical structures of gemcitabine-Hoechst conjugate (H-gemcitabine) and gemcitabine-coumarin-biotin conjugate (GMC). 

[bookmark: _Toc384825365]1.2. Application of positron emitting radiotracers for anticancer therapy prognosis.
Positron Emission Tomography (PET) scanning is a nuclear medicine imaging technique using radioactive material termed radioligands or radiotracers and relies on the use of radionuclides which decay by positron emission. These radioligands (and PET) have been an invaluable tool for investigating metabolic processes at subcellular levels, allowing for the prognosis and/or monitoring of chemotherapeutic treatment plans.82 In recent years, it has become a preferred method when tracking metabolic activities where other specialized probes have been ineffectual.83,84 
Routine production and clinical use of PET tracers is limited by the availability of the short-lived radionuclides and the developed methods for their preparation. The most common radionuclide for clinical PET imaging is [18F]-Fluoride (t1/2 = 110 min) produced in medical cyclotrons by the proton bombardment (11–18MeV) of [18O]-water.85 The [18F]-can be isolated for use as either anhydrous [18F]-fluoride or as [18F]-enriched fluorine gas; the former commonly encounters complications during desolvation, including increase reactivity of the [18F]-species.86 Although the latter is a common alternative, [18F]-F2 has a lower specific activity and is a highly reactive chemical species making [18F]-fluoride the more agreeable choice. Despite the fact that several advancements have been made over the years in the development of specialized and improved fluorination methods, a major drawback to many of the developed fluorination reagents are the high relative abundance of non-radioactive fluorine present during the preparation of the [18F]-fluorine source. Moreover, these methods utilize reagents that can be highly hazardous and may react violently with many common materials.86
[bookmark: _Toc384825366]1.2.1. PET imaging with [18F]-carbohydrate-based radiotracers.
Commonly referred to as the "work horse" of PET, 2-deoxy-2-[18F]-fluoro-D-glucose ([18F]-FDG) is the most frequently employed radiopharmaceutical for PET. Originally developed in 1976, [18F]-FDG was initially designed for mapping the brain glucose metabolism. Since then, [18F]-FDG has been extensively used for the detection and recurrence of diseases and cancers.87 Initial steps for metabolism of FDG, including uptake and phosphorylation by hexokinase, is analogous to D-glucose.88 Lacking the 2'-hydroxyl group however, FDG is not metabolized further by glucose-phosphate-isomerase and accumulates within cells possessing enhanced glucose uptake.88 "Metabolic trapping," where [18F]-FDG is unable to exit the cell, is beneficial when diagnosing, staging or monitoring treatment of a wide variety of cancers.85 
The first practical synthesis of [18F]-FDG was described in 1984 and proceeded via electrophilic fluorination with [18F]-F2 (Scheme 1).89,90  



[bookmark: _Toc385407686][bookmark: _Toc378162691]Scheme 1. Synthesis of 2-deoxy-2-[18F]fluoro-D-glucose by electrophilic fluorination.89,90  

The more current and routinely employed method for the preparation of [18F]-FDG is performed by automated modules via SN2 reaction derived from Hamacher's 1986 breakthrough synthesis, using 1,3,4,6-tetra-O-acetyl-2-O-trifluoromethanoesulfonyl-β-D-mannopyranose (mannose triflate) as the precursor and Kryptofix 222 (K222) as a catalyst (Scheme 2).2,91 The use of tetrabutylammonium salts (TBA) in place of K222 is common, as the latter is toxic and known to cause apnea and convulsions.92 The addition of a counter-cation usually necessitates the addition of another anion.85 Hydroxide and carbonate anions are employed as they offer little competition in nucleophilic substitution reactions and carbonate anions are the typically the preferred choice, as the hydroxide anion is more likely to facilitate undesired base-catalyzed side reactions.85. 



[bookmark: _Toc385407687][bookmark: _Toc378162692]Scheme 2. Synthesis of 18F-FDG by nucleophilic substitution using KF as a fluoride source.2

The success of [18F]-FDG as a noninvasive probe for pathophysiological processes led to the synthesis and investigation of a widespread number of [18F]-labelled sugars. However, no other such [18F]-labelled carbohydrate has of yet exhibited comparable utility. 
[bookmark: _Toc384825367]1.2.2. PET imaging with [18F]-pyrimidine-based probes 
Several FNAs have been developed as radiotracers and are capable of measuring cell proliferation or some aspect of nucleoside metabolism. These specialized probes are proving invaluable for cancer diagnosis and in evaluating response to chemotherapeutic treatments. Currently, the most applied and well characterized pyrimidine-based FNA PET tracers are 3'-deoxy-3'-[18F]-fluorothymidine ([18F]-FLT), 2'-deoxy-2'-[18F]-fluoro-5-methyluridine ([18F]-FMAU) and 2'-deoxy-2'-[18F]-fluoroarabinocytidine ([18F]-FAC) shown in Figure 8. More recently, the L-isomer radioligands 2'-deoxy-2'-[18F]-fluoro-L-arabinocytidine (L-[18F]-FAC) and 2'-deoxy-2'-[18F]-fluoro-5-methyl-L-arabinocytidine (L-[18F]-FMAC) have also been evaluated for applications to PET (Figure 8). 



[bookmark: _Toc384826991]Figure 8. Chemical structures of pyrimidine-based NA and FNA radiotracers.
The most extensively reviewed FNA PET tracer is [[18F]-FLT (Figure 8), which has been evaluated in various types of cancers and is currently part of ongoing clinical trials in a diagnostic capacity.93-96 Following uptake into the cell, [18F]-FLT is phosphorylated by cytoplasmic enzyme thymidine kinase 1 (TK1).96 The monophosphorylated [18F]-FLT is trapped inside the cell and is unable to incorporate into DNA as it lacks the 3'-OH group necessary for DNA elongation.97 Although not directly correlated to DNA synthesis, [18F]-FLT phosphorylation has proven to be reliable determinant for approximating metabolic proliferation,96,98-100 which is why 18F-FLT is an attractive PET tracer for evaluating response to chemotherapeutic treatments.101,102 [18F]-FLT has been particularly useful in the detection, diagnosis and evaluation of therapies for brain cancers and malignant lymphoma tumors.93-95 The first reported synthesis of [18F]-FLT proceeded via SN2 type reaction however suffered from a low radiochemical yield (RCY).103 The more conventional synthesis makes use of a protected 3'-nosylate precursor in conjunction with automated radiosynthesizers, employing either HPLC system or simple Sep-Pak purification methods, and boasts a far improved RCY of 30~40% (Scheme 4).104-107 


[bookmark: _Toc377903260][bookmark: _Toc385407688][bookmark: _Toc378162693]Scheme 3. Synthesis of 3'-deoxy-3'-[18F]-fluorothymidine ([[18F]-FLT).107
Another FNA-based PET tracer used to evaluate the amount of proliferation rates and noninvasive tumor response to therapeutic treatment is [18F]-FMAU (Figure 8). Unlike [18F]-FLT, after initial phosphorylation by TK1 and subsequent phosphorylation events, phosphorylated [18F]-FMAU accumulates in DNA and can be used to directly assess DNA synthesis in proliferating cells.108 The rapid clearance and high uptake of [18F]-FMAU allows for imaging soon after administering the probe.109 [18F]-FMAU has also been found to be effective in imaging brain, prostate and lung cancers.108,110 The currently employed synthesis of [18F]-FMAU proceeds via labeling using [18F]-TBAF, one of the more precarious of employed radiofluorination reagents, to give the [18F]-fluorosugar, transformation to bromo-[18F]-fluorosugar, silyl-Hilbert-John reaction of bromo-[18F]-fluorosugar with persilylated base and subsequent deprotection (Scheme 4).111,112 The difficulty with this approach however is the lengthy reaction and purification by HPLC involved in obtaining the active β-anomer of  [18F]-FMAU, albeit with a respectable RCY of 20-30% (Scheme 4).97 Alternative synthetic strategies, including automated modules, have improved the time frame but  suffer from diminished RCY's.113,114 


[bookmark: _Toc385407689][bookmark: _Toc378162694]Scheme 4. Synthesis of 2'-deoxy-2'-[18F]-fluoro-5-methyluridine ([18F]-FMAU).111
The FNA-based PET radiotracer [18F]-FAC was developed by Radu et al. for the noninvasive evaluation of NA metabolism and treatment efficacy of gemcitabine.39 [18F]-FAC has been shown to have a similar substrate affinity for dCK and CDA comparable to gemcitabine.39 Visualization of lymphoid organs with [18F]-FAC demonstrated the utility of this probe for evaluating immune response after cancer treatment.39,115 Radu et al. demonstrated that tumors with elevated uptake of [18F]-FAC were also characterized by later reduction in size following treatment with gemcitabine.116 Moreover, estimates of dCK and CDA activities correlated to [18F]-FAC uptake and were diagnostic for gemcitabine treatment response.38-40,117 The Radu group later developed the dCK specific PET tracers [18F]-L-FAC and L-18F-FMAC with have no substrate affinity to CDA.118 Parallel evaluation of the developed L-isomer FNA probes with [18F]-FAC refined prognosis to gemcitabine treatment response.118 Synthesis of [18F]-FAC also proceeds via silyl-Hilbert-John method employing a [18F]-bromosugar and persilyslated base subsequently followed by deprotection (Scheme 5).115


[bookmark: _Toc385407690][bookmark: _Toc378162695]Scheme 5. Synthesis of 2′-deoxy-2′-[18F]-fluoroarabinocytidine ([18F]-FAC).115
[bookmark: _Toc384825368] 1.2.2. Anticancer properties of gallium and its application to PET imaging. 
Application of 68-gallium (68Ga) and bifunctional chelators (BFC) for routine use in clinical PET has recently generated substantial interest in the scientific community.119 In most cases, Ga is found in its 3+ oxidation state and has a chemical behavior that closely resembles that of Fe3+, with comparable electric charge, ion diameter and coordination number (six-coordinated).120 As a metal salt, gallium has been reported in having anti-proliferative properties in a spectrum of cancer cell types mainly attributed with its ability to mimic Fe3+.121-123 Gallium nitrate (commercially known as Ganite) in particular has proven useful in the treatment of cancer related hypercalcemia.124 Gallium metal salts have also demonstrated synergetic effects in combinatorial treatments with other anticancer agents and inhibitors of RNR including gemcitabine.125-128 Gallium complexes gallium (III) maltolate and tris(8-quinolinolato)gallium (III) were later developed and shown to increase the bioavailability of gallium, with the majority of gallium delivered this way found to be protein bound (Figure 9).129,130 


[bookmark: _Toc377913751][bookmark: _Toc384826992]Figure 9. Chemical structures of (A) gallium(III) maltolate and (B) tris(8-quinolinolato) gallium(III).

However, owing to its high charge density, gallium (III) preferentially reacts with hard donors such as amine or carboxylate atoms. The [68Ga] radionuclide is a positron emitting isotope with a short half-life (68 min) and lipophilic nature. Since 68Ga can be obtained from economically available [68Ge]/ [68Ga] generators,131,132 and owing to the reported utility for peptide labeling, it is not surprising that extensive efforts were made in developing  hard donor, polydentate bifunctional chelators that would allow for better incorporation and delivery of the radionuclide.133 
Bifuntional chelators possess a reactive functional group which allows for their conjugation to a metabolite of interest as well as a metal binding moiety that follows fundamental coordination chemistry criteria in their design. The metal binding moiety is typically designed for a specific ligand and takes into account matching coordination cavity size to the ionic radius of the radionuclide, having the required number donor groups and providing appropriate donor binding groups.119 
Among the diverse family of bifunctional chelators, NODASA134 (1,4,7- triazacyclononane-1-succinic acid-4,7-diacetic acid, Figure 10) and NODAGA135 (1,4,7- triazacyclononane-1-glutamic acid-4,7-diacetic acid, Figure 10) possess a NOTA (1,4,7- triazacyclononane-1,4,7-triacetic acid, Figure 10) complexation site, which has a coordination cavity highly accommodating to Ga(III) (ionic radius of 0.65 Ǻ). Although still routinely used for radiolabeling, DOTA (1,4,7,10- tetraazacyclododecane-1,4,7,10-tetraacetic acid, Figure 10) is less suited for Ga(III) complexation, owing to a too large a coordination cavity and an overabundance of donor sites.136-138 
Radiopharmaceuticals are being dominated by the efficient and target specific labeling of BFC-conjugated peptides which show promising clinical activity.139,140 Somatostatin analogues conjugated with DOTA and labeled with 68Ga have been used for the imaging of neuroendocrine tumors and have impacted radiotherapy planning.141 DOTA-bombesin conjugates were similarly utilized for diagnosis of prostate cancers having increased expression of the bombesin receptor. The Arg-Gly-Asp (RGD)-bombesin derivatives conjugated with 68Ga labeled NOTA have shown preferential uptake in PC-3 and MDA-MB-435 tumors and in the pancreas of tumor bearing mice.142 The reported RGD-NOTA conjugates have also been advocated for the imaging of angiogenesis by targeting the αvβ3 intergrin receptor.143,144 More recently, a TRAP (1,4,7-triazacyclononane-1,4,7-tris[methyl(2-carboxyethyl)phosphinic acid)])-based RGD conjugate was reported having 10-20 times higher labeling specificity for 68Ga than the NOTA- and DOTA-peptides.145{Notni, 2012 #2386} The SCN-Bn-NOTA [(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid, Figure 10] derivative ALT-836, with anti-human tissue factor (TF) monoclonal antibody, demonstrated uptake in BXPC-3 tumors (pancreatic cancer cells overexpressing TF) and has been suggest for advancement to Phase I clinical trials as a combination therapy with gemcitabine.146


[bookmark: _Toc384826993]Figure 10. Chemical structures of bifunctional chelators for 68Ga labeling.
 


[bookmark: _Toc384825369]2. RESEARCH OBJECTIVES
The overall aim of the present dissertation is the design, synthesis and biological evaluation of 4-N-alkanoyl (e.g., 9) and 4-N-alkyl (e.g., 39 and 48) gemcitabine analogues as theranostic agents, with potential application towards positron emission tomography imaging (Figure 11).


[bookmark: _Toc377913753][bookmark: _Toc384826994]Figure 11. The potential 4-N-alkanoyl and 4-N-alkyl gemcitabine radiotracers. 
The initial target of my dissertation was the synthesis of 4-N-modified gemcitabine analogues featuring either long alkanoyl or alkyl chains with varying terminal functionalities (olefin, bromine or hydroxyl groups). The varying terminal groups were intended for further chemical modification compatible with radiosynthetic protocols. Modification of the 4-(N)-position of the gemcitabine’s exocyclic amine to an amide functionality is known to confer a resistance to intracellular deamination by CDA.69,147 Additionally, the 4-(N)-amide modification of gemcitabine is reported to undergo cleavage/hydrolysis and facilitate a slow release of the parent drug, improving its pharmacokinetics by increasing its bioavailability.69 The 4-N-alkylation of gemcitabine is largely underrepresented in literature and to the best of my knowledge has not been studied in depth with examples thereof limited to short modifications.148 In contrast to their acyl counterparts, the 4-N-alkylgemcitabines are enzymatically resistant to cleavage at the 4-(N) position and will prove diagnostic for the effect the modification itself has on the activity and metabolism for these analogues. Moreover, the chemical stability of the 4-N-alkyl linkage makes these analogues uniquely suited for further chemical modification under conditions in which the 4-N-alkanoyl linkage would be cleaved. 
The next objective was the evaluation and comparison of the cytostatic properties and mechanism of action for the synthesized 4-N-alkanoyl and the 4-N-alkyl gemcitabine analogues. Since it was unknown whether the 4-N-alkyl modification also facilitates a slow release of the parent drug, stabilities of the 4-N-alkylgemcitabines needed to be evaluated in parallel with the 4-N-alkanoylgemcitabines. 
The final objective was to develop a synthetic method which would allow for the convenient preparation of the 18F or 68Ga modified gemcitabine-based radioligands suitable for PET-based imaging. Since the modifications were envisioned to provide a site for incorporation of a radionuclide, the approach will take into consideration the associated short half-lives of the 18F and 68Ga isotopes.


[bookmark: _Toc384825370]3. RESULTS AND DISCUSSION
[bookmark: _Toc384825371]3.1. Design and synthesis of the 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues.
The initial targets of this dissertation were the synthesis of 4-N-modified gemcitabine analogues suitable for further chemical modification. The 4-N-alkanoyl and 4-N-alkyl modification of nucleosides containing cytosine have been reported to confer resistance to intracellular deamination by CDA,62,147 while the long aliphatic chain should affect pharmacodynamics and cellular uptake of the drug. The lipophilic 4-N-alkanoylgemcitabines 3-6 most closely resemble the 4-N-stearoylgemcitabine45 (Figure 6) and 4-N-squalenoylgemcitabine65 (Figure 6) previously described in literature by the Cattel and Couvreur groups, respectively. Whereas the 4-N-valproylgemcitabines 7 and 8 were prepared in an effort to draw a comparison between our 4-N-modified gemcitabine analogues and Eli Lilly's branched 4-N-valproylgemcitabine oral prodrug (2, LY2334737).149 The 4-N-alkylgemcitabine derivatives complement their 4-N-alkanoylgemcitabines counterparts and offer a point of contrast for the evaluation of the 4-(N) amide linkage. The 2nd generation 4-N-alkylgemcitabine with short chain linker was developed for conjugation to a bifunctional chelator (SCN-Bn-NOTA). 
The varying terminal moieties of the featured aliphatic chains provide a site for modification and incorporation of a radioligand for combinatorial cancer treatment and imaging by PET. Analogues bearing a terminal double bond (4-6, 8 and 26) could serve as a substrate for introduction of an 18F radionuclide by addition of radiolabeled [18F]-HF/pyridine (Olah’s reagent).150 On the other hand, analogues containing a terminal leaving group (17, 19, 22 and 37) could serve as precursors for nucleophilic substitution with [18F]-KF.151,152 The 4-N-alkanoylgemcitabine 41 and the 4-N-alkylgemcitabine 47, conjugated with NODA and NOTA bifunctional chelators respectively, could serve as substrates for labeling with [68Ga]. 
[bookmark: _Toc384825372]3.1.1. Synthesis of the 4-N-alkanoylgemcitabines bearing a terminal olefin.
Several of the 4-N-alkanoylgemcitabine derivatives were prepared employing coupling conditions commonly used in peptide synthesis, proceeding via carbodiimide-mediated activation of corresponding long-chain acid derivatives with hydroxybenzotriazole (HOBt).149,153 Although alternative acylation methods exist, I found that condensation of gemcitabine 1 with commercially available undecanoic acid, or it’s terminally unsaturated counterparts of varying chain lengths (8-nonenoic acid, 10-undecenoic acid, and 12-tridecenoic acid) in the presence of 1.3 equivalents of EDCI [N-(3-dimethylaminopropyl)-N'-ethyl-carbodiimide], 1.1 equivalents HOBt (1-hydroxybenzotriazole) and 1.1 equivalents NMM (N-methylmorpholine) gave the 4-N-alkanoylgemcitabines 3-6 in respective yields of 50%, 45%, 66% and 44% (Scheme 6).  


[bookmark: _Toc377903263][bookmark: _Toc378162696][bookmark: _Toc385407691]Scheme 6. Synthesis of 4-N-alkanoylgemcitabines using peptide coupling conditions.

The branched 4-N-valproylgemcitabines 7149 and olefin 8 were similarly prepared by condensation of 1 with commercially available valproic acid or di-allylacetic acid (51, see section 3.1.11.2., respectively, using peptide coupling conditions (Scheme 7). 


[bookmark: _Toc377903264][bookmark: _Toc378162697][bookmark: _Toc385407692]Scheme 7. Synthesis of 4-N-valproylgemcitabines by peptide coupling conditions. 
[bookmark: _Toc384825373]3.1.2. Synthesis of fluorinated 4-N-alkanoylgemcitabines by addition of HF/pyr.
The parallel, underlying goal for all the synthesized analogues is the eventual incorporation of a radionuclide for concurrent cancer treatment and PET-based imaging. Haufe et al. recently reported a process for the radiofluorination of alkyl aryl thioethers with [18F]-HF/pyridine.150,154 The work reported by the Haufe group led to the initial concept of an olefin bearing 4-N-alkanoylgemcitabine derivative, e.g., analogues 4-6 and 8, and introduction an 18F-radioisotope via electrophilic addition to said terminal double bond. A model study was conducted using regular Olah’s Reagent (70% HF/pyridine) not only to verify the process but also to provide samples to determine cytotoxic efficacy of the proposed fluorination products. Thus, treatment of 5 with HF/pyridine in a chilled HDPE vessel at 0ºC yielded a regioisomeric mixture of 4-N-fluoroalkanoyl derivatives 9-11 with an isomeric ratio 75:20:5 (91%, Scheme 8); 19F NMR was diagnostic for the regioisomeric composition [δ -179.79 (m, 0.05 F), -178.83 (m, 0.20 F) and -170.27 (m, 0.75 F)]. Generation of the regioisomeric mixture, which does not include an 11-fluoro anti-Markovnikov product, can be attributed to migration of the carbocation along the chain via a proton 1,2-migration as has been observed before155 (Scheme 9).


[bookmark: _Toc378162698][bookmark: _Toc385407693]Scheme 8. Model fluorination of the 4-N-alkanoylgemcitabine olefin with HF/pyr.


[bookmark: _Toc378162699][bookmark: _Toc385407694]Scheme 9. Carbocation migration during fluorination of a terminal olefin with HF/pyr.
Alternatively, the condensation of 1 with 10-fluoroundecanoic acid [57 (prepared as a regioisomeric mixture containing 10-fluoro-, 9-fluoro- and 8-fluoroundecanoic acids (75:20:5 for 57:58:59)), see section 3.1.11.2] employing peptide coupling conditions similarly afforded a regioisomeric mixture of 4-N-fluoroalkanoyl analogues 9-11 with an isomeric ratio 75:20:5 (Scheme 10).  


[bookmark: _Toc377903267][bookmark: _Toc378162700][bookmark: _Toc385407695]Scheme 10. Synthesis of the fluorinated 4-N-alkanoylgemcitabine regioisomeric mixture by peptide coupling conditions.
 
The same model fluorination study employed to give 9 was performed on terminally di-unsaturated analogue 8, yielding 12 as a complex isomeric mixture of addition products (Scheme 11). The regioisomeric mixture in this case was too complex to be characterized, likely owing to symmetric and un-symmetric carbocation migration on both chains. However, suprisingly, coupling of 4-fluoro-2-(2-fluoropropyl)pentanoic acid (51, as a complex regioisomeric mixture) to 1 using the peptide coupling conditions failed to yield the branched 4-N-fluoroalkanoyl analogue 12. 


[bookmark: _Toc377903268][bookmark: _Toc378162701][bookmark: _Toc385407696]Scheme 11. Fluorination of olefinic 4-N-valproyl gemcitabine by treatment with HF/pyr.
Although the model fluorination was successful, the occurrence of multiple products in substantial amounts is less than appealing for the development of a marketable drug. Moreover, the reported low chemical efficiencies associated with radiofluorinations using [18F]-HF,156 due to the 18F radionuclides’ relatively low abundance in comparison to 19F during generation of the H-18F/pyr reagent, made the process impractical for the development of a radioligand. The focus then became the development of alternative 4-N-alkanoylgemcitabine derivatives that would allow introduction of an 18F radionuclide by more conventional methods. 
[bookmark: _Toc384825374]3.1.3. Synthesis of 4-N-alkanoylgemcitabine bearing other terminal groups 
The standard method for incorporation of an 18F radionuclide proceeds via SN2 type reaction, substituting a suitable leaving group such as bromide, mesylate or triflate with [18F]-KF in the presence of Kyrptofix.152,157 The reaction of 1 with 11-fluoroundecanoic acid (63, see section 3.1.11.2.) employing peptide coupling conditions afforded the desired 4-N-(11-fluoroundecanoyl)gemcitabine derivative 13 in 41% after isolation (Scheme 12). 


[bookmark: _Toc377903269][bookmark: _Toc378162702][bookmark: _Toc385407697]Scheme 12. Synthesis of the 4-N-alkanoylgemcitabine bearing a terminal fluorine.
A terminal bromine substituent was first considered for replacement during the model fluorination reaction. However, because of the labile nature of the bromide atom the condensation of 1 with commercially available 11-bromoundecanoic acid employing peptide coupling procedures led to the formation of the 4-N-[11-(1H-benzotriazol-1-yloxy)undecanoyl]gemcitabine 14 (Scheme 13) instead of the desired terminal bromine functionalized analogue (i.e. 18, see Scheme 15). 


[bookmark: _Toc377903270][bookmark: _Toc378162703][bookmark: _Toc385407698]Scheme 13. Synthesis of 4-N-alkanoylgemcitabine bearing a terminal triazololate.
Therefore, alternative coupling methods were investigated with the aim of introducing the terminal bromine. Attempts to transiently protect 1 with a trimethylsilyl group158 followed by treatment with 11-bromoundecanoic acid/CDI in the presence of pyridine led to the formation of the 4-N-(11-chloroundecaoyl)gemcitabine 15, featuring a terminal chlorine on the aliphatic chain. Employing a mixed anhydride procedure65 (11-bromoundecanoic acid/ethyl chloroformate/TEA) similarly afforded chloro-derivative 15 (Scheme 14). It seemed the bromine atom was more susceptible to displacement than initially anticipated.


[bookmark: _Toc377903271][bookmark: _Toc378162704][bookmark: _Toc385407699]Scheme 14. Synthesis of 4-N-alkanoylgemcitabine bearing a terminal chlorine.
In order to preserve the terminal bromine functionality, the 3',5'-di-O-Boc protected 16159 was prepared as reported in literature by reaction of 1 with di-tert-butyl carbonate in the presence of KOH in 1,4-dioxane.159 The selective Boc-protections at 3’-OH and 5’-OH positions allowed for condensation of 16 with corresponding 11-bromoundecanoyl chloride (64, see section 3.1.11.2.) in the presence of NaHCO3 at 0ºC to give the desired Boc-protected Bromo derivative 17 in a 33% isolated yield. Analogue 17 was deprotected with TFA to give the 4-N-(11-bromoundecanoyl)gemcitabine 18, with the terminal bromine intact, to be screened for activity (Scheme 15).


[bookmark: _Toc385407700][bookmark: _Toc378162705]Scheme 15. Synthesis of the 4-N-alkanoylgemcitabine bearing a terminal bromine. 
The branched, terminal bromine bearing 4-N-(5-bromo-2-propylpentanoyl) gemcitabine 19 (43% yield) was similarly prepared by treatment of 16 with corresponding acyl chloride 5-bromo-2-propylpentanoyl chloride (55, see section 3.1.11.2.) in the presence of NaHCO3 (Scheme 16). 



[bookmark: _Toc377903273][bookmark: _Toc378162706][bookmark: _Toc385407701]Scheme 16. Synthesis of the 4-N-bromovalproylgemcitabine bearing a terminal bromine.

In order to investigate alternative terminal moieties to be replaced during the SN2-mediated fluorination model studies, the Boc-protected terminal hydroxyl functionalized analogue 20 was prepared in a 37% yield by treatment of 16 with commercially available 11-hydroxyundecanoic acid by employing the peptide coupling procedure. Deprotection of 20 with TFA gave 11-hydroxyundecanoyl analogue 21 (Scheme 17).


[bookmark: _Toc377903274][bookmark: _Toc378162707][bookmark: _Toc385407702]Scheme 17. Synthesis of the 4-N-alkanoylgemcitabine bearing terminal hydroxyl group.
The terminal hydroxyl functionality allowed for a versatile means of introducing SN2 susceptible leaving groups. Treatment of 20 with trifluoromethanesulfonic anhydride afforded the Boc-protected Triflate analogue 22 (Scheme 18). As a result of the labile nature of the primary triflate, which is expected to be highly susceptible to SN2 type replacement by a fluoride anion, preparation of pure triflate 22 was troublesome and gave a mixture of elimination and hydrolyzed by-products. 


[bookmark: _Toc377903275][bookmark: _Toc378162708][bookmark: _Toc385407703]Scheme 18. Synthesis of the 4-N-alkanoylgemcitabine bearing terminal triflate.
Initial attempts employing the conventional radiosynthetic procedures for introducing a fluorine atom via SN2 type reaction, discussed later, when using the 4-N-alkanoylgemcitabines 17, 19, or 22 as the substrate failed to yield the desired fluorination products; frequently giving instead the elimination product 5 or had no reaction at all. Moreover, cleavage of the amide linkage resulting in regeneration of 16 was also observed to occur under the radiosynthetic conditions, which use strong bases or basic solvents at elevated temperatures (upward of ~100 ºC) in their deprotection steps. However, not all fluorination reagents which use fluoride (F-) as a fluorine source and that are applicable to radiofluorination were out of the scope of this work. The direct fluorination of 20 with DAST afforded the protected 4-N-(11-fluoroundecanoyl) derivative 23 (40%), which could be further deprotected with TFA gave 13  (Scheme 19). However, a major drawback for the use of [18F]-DAST would be that it is highly volatile and reacts violently with water. The preparation of [18F]-DAST additionally proceeds with low radiochemical yields.160 It should also be mentioned that 23 could alternatively be prepared by applying peptide coupling conditions to 16 with 11-fluoroundecanoic acid. However, application of peptide coupling conditions to 3'-5' protected gemctiabines typically precedes in low yields. 


[bookmark: _Toc377903276][bookmark: _Toc378162709][bookmark: _Toc385407704]Scheme 19. Fluorination of a 4-N-alkanoylgemcitabine with DAST.
A comparison to the 4-N-alkanoylgemcitabines was still needed that preferably had similar lipophilic characteristics yet lacking hydrolyzable the carbonyl moiety, which may clarify any direct role the lipophilic side chain plays in the metabolism of these analogues. 
[bookmark: _Toc384825375]3.1.4. Synthesis of 4-N-alkylgemcitabines bearing a terminal methyl or olefin.
The 4-N-alkyl modification offers direct evidence towards the anticancer properties related to the long lipophilic chain while avoiding limitations associated with stability of the amide linkage during deprotection of a 4-N-alkanoyl radioligand. From existing methods known in literature for the 4-N-alkylation of cytosine-based nucleosides,161-164 4-N-alkylation of gemcitabine was most efficiently achieved efficiently by displacement of a toluenesulfonamido group163 with corresponding aliphatic alkyl amines to give the 4-N-alkylgemcitabines. Thus, tosylation of 16 with TsCl in the presence of Et3N in 1,4-dioxane afforded protected 4-N-tosyl gemcitabine 24. Treatment of 24 with either neat n-butyl amine or 10-undecenyl amine effected simultaneous displacement at C4 of cytosine ring and deprotection to afford 4-N-butyl 25 and 4-N-(10-undecenyl) derivative 26, in 50% and 36% yield respectively (Scheme 20).  

[bookmark: _Toc377903277]
[bookmark: _Toc378162710][bookmark: _Toc385407705]Scheme 20. Synthesis of 4-N-alkylgemcitabines by nucleophilic aromatic substitution.
Conventionally, the 4-N-alkylation of the exocyclic amine of the cytosine base ring of gemcitabine is believed to produce inactive metabolites. In our preliminary screening the long-alkyl modification was observed overall to produce less active gemcitabine analogues in comparison to gemcitabine and the 4-N-alkanoylgemcitabines. The observed activity for this class of compounds advocated the 4-N-alkyl modification as yet being therapeutically relevant depending on cancer type. The results from the preliminary cytotoxic screening prompted the exploration of 4-N-alkylgemcitabines with similar terminal functionalities described herein for the 4-N-alkanoyl gemcitabine derivatives.
[bookmark: _Toc384825376]3.1.5. Synthesis of the fluorinated 4-N-alkylgemcitabine by addition of HF/pyr.
Although incorporation of 18F via treatment with H18F/pyr is not practical process for imaging, fluorinated analogues 9 and 12 were active metabolites even as regioisomeric mixture, hence the fluorinated 4-N-alkylgemcitabine counterpart merited characterization. Direct fluorination of 26 with HF/pyr in a chilled HDPE vessel at 0 ºC yielded a regioisomeric mixture of 27-29 with an isomeric ratio of 20:45:35 (Scheme 21); 19F NMR was diagnostic for the regioisomeric composition [δ -183.01 (m, 0.2 F), -181.90 (m, 0.45 F) and -173.68 (m, 0.35 F)]. Interestingly the 9-fluoroundecanyl isomer was the major product rather than the expected 10-fluoroundecanyl regioisomer, as was observed with its 4-N-alkanoylgemcitabine counterpart 9-11.  


[bookmark: _Toc378162711][bookmark: _Toc385407706]Scheme 21. Fluorination of 4-N-alkylgemcitabine olefin by addition of HF/pyr.
[bookmark: _Toc384825377]3.1.6. Synthesis of the 4-N-alkylgemcitabines bearing other terminal groups.
To meet the criteria of conventional retrosynthetic procedures, which employ [18F]-KF as a ligand source, development of an "SN2-friendly" derivative was necessary. Treatment of 4-N-tosyl derivative 24 with corresponding alkyl-amines however simultaneously deprotected the 3' and 5' positions of the sugar moiety. Specifically, reaction of 24 with the necessary 11-aminoundecanol 66 in the presence of Et3N in 1,4-dioxane resulted in substantial 5'-O-monoprotected intermediate 30 (53%) as well the fully de-protected analogue 31 (24%) (Scheme 22).


[bookmark: _Toc377903279][bookmark: _Toc378162712][bookmark: _Toc385407707]Scheme 22. Synthesis of the 4-N-alkylgemcitabine bearing a terminal hydroxyl group.
Exposure of the 5'-OH and 3'-OH groups in the ribose ring following alkylation made the selective fluorination of the primary hydroxyl group on the 4-N-alkyl chain (e.g. in 31) unmanageable. Therefore, it was necessary to have a selective protection-deprotection strategy in place prior to the alkylation. Transient protection and subsequent tosylation of gemcitabine 1 yielded 32 after deprotection with methanolic ammonia. The tosyl modification in turn was directly replaced by treatment with O-benzyl protected 11-aminoundecanol 70 to give 33, introducing the desired hydroxyl functionality already protected rather than attempting a selective protection in the presence of 3'-OH and 5'-OH groups. Thus, benzoylation of 33 yielded the fully protected 34. Selection of the benzyl protection when preparing the 11-aminoundecanyl benzyl ether would now allow for selective deprotection of the 4-N-(11-O-benzylundecanyl)-protection via lengthy treatment with CAN, while maintaining integrity of the 3',5'-dibenzoyl protections, to give 35, the desired precursor for introduction of 18F radioligand (Scheme 23). Other attempts at a PMB protection strategy were unsuccessful since we were unable to synthesize the O-para-methoxybenzyl protected 11-aminoundecanol. Also, an O-trityl protected 11-aminoundecanol was prepared however it failed to react with the 4-N-tosylgemcitabine 32.


[bookmark: _Toc378162713][bookmark: _Toc385407708]Scheme 23. Synthesis of 4-N-alkylgemcitabine bearing a terminal hydroxyl for the model fluorination with KF/K222. Reagents and conditions: (a) (i) TMSCl, pyridine, (ii) TsCl, (iii) MeOH•NH3; (b) BnO(CH2)11NH2, Et3N, 1,4-dioxane; (c) 2,6-Lutidene, DMAP, BzCl, CH2Cl2; (d) CAN, CH3CN; (e)MeOH•NH3.

It should be noted that other attempts were also made for the selective deprotection of 34 via Pd-C catalyzed hydrogenation (Scheme 24).  However treatment of 34 led to the partial hydrogenation and reduction of the cytosine ring. The undesired 5,6-dihydrocytosine derivative 36 was isolated from the reaction mixture and its structure was established by MS (ESI+) m/z 643 (100, [M+H]+) as well as by observed loss of characteristic cytosine absorbance for UV at 275 nm.



[bookmark: _Toc378162714][bookmark: _Toc385407709]Scheme 24. Debenzylation of the 4-N-alkylgemcitabine by hydrogenation with H2.
Treatment of the terminal hydroxyl functionalized analogue 35 with MsCl (1.1 eq) and Et3N (1.5 eq) in CH2Cl2 afforded 37. The mesylate precursor 37 is a suitable substrate for the model fluorination studies simulating conventional radiosynthetic conditions (Scheme 25). 


[bookmark: _Toc377903282][bookmark: _Toc378162715][bookmark: _Toc385407710]Scheme 25. Synthesis of 4-N-alkylgemcitabine bearing a terminal mesylate.
[bookmark: _Toc384825378]3.1.7. Fluorination of the  4-N-alkylgemcitabine with DAST.
However, prior to beginning model fluorination studies employing KF as a fluoride source, analogue 38 was prepared via direct fluorination of 35 with DAST. Subsequent deprotection of 38 with methanolic ammonia afforded the desired 39 (Scheme 26). 


[bookmark: _Toc378162716][bookmark: _Toc385407711]Scheme 26. Fluorination of 4-N-alkylgemcitabine with DAST.
With standards for 38 and 39 in hand, the model fluorination was investigated mimicking the conventional radiosynthetic protocol as closely as possible. Reaction of 37 with KF in the presence of K2CO3 and Kryptofix 222 was carried out in CH3CN at 110 ºC for 18 min in a heavy walled cylindrical pressure vessel with screw cap to give 38. After quick cooling and short vacuum filtration into another pressure vessel, the effluent was concentrated in vacuo and treated with 0.5 M CH3ONa in MeOH (1 mL) and stirred at 100 ºC for 8 min. The reaction mixture was neutralized with 1N HCl and concentrated to dryness (Scheme 27). The desired fluorinated 4-N-fluoroalkylgemcitabine 39 was found to be stable at that level; characterized by HPLC retention time and LC-MS (ESI+) m/z 436.3.


[bookmark: _Toc377903284][bookmark: _Toc378162717][bookmark: _Toc385407712]Scheme 27. Model fluorination of 4-N-alkylgemcitabine with KF/K222.

Purification by HPLC for the fluorinated 4-N-alkylgemcitabine 39 was also characterized to meet criteria for radiosynthesis of the [18F]-radioisomer.  Therefore, the neutralized sample was injected into a into a Phenomenex Gemini semi-preparative RP-C18 column (5µ, 25 cm X 1 cm) via 5 mL loop and eluted with isocratic mobile phase mixture 45% CH3CN in H2O at a flow rate = 5 mL/min. The 4-N-fluoroalkylgemcitabine 39 eluted with rt = 13.1 min (62% overall yield) with nearest observable impurities separated by approximately 2.5 min (rt = 11.5 and 16.0min) (Figure 12). 

[image: ]
[bookmark: _Toc377913754][bookmark: _Toc384826995]Figure 12. HPLC chromatogram of neutralized sample from model fluorination with KF. 
Having now established a protocol suitable for working with [18F] and a 4-N-modified gemcitabine analogue, attention was directed towards the development of 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues compatible with alternative radionuclides. 
[bookmark: _Toc384825379]3.1.8. Direct conjugation of gemcitabine with bifunctional chelators.
As previously mentioned (Section 1.2.2.), bifunctional chelators rely on reactive functional groups (typically an electrophilic group such as an acetate) for their conjugation to a metabolite of interest. The initial concept for generating a [68Ga]-4-N-alkanoylgemcitabine radioligand was the direct conjugation of commercially available 4-(4,7-bis(2-tert-butoxy-2-oxoethyl)-1,4,7-triazonan-1-yl)-5-tert-butoxy-5-oxopentanoic acid (NODA-GA(tBu)3) to gemcitabine using previously employed peptide coupling conditions. Under those conditions, the protected NODA-4-N-alkanoylgemcitabine conjugate 40 was prepared and identified by 1H NMR and LC-MS (ESI+) m/z 789. However, analogue 40 was not found to be stable and was observed to slowly decompose back into 1. Deprotection of 40 with TFA afforded the desired NODA-GA-4-N-alkanoylgemcitabine conjugate 41 (Scheme 28) precursor for labeling, but also promoted further decomposition to 1. Although 41 was successfully prepared, implementation of a [68Ga] label proved to be more difficult than initially anticipated and attempts to incorporate the radionuclide were unsuccessful. It was speculated that trace amounts of metal ions present throughout the synthesis and which may have been adequate to chelate with the NODA-GA effectively blocked the site for introduction of a Gallium atom. 


[bookmark: _Toc378162718][bookmark: _Toc385407713]Scheme 28. Synthesis of the 4-N-(NODA-GA)gemcitabine conjugate.
In order to circumvent possible metal ion contaminations, 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (SCN-Bz-NOTA)  was considered to be directly conjugated to gemcitabine. Conjugation of SCN-Bz-NOTA exploits the predisposition of amines to readily undergo condensation with thioisocynates to give amine-thiourea derivatives in high yields and also minimizes the amount of reagents, thought to be most probable source of metal ion contamination. However, the condensation of 1 with SCN-Bz-NOTA in 0.1 M sodium carbonate buffer (pH = 9.5) failed to produce the corresponding SCN-Bz-NOTA-4-N-alkanoylgemcitabine conjugate 42 (Scheme 29)143 owing to the poor nucleophilicity of the exocyclic amine of gemcitabine's cytosine base ring.


[bookmark: _Toc378162719][bookmark: _Toc385407714]Scheme 29. Attempted preparation of the 4-N-(SCN-Bn-NOTA)gemcitabine conjugate.
[bookmark: _Toc384825380]3.1.9. Attempted synthesis of the 4-N-alkanoylgemcitabine bearing a terminal amine for conjugation to bifunctional chelators. 

The “2nd generation” 4-N-alkanoylgemcitabine derivative bearing a more nucleophilic aliphatic amine for conjugation to SCN-Bz-NOTA was later explored as an alternative to the direct conjugation with gemcitabine previously mentioned. Gemcitabine 1 was reacted with commercially available N-Boc-β-alanine using peptide coupling procedures to afford the N-protected 4-N-(11-aminoundecanoyl) gemcitabine derivative 43 (Scheme 30). The deprotection of 43 with TFA was surprisingly problematic to control and led to cleavage of the amide linkage. Pending characterization of a suitable deprotection strategy for 43, the primary amine on the 4-N-(3-aminopropanoyl) derivative 44 is expected to react with commercially available SCN-Bz-NOTA to give a SCN-Bz-NOTA-4-N-alkanoylgemcitabine radioligand precursor.  A similar acyl linker with a base labile N-Fmoc proctection was also considered as a viable route to the desired 4-N-(3-aminopropanoyl) derivative 44. However, coupling of commercially available N-Fmoc-β-alanine failed to give the desired 4-N-alkanoyl gemcitabine derivative. 


[bookmark: _Toc377903287][bookmark: _Toc378162720][bookmark: _Toc385407715]Scheme 30. Synthesis of 4-N-alkanoylgemcitabine with linker bearing a terminal amine.

Therefore, attention was diverted towards the development of the analogues “2nd generation” 4-N-alkyl gemcitabine derivative bearing and aliphatic amine.

[bookmark: _Toc384825381]3.1.10. Synthesis of the 4-N-alkylgemcitabine bearing a terminal amine for conjugation to bifunctional chelators.

The non-hydrolyzable 4-N-alkylgemcitabine 45 bearing a terminal amine on the short alkyl linker was successfully prepared (Scheme 31) by reaction of commercially available N-Boc-1,3-propanediamine with 24. Deprotection of 45 with TFA gave the desired 4-N-(3-aminopropanyl) derivative 46 bearing a terminal amine, ideal for the proposed thioisocyante condensation. Analogue 46 was also prepared more efficiently (94% overall yield) as a "one-pot" synthesis starting from 32, skipping isolation of 45.
[bookmark: _Toc377903288]


[bookmark: _Toc378162721][bookmark: _Toc385407716]Scheme 31. Preparation of 4-N-alkylgemcitabine with linker bearing a terminal amine.
Condensation of 46 with SCN-Bz-NOTA in 0.1 M Na2CO3 buffer (pH = 11) at ambient temperature was found to be a slow process, the reaction occurring over a 48-72 h period, however it inevitably afforded the 4-N-(3-SCN-Bz-NOTA-propanyl)gemcitabine conjugate 47 (Scheme 32); identified by HRMS (ESI+) m/z 771.2879 and found to be relatively stable at that level.


[bookmark: _Toc378162722][bookmark: _Toc385407717]Scheme 32. Preparation of the NOTA-4-N-alkylgemcitabine conjugate.
Incubation of 47 with excess of gallium(III) chloride (GaCl3) mimicking radiosynthetic conditions (0.6 N NaCH3CO2/H2O, pH = 9.3) with an extended reaction time (30 min instead of 15 min) gave the Gallium-SCN-Bz-NOTA-4-N-alkylgemctiabine conjugate 48; characterized by HPLC retention time and HRMS (ESI+) m/z 837.1977. The observed retention times for the labeling precursor 47 (rt = 14.1) and the gallium complexed 48 (rt = 12.4 min) met criteria for working with [68Ga]3+ and can be applied towards the radiosynthesis of the [68Ga]-48 radioligand.


[bookmark: _Toc378162723][bookmark: _Toc385407718]Scheme 33. Model labeling of NOTA-4-N-alkylgemcitabine conjugate with GaCl3.

[bookmark: _Toc384825382]3.1.11. Synthesis of aliphatic side chain precursors for the 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues.

3.1.11.1. Synthesis of the valproic acid derivatives.
The treatment of commercially available diethyl diallylmalonate 49 with KOH/H2O under reflux conditions afforded the double olefinic analogue 50.165 Fluorination of 50 with 70% HF/pyridine (Olah's Reagent) gave the difluoro derivative 51 as a complex regioisomeric mixture (Scheme 34).166 


[bookmark: _Toc377903291][bookmark: _Toc378162724][bookmark: _Toc385407719]Scheme 34. Synthesis of diallylacetic acid and 4-Fluoro-2-(2-fluoropropyl)pentanoic acid
Treatment of commercially available diethyl propylmalonate (52) with 3-phenoxypropyl bromide in the presence of LDA (2M solution) afforded 53. Addition of HBr (aq.) resulted in de-esterification and de-carboxylation of ethyl ester and subsequent substitution of phenoxy function affording 54. Treatment of 54 with freshly  distilled SOCl2167 gave the acyl chloride 55 (Scheme 35).

 
[bookmark: _Toc377903292][bookmark: _Toc378162725][bookmark: _Toc385407720]Scheme 35. Synthesis of 5-Bromo-2-propylpentanoyl chloride.
3.1.11.2.  Synthesis of the long chain carboxylic acid derivatives.
Fluorination of commercially available undecylenic acid 56 with 70% HF/pyr yielded a regioisomeric mixture of 10-fluoro, 9-fluoro, and 8-fluoro derivatives 57-59 with an isomeric ratio of 75:20:5 (Scheme 36). Although the use of pyridine is not ideal, the successful fluorination of the terminal olefin under the electrophilic addition conditions encourages development of these precursors for 18F-labeling. 


[bookmark: _Toc377903293][bookmark: _Toc378162726][bookmark: _Toc385407721]Scheme 36. Synthesis of 10-fluoroundecanoic acid. Regioisomeric mixture contained 75% of the 10-fluoro derivative, 20% of the 9-fluoro derivative and 5% of the 8-fluoroderivative.

Esterification of the commercially available 11-bromoundecanoic acid 60 with CH2N2/MeOH produced methyl ester 61.151 The fluorination168 of 61 with TBAF·3H2O gave methyl 11-fluoroundecanoate 62169 contaminated (8%) by the elimination byproduct (methyl 10-undecenoate). Saponification of the 62 with NaOH yielded the carboxylic acid 63. Treatment of acid 60 with SOCl2167 afforded acyl chloride 64 (Scheme 37). 


[bookmark: _Toc377903294][bookmark: _Toc378162727][bookmark: _Toc385407722]Scheme 37. Synthesis of 11-fluoroundecanoic acid and 11-bromoundecanoyl chloride.
3.1.11.3. Synthesis of amino alcohol derivatives.
Reduction of the commercially available 11-aminoundecanoic acid 65 with LiAlH4 provided amino alcohol 66.170 Subsequent treatment of 66 with di-tert-butyl dicarbonate yielded the N-protected amino alcohol 67.170 Activation of the hydroxyl group of 67 with MsCl171 produced the mesylate 68 which upon treatment with benzyl alkoxide172 provided the fully protected amino alcohol 69. Selective N-deprotection of 69 with TFA/H2O afforded the O-benzyl amino alcohol 70 (Scheme 38). 

[bookmark: _Toc377903295]
[bookmark: _Toc378162728][bookmark: _Toc385407723]Scheme 38. Synthesis of 11-(benzyloxy)undecan-1-amine.
[bookmark: _Toc384825383]3.2. Biological evaluation of the 4-N-modified gemcitabine analogues.
The 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues were designed to exploit the resistance to deamination due to their respective 4-N-acyl and 4-N-alkyl modifications. However, the pharmacokinetics of the parent metabolite is anticipated to be affected differently between the lipophilic 4-N-alkanoyl and 4-N-alkyl modification. The 4-N-alkyl modification is expected to be chemically and enzymatically resistant to cleavage, therefore having little to no release of dFdC and may potentially provide insight into the role the modification itself plays in the metabolism of the 4-N-modified analogues. As such, a preliminary biological evaluation was performed for 4-N-alkanoyl and 4-N-alkyl analogues to assess their relative activities and also to gauge the marketability of our analogues as potential chemotherapeutic agents.
[bookmark: _Toc384825384]3.2.1. Preliminary cytostatic evaluation of 4-N-modified gemcitabine analogues.

The preliminary biological evaluation for the 4-N-alkanoyl and 4-N-alkyl gemcitabine derivatives was conducted by myself in the laboratory of Dr. Roy, from the Department of Environmental and Occupational Health at Florida International University.
3.2.1.1. Cell viability and measurement of growth inhibition.
Cytostatic activities of the 4-N-modified gemcitabine analogues were assessed after 72 h incubation period in breast adenocarcinoma MCF-7 cell line using sulforhodamine B (SRB) assay following established protocols.173 All compounds (purity >95%) were directly tested in free-base form, and were found to inhibit cell growth in a dose dependent manner as demonstrated by cytostatic activity curves in Figure 13. Absorbance estimates were used to evaluate percentage of cell growth versus analogue concentration to calculate IC50 values for selected analogues (Table 2). It should be pointed out that a difficulty encountered during this preliminary study was reproducibility of the activity values. The range of activity observed was substantially varied when attempting to repeat experiments at later dates. However, a persistent and recurring trend was observed with respect to activity between gemcitabine and all 4-N-modified analogues. 
[image: ]
[bookmark: _Toc377913755][bookmark: _Toc384826996]Figure 13. In vitro cytotoxicity curve of 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues on human tumor cell line MCF-7. Cells were treated with either gemcitabine (1), 4-N-nonenoylgemcitabine (4),4-N-alkanoylgemcitabine (5), 4-N-valproylgemcitabine (8)  or 4-N-alkylgemcitabine (26) at the indicated concentrations for 72 h before the viability of treated cells was determined by SRB assay. Results represent the mean of triplicates with error bars indicating standard deviation.

The 4-N-undecenoylgemcitabine 5 exhibited the most potent cytostatic activity with IC50 = 0.2 µM, 2.5-fold more potent than observed with the parent drug 1 with IC50 = 0.5 µM in the MCF-7 cells. The di-olefinic 4-N-valproyl gemcitabine derivative 8, which is also a 4-N-alkanoyl gemcitabine derivative, demonstrated a diminished cytotoxic activity (IC50 = 11.0 µM) in comparison to the non-branched 5. Interestingly, the 4-N-alkylgemcitabine 26 (IC50 = 6.5 µM) exhibited activity comparable to 8 in MCF-7 cells. 
[bookmark: _Toc377903230][bookmark: _Toc384826979]Table 2. In vitro cytotoxicity of representative 4-N-modified gemcitabine analogues on 
human tumor cell line MCF-7.
	Cmpd.
	IC50 (µM)
	IC75 (µM)
	IC90 (µM)

	1
	0.5 ± 0.02b
	4.4  ± 0.08b
	>25

	5
	0.2 ± 0.01b
	1.5 ± 0.6
	16 ± 2.5

	8
	11 ± 7.0
	>25
	>25

	26
	6.5 ± 3.2
	>25
	>25


aCells were treated with either gemcitabine (1), 4-N-nonenoylgemcitabine (4), 4-N-alkanoylgemcitabine (5), 4-N-valproylgemcitabine (8) or 4-N-alkylgemcitabine (26) at the indicated concentrations for 72 h before the viability of treated cells was determined by SRB assay. Results represent the mean of triplicates with error bars indicating standard deviation. bStatistical analysis (probability of difference of the treatment value from that of the nontreated control): P < 0.05.

During a preliminary evaluation comparing trends in cytostatic activities for the 4-N-alkanoylgemcitabines (4-6), 4-N-nonenoylgemcitabine 4 with the shortest aliphatic side chain consistently exhibited less activity in comparison to 5 and 6 (Figure 14). These results however were insufficient to correlate cytostatic activity with the length of the side chain as reported by Immordino et al.63 A similar comparison between 4-N-alkanoylgemcitabines (5, 13, 15, 18, and 21) with varying functional groups on the acyl chain was also explored (Figure 15). Again results were insufficient to correlate cytostatic activity with different terminal groups. However, in the evaluated set of compounds the 4-N-fluoroalkanoyl gemcitabine analogue 13 appeared to be most active and the 4-N-hydroxyalkanoyl gemcitabine analogue 21 was consistently the least active in MCF-7 cells.
[image: ]
[bookmark: _Toc377913756][bookmark: _Toc384826997]Figure 14. Effect of chain length on cytostatic activity of 4-N-alkanoylgemcitabines in MCF-7 cells. Cells were treated with either 4-N-nonenoylgemcitabine (4), 4-N-undecenoylgemcitabine (5), or 4-N-tridecenoylgemcitabine (6) at the indicated concentrations for 72 h before the viability of treated cells was determined by SRB assay. Results represent the mean of triplicates with error bars indicating standard deviation.

[image: ]
[bookmark: _Toc377913757][bookmark: _Toc384826998]Figure 15. Effect of varying terminal groups on cytostatic activity of 4-N-alkanoylgemcitabines in MCF-7 cells. Cells were treated with either 4-N-undecenoylgemcitabine (5), 4-N-fluoroundecenoylgemcitabine (13), 4-N-chloroundecenoylgemcitabine (15), 4-N-bromoundecenoylgemcitabine (18), or 4-N-hydroxyundecanoylgemcitabine (21) analogues at the indicated concentrations for 72 h before the viability of treated cells was determined by SRB assay. Results represent the mean of triplicates with error bars indicating standard deviation.
3.2.1.2. Anti-Proliferative Properties and Measurement of New DNA Synthesis 
To assess the mechanism by which the 4-N-modified gemcitabine analogues are inhibiting cell growth in the MCF-7 cell line, DNA proliferation was measured employing 5-bromodeoxyuridine (BrdU) assay. Results indicated that new DNA synthesis was being inhibited by the parent drug 1, the 4-N-alkanoylgemcitabines (5, 8) and the 4-N-alkylgemcitabine (26), indicating growth inhibition potentially being the result of more than cell death. At the higher test concentration (25 µM), the 5 and 8 were of comparable anti-proliferative activity to the parent compound 1, whereas the 4-N-alkylgemcitabine 26 showed a less prominent capacity for inhibiting DNA synthesis (Figure 16). However at the lower test concentration (2.5 µM), the 4-N-alkanoylgemcitabine 5 demonstrated superior anti-proliferative activity, whereas analogues 8 and 26 were both found to be comparable to 1 in the MCF-7 cells (Figure 17). Interestingly, compounds demonstrated varying progressions with time in inhibiting DNA synthesis, indicating different pharmacokinetics or stabilities between the compounds under biological conditions.
 [image: ]
[bookmark: _Toc377913758][bookmark: _Toc384826999]Figure 16. Cell proliferation time-point measurement study for 25 µM treatment of representative 4-N-modified gemcitabine analogues on MCF-7 cell line. Cells were treated with either gemcitabine (1), 4-N-nonenoylgemcitabine (4),4-N-alkanoylgemcitabine (5), 4-N-valproylgemcitabine (8)  or 4-N-alkylgemcitabine (26) at the indicated 25 µM treatment and cell proliferation of treated cells was determined by BrdU assay at 24, 48, 72 and 96 h time periods. Results represent the mean of triplicates with error bars indicating standard deviation.


[image: ]
[bookmark: _Toc377913759][bookmark: _Toc384827000]Figure 17. Cell proliferation time-point measurement study for 2.5 µM treatment of representative 4-N-modified gemcitabine analogues on MCF-7 cell line. Cells were treated with either gemcitabine (1), 4-N-nonenoylgemcitabine (4),4-N-alkanoylgemcitabine (5), 4-N-valproylgemcitabine (8)  or 4-N-alkylgemcitabine (26) at the indicated 2.5 µM treatment and cell proliferation of treated cells was determined by BrdU assay at 24, 48, 72 and 96 h time periods. Results represent the mean of triplicates with error bars indicating standard deviation.

3.2.3. Cell Cycle Analysis
The observed inhibition of new DNA synthesis however does not indicate a stage specific cell cycle perturbation, nor give direct evidence of apoptosis. Cell cycle analysis by flow cytometry with propidium iodide (PI) staining was therefore evaluated for selected analogues (1, 5, 8, 26) in MCF-7 cells at the 25 µM test concentration. Cells were analyzed after a 48 h incubation period and statistics generated by FCS Express 4 Flow program. As evident by given values in Table 3 and histograms in Figure 18, for all compounds tested there was a significant reduction in S-phase and accumulation in G0/G1, as well as noticeable decline of cells in G2/M, after the 48 h incubation period in MCF-7 cells. A reduced progression of the cell cycle therefore was observed for all compounds, consistent with preliminary results from the cell viability and proliferation studies. These results may have be attributed to cell cycle freezing at this high test concentration prior to a G2/M block occurring, a phenomenon reported in studies detailing cell cycle effect of gemcitabine in ovarian carcinomas.174 However studies by Ali et al.175 characterizing effects of gemcitabine at lower concentration in MCF-7 cells yielded similar results after a 48 hr incubation period. 
[bookmark: _Toc377903231][bookmark: _Toc384826980]Table 3. Cell cycle analysis of 4-N-modified gemcitabine analogue treated human tumor cell line MCF-7 by flow cytometry.
	Cmpd.
	G1 Mean
	G1 CV
	%G1
	G2 Mean
	G2 CV
	%G2
	%S
	G2/G1
	BAD

	Cntrl.
	4784624
	6.74
	51.8
	9635017
	6.7
	15.1
	33.2
	2.12
	1.19

	1
	5281140
	9.45
	78.9
	10342718
	9.6
	11.8
	9.3
	2.12
	0.93

	5
	5359904
	9.15
	80.8
	10882586
	7.7
	10.9
	8.4
	2.12
	0.59

	8
	5149490
	10.47
	81.8
	10473201
	10.47
	10.18
	8.0
	2.12
	0.07

	26
	5063732
	8.42
	77.6
	10226335
	8.42
	12.0
	10.3
	2.12
	0.17


aCells were treated with either gemcitabine (1), 4-N-nonenoylgemcitabine (4), 4-N-alkanoylgemcitabine (5), 4-N-valproylgemcitabine (8)  or 4-N-alkylgemcitabine (26) and the cell cycle analyzed after 48 h by flow cytometry using propidium iodide staining. 
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[bookmark: _Toc384827001]Figure 18. DNA Histograms of MCF-7 cells after 25 µM treatment of compound. Cells were treated with either gemcitabine (1), 4-N-nonenoylgemcitabine (4), 4-N-alkanoylgemcitabine (5), 4-N-valproylgemcitabine (8)  or 4-N-alkylgemcitabine (26) and the cell cycle analyzed after 48 h by flow cytometry using propidium iodide staining. Cell phases indicated on panel labeled control.
[bookmark: _Toc384825385]3.2.2. Cytostatic evaluation of the 4-N-modified gemcitabine analogues. 
Further collaborative opportunites with Dr. Cheppail Ramachandran, from the department of Radiation Oncology at University of Miami's School of medicine, and with Dr. Jan Balzarini, from the Rega Institute for Medical Research, were explored to refine and characterize the cytostatic activities of the 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues, with each contributing interesting and valuable new information. 
3.2.2.1. Cytostatic evaluation of 4-N-modified gemcitabine analogues in Panc-1 cells.

The Ramachandran group evaluated select 4-N-alkanoyl (5, 7-9) and 4-N-alkyl (26, 27) gemcitabine analogues in human pancreatic cancer Panc-1 cell line after 72 h incubation using a Cell Proliferation kit I (MTT), from Roche Biochemicals. The results from this study (Table 4) suggested a much larger margin between activities originally observed in the preliminary screening (reference Table 2) between gemcitabine 1 with IC50 = 0.08 µg/mL (IC50 = 0.3 µM) and the 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues. These results were of particular significance as they also suggested both the aliphatic 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues may be more active than gemcitabine in Panc-1 cells, showing a capacity for overcoming the parent drugs inability to achieve IC75 and IC90 values at relatively low doses. The 4-N-alkylgemcitabines 26 and 27, with IC50 = 35 µg/mL (84 µM) and IC50 = 44 µg /mL (101 µM), respectively, demonstrated more potent cytostatic activities in Panc-1 cells in comparison to the 4-N-alkanoylgemcitabine counterparts 5 and 9, with IC50 = 124 µg /mL (289 µM) and IC50 = 129 µg/mL (287 µM) respectively. These finding are the first observed example of 4-N-alkylgemcitabine derivatives exhibiting superior activity in comparison to 4-N-alkanoylgemcitabine derivatives. The branched 4-N-valproyl gemcitabines 7 and 8 failed to achieve IC50 values within the range of tested concentrations. 
[bookmark: _Toc377903232][bookmark: _Toc384826981]Table 4. In vitro cytostatic activity of representative 4-N-modified gemcitabine analogues on human tumor cell line Panc-1.
	Cmpd.
	IC50 (µg/mL)
	IC75 (µg/mL)
	IC90 (µg/mL)

	1
	0.08 ± 0.02d
	>200
	>200

	5
	124 ± 5d
	167 ± 10c
	>200

	7a
	>200
	>200
	>200

	8
	>200
	>200
	>200

	9
	129 ± 11d
	>200
	>200

	26
	35 ± 4d
	44 ± 5c
	50 ± 2

	27
	44 ± 6d
	72 ± 7c
	93 ± 15


a LY2334737 (2) In free-base form. bCells were treated with either gemcitabine (1), 4-N-alkanoylgemcitabines (5 or 9), 4-N-valproylgemcitabines (8 or 9)  or 4-N-alkylgemcitabines (26 or 27) over a range of concentrations and incubated for 72 h before the viability of treated cells was determined by MTT assay. Results represent the mean of triplicates with error bars indicating standard deviation. cStatistical analysis (probability of difference of the treatment value from that of the nontreated control): P < 0.05. dStatistical analysis (probability of difference of the treatment value from that of the nontreated control): P < 0.001.
.  
3.3.2.2. Cytostatic evaluation of 4-N-modified gemcitabine analogues in human tumor cell line panel

The Balzarini group evaluated select 4-N-alkanoyl (3-6, 7, 13, 21) and 4-N-alkyl (26, 31, 39) gemcitabine analogues on a panel of murine and human tumor cell lines, including the dCK-deficient CEM/dCK- cell line (Table 5).176 These findings demonstrated a more varied difference in potency between gemcitabine, the 4-N-alkanoyl and the 4-N-alkyl gemcitabine derivatives than observed in the prior screenings (reference tables 2 and 4). Overall, the 4-N-alkanoylgemcitabines performed as expected, likely behaving as pro-drugs of gemcitabine.149 Potent antiproliferative activities were observed for 4-N-alkanoylgemcitabines 3-6, 13 and 21 boasting IC50 values in the low nM range comparable to gemcitabine.  The branched 4-N-valproylgemcitabine 7, tested in it's free-base form, had IC50 values in the low µM range more comparable to the 4-N-alkylgemcitabines than to the other 4-N-alkanoyl derivatives. The observed cytostatic activities for 7 (compound 2 in free base form) are consistent with findings reported by Pratt et al., who described IC50 values for 7 being “80-fold more” less potent compared to 1 on the NCI-60 DTP human tumor cell line panel.71 The 4-N-alkylgemcitabines 26, 31 and 39 possessed very modest cytostatic activites, with IC50 values in the low µM range (Table 5). Although a trend was not observed, cytostatic activities again appeared to vary only slightly between compounds with different chain lengths. Also consistent with the preliminary screen was the slight variation in activities between 4-N-alkanoylgemcitabines bearing different functional groups on the terminal end of the aliphatic side chain. 
As anticipated, the cytostatic activities for all 4-N-alkanoylgemcitabines (3-7, 13, 21) were severely reduced, by nearly two orders of magnitude, in the dCK-deficient CEM/dCK- cell line. These findings validate the proposed role dCK plays in the metabolism of these compounds, where the 4-N-alkanoylgemcitabines first need to be converted to gemcitabine before achieving their cytostatic potential.60 However, cytostatic activities of the 4-N-alkylgemcitabines (26, 31, and 39) were only reduced by approximately 2-5 times in the dCK-deficient CEM/dCK- cells, suggesting some role for dCK in the metabolism of the 4-N-alkylgemcitabines. 
Although the Panc-1 cell line was not evaluated in the study by Balzarini, it is still worthy to note that the 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues demonstrated a significant difference in their range of cytotoxic activity. Comparing to results from the preliminary screening (Table 2) and also from the Ramachandran group (Table 4), the aliphatic 4-N-alkanoylgemcitabines of similar structure to 5 were drastically more potent than the branched 4-N-valproylgemcitabine 7 and the 4-N-alkylgemcitabine 26. Interestingly, the observed activity for the 4-N-alkylgemcitabine 26 in MCF-7 cells during the Balzarini group's study was near to the described value from the preliminary cytostatic evaluation (reference Table 1).
[bookmark: _Toc377903233][bookmark: _Toc384826982]Table 5. In vitro cytotoxicity of representative 4-N-modified analogues on a panel of murine and human tumor cell lines.176
	Cmpd.
	IC50 (µg/mL)

	
	L1210
	CEM/0
	CEM/dCK-
	HeLa
	MCF-7

	1
	0.013 ± 0.001
	0.069 ± 0.002
	7.6 ± 0.5
	0.0099 ± 0.0041
	0.0072 ± 0.0002

	3
	0.014 ± 0.002
	0.060 ± 0.012
	5.8 ± 0.5
	0.0089 ± 0.0024
	0.0053 ± 0.0023

	4
	0.024 ± 0.017
	0.14 ± 0.00
	20 ± 2
	0.042 ± 0.005
	0.0079 ± 0.0002

	5
	0.018 ± 0.016
	0.071 ± 0.015
	12 ± 9
	0.012 ± 0.007
	0.0062 ± 0.0029

	6
	0.021 ± 0.018
	0.069 ± 0.002
	6.8 ± 1.8
	0.013 ± 0.007
	0.0079 ± 0.0012

	7a
	1.1 ± 0.7
	5.2 ± 2.3
	161 ± 8
	0.76 ± 0.30
	0.55 ± 0.49

	13
	0.053 ± 0.040
	0.059 ± 0.009
	7.2 ± 0.8
	0.011 ± 0.004
	0.0077 ± 0.0006

	21
	0.023 ± 0.003
	0.24 ± 0.19
	19 ± 6
	0.049 ± 0.030
	0.0081 ± 0.0005

	26
	7.0 ± 3.0
	13 ± 6
	60 ± 15
	3.4 ± 0.0
	28 ± 14

	31
	29 ± 11
	86 ± 10
	140 ± 28
	22 ± 4
	27 ± 3

	39
	28 ± 2
	28 ± 4
	134 ± 18
	17 ± 4
	26 ± 7


a LY2334737 (2) In free-base form.  bCells were treated with either gemcitabine (1), 4-N-alkanoylgemcitabines (3, 4, 5, 6, 13 or 21), 4-N-valproylgemcitabines (7)  or 4-N-alkylgemcitabines (22, 26, 31 or 39) over a range of concentrations and incubated for 72 h before the viability of treated cells was determined by Coulter counter.

Select compounds (5, 21, 26, 31) were also evaluated for potential interactions with mitochondrial TK-2 and cytosolic dCK and also as direct substrates for dCK.176 Incubation with the selected compounds showed no observable inhibition of phosphorylation for deoxycytidine by dCK or for deoxythymidine by TK-2. Compounds 5 and 21 had very little (<1%) substrate activity with dCK, consistent with CEM/dCK- cell line findings. The observed reduction in activity in the dCK- cell line reaffirms the hypothesis that the 4-N-alkanoylgemcitabines first need to be converted to gemcitabine before acting as substrates for dCK. On the other hand, even under conditions which phosphorylate gemcitabine by 15%, neither 26 nor 31 had any measurable substrate activity with dCK. Taken together with the marked loss in cytostatic activity in the CEM/dCK- cells, it is possible that the observed activity for the 4-N-alkylgemcitabines may be achieved via a dCK-independent pathway. However these findings do not exclude, at least in some part, the cytostatic activities being attributed to a poor cellular uptake of the 4-N-alkylgemcitabines or a poor, if any, conversion to the parent drug 1 which falls outside the assay detection limits (<1%). 
To gain further insight into metabolism of these analogues, stability and resistance to enzymatic deamination were evaluated for 4-N-alkanoylgemcitabine 21 and 4-N-alkylgemcitabine 31 in parallel with gemcitabine by incubating each separately with human serum and murine liver extracts (Figure 19).176 Analysis by HPLC showed that gemcitabine was measurably deaminated as a function of time to its inactive uracil derivative dFdU in 50% human serum (panel A). As predicted, the 4-N-alkanoylgemcitabine prodrug 21 was observed to gradually undergo conversion to gemcitabine, which after prolonged exposure was further deaminated to dFdU (panel B). However, the 4-N-alkylgemcitabine 31 was neither observed to be directly deaminated nor was there any measurable conversion to gemcitabine (panel C). Incubation of 21 with murine liver extract gave evidence for a rapid conversion of the 4-N-alkanoylgemcitabine to gemcitabine (and dFdU). Parallel incubation of 31 with murine liver extract revealed that the 4-N-alkylgemcitabine remained stable for at least 2 hours (Figure 20).  These findings again favor the hypothesis that the considerable difference in cytostatic activities between the 4-N-alkanoylgemcitabine 21 and the 4-N-alkylgemcitabine 31 is attributed to their respective enzymatic conversion, or lack thereof, to gemcitabine.  Although the mechanism of action for the antiproliferative activity of the 4-N-alkylgemcitabines remains unclear, it might well be different than the cellular targets for the 4-N-alkanoylgemcitabines.
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[bookmark: _Toc377913760][bookmark: _Toc384827002]Figure 19. Time-dependent evaluation of the stability and resistance to deamination for gemcitabine (A), 4-N-alkanoylgemcitabine 21 (B) and 4-N-alkylgemcitabine 31 (C) in 50% human serum in PBS.176
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[bookmark: _Toc377913761][bookmark: _Toc384827003]Figure 20. Time-dependent evaluation of the stability of 4-N-alkanoylgemcitabine 21 and 4-N-alkylgemcitabine 31 in murine liver extract in PBS.176

[bookmark: _Toc384825386]3.3. Synthesis and characterization of [18F]- and [68Ga]- 4-N-alkylgemcitabine radioligands.

The developed chemistry for model fluorination and chelation studies with KF and GaCl3 has facilitated radiosynthesis of the [18F]-4-N-alkylgemcitabine 39 and [68Ga]-4-N-alkylgemcitabine-NOTA conjugate 48. Radiosynthesis and in-vivo evaluation of [18F]-4-N-alkylgemcitabine radioligand 39 were performed in the laboratory of Dr. Caius Radu, from the Crump Institute for Molecular Imaging. The radiosynthetic evaluation of the [68Ga]-4-N-alkylgemcitabine-NOTA conjugate 48 was conducted in the laboratory of Dr. Anthony McGoron, from the Department of Biomedical Engineering in FIU.
[bookmark: _Toc384825387]3.3.1. [18F ]-Labeling and evaluation of the [18F ]-4-N-alkylgemctiabine radioligand.
 To observe the distribution of 39 in vivo, 70 µCi of the probe was injected via tail vein into non-tumor bearing and tumor bearing mice (individual mice indicated by serial code numbers, Figures 21-24). The specimens were imaged after 1 h, first by positron emission tomography and then computed tomography, and the images analyzed in combination using Osirix software. Imaging data was expressed as the injected dose per gram percentage (%ID/g) with the injected dose, time, decay and body weight all taken into consideration. Initial findings with [18F]-4-N-fluoroalkylgemcitabine 39 indicated a dCK-specific accumulation in the spleen, with signal present in the dCK wild-type mice and absent in the deoxycytidine kinase knock-out (dCK KO) mice (Figure 21). The dCK-specific accumulation suggests a possible dCK-independent pathway consistent with earlier results from the observed activities in the dCK deficient cell line. The observed accumulation of signal in the bone appears to be dCK-independent and attributed to in vivo defluorination of the probe, whereby free [18F]- is released via elimination type mechanism. The time-point evaluation of the [18F]-4-N-fluoroalkylgemcitabine probe over a 3 h period in the dCK wild-type mice (Figure 22) and the dCK KO mice (Figure 23) was also explored. Evaluation of the probe over the time course supported the proposed in vivo defluorination, with a gradual reduction of signal observed in the spleen, gallbladder and other organs accompanied by an accumulation of signal in the bone over the 3 h period.
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[bookmark: _Toc377913762][bookmark: _Toc384827004]Figure 21. Uptake of [18F]-4-N-fluoroalkylgemcitabine in dCK WT and KO mice. 
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[bookmark: _Toc377913763][bookmark: _Toc384827005]Figure 22. Time-dependent study for [18F]-4-N-fluoroalkylgemcitabine uptake in dCK WT mice.
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[bookmark: _Toc377913764][bookmark: _Toc384827006]Figure 23. Time-dependent study of [18F]-4-N-fluoroalkylgemcitabine uptake in dCK KO mice.

The [18F]-4-N-fluoroalkylgemcitabine probe was also evaluated in mice bearing CEM leukemia tumors expressing normal levels of dCK and tumors with low levels of dCK. A comparison between the two murine models indicates dCK-independent accumulation of the radioligand signal in CEM leukemia tumors owing to similar uptake in the amounts of probe in dCK-WT (Figure 24), consistent with the findings from dCK- cell lines.
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[bookmark: _Toc377913765][bookmark: _Toc384827007]Figure 24. Uptake of [18F]-4-N-fluoroalkylgemcitabine in CEM-CCRF tumor bearing mice.

[bookmark: _Toc384825388]3.3.2. [68Ga]-Labeling and evaluation of NOTA-4-N-alkylgemcitabine radioligand.

The [68Ga]+3 (1.627 Ci in 1 mL of 0.1N HCl) was eluted from a 68Ge/68Ga generator with H2O for the labeling. Following previously elaborated conditions with regular GaCl3, the [68Ga]-labeling was completed within 15 min and analyzed by TLC(Figure 25). The TLC plates eluted with 0.1 M citric acid and analyzed by developing on a phosphoscreen, Rf values of the free [68Ga]3+ and [68Ga]-complexed 48 were "1.0" and "0.0" respectively, indicated a high labeling efficiency for the reaction as can be seen in Table 6. In lanes containing NOTA-4-N-alkylgemcitabine and [68Ga],3+ the [68Ga]3+ was observed to complex from 94% to 96%.
[bookmark: _Toc384826983]Table 6. Labeling values for NOTA-4-N-alkylgemcitabine radioligand with 68Ga.
	
	Trial 1
	Trial 2
	Trial 3

	
	Control
	Cmpd
	Control
	Cmpd
	Control
	Cmpd

	Counts in upper region
	363069018
	25232330
	240306449
	10064331
	219716549
	6458287

	Counts in
lower region
	7970885
	374787348
	4208914
	256461215
	3319270
	166566169

	Percent Efficiency
	98
	94
	98
	96
	99
	96
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[bookmark: _Toc384827008]Figure 25. TLC for complexation of NOTA-4-N-alkylgemcitabine radioligand with 68Ga. Free [68Ga]3+ (lane A) and [68Ga]-complexed with NOTA-4-N-alkylgemcitabine (lane B).

The distribution coefficient was evaluated for the [68Ga]-radioligand using octanol/H2O and EtOAc/H2O systems and found to be almost exclusively in favor of the aqueous layer, with less <5% of the observed counts occurring in either organic phase (data not shown). The hydrophilic character of [68Ga]-complexed 48 implies that the radioligand will not make a good candidate for further development as a theranostic agent. However, there is still potential for the development of other NOTA-4-N-alkylgemcitabine radioligands of similar structure to 48 with elongated alkyl chains (9-13 carbons) with more lipophilic character.

[bookmark: _Toc384825389]4. EXPERIMENTAL PROCEDURES
[bookmark: _Toc384825390]4.1. General Procedure
The 1H (400 MHz), 13C (100 MHz), or 19F (376 MHz) NMR spectra were recorded at ambient temperature in solutions of CDCl3 or MeOH-d4 or DMSO-d6, as noted. The reactions were followed by TLC with Merck Kieselgel 60-F254 sheets and products were detected with a 254 nm light or with Hanessian’s stain.  Column chromatography was performed using Merck Kieselgel 60 (230-400 mesh). Reagent grade chemicals were used and solvents were dried by reflux distillation over CaH2 under nitrogen gas, unless otherwise specified, and reactions carried out under Ar atmosphere. The carboxylic acid and amine derivatives used for the coupling with gemcitabine were either commercially availaible or prepared as described. The purity of the synthesized compounds was determined to be ≥95% by elemental analysis (C, H, N) and/or HPLC on Phenomenex Gemini RP-C18 with isocratic mobile phase (50% CH3CN/H2O) and flow rate of 5 mL/min. VassarStats© software was used for the statistical analysis. The mean values from triplicate experiments are presented and the standard deviations were calculated to estimate the degree of data variation, as specified for each experiment in the figure or table legend. Two-way ANOVA analysis was applied to calculate the statistical significance of the data (P values). Reprinted data with permission from Pulido, J.; Sobczak, A. J.; Balzarini, J.; Wnuk, S. F. Synthesis and Cytostatic Evaluation of 4-N-Alkanoyl and 4-N-Alkyl Gemcitabine Analogues. J. Med. Chem. 2014, 57, 191-203. Copyright © 2014, American Chemical Society.

[bookmark: _Toc384825391]4.2. Synthesis 
General synthetic procedure for preparation of the 4-N-acyl gemcitabine derivatives (3-8). Procedure A.  N-Methylmorpholine (1.1 eq.), 1-hydroxybenzotriazole (1.1 eq.), the appropriate carboxylic acid (1.1 eq.) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (1.3 eq.) were sequentially added to a stirred solution of gemcitabine hydrochloride (1, 1.0 eq.) in DMF/DMSO (3:1, 2 mL) at ambient temperature under Argon. The reaction mixture was then gradually heated to 65 ºC (oil-bath) and kept stirring overnight. After the reaction was completed (TLC), the reaction mixture was cooled to 15 ºC and partitioned between a small amount of brine and EtOAc. The organic phase was separated and the aqueous layer extracted with fresh portions of EtOAc (3 x 30 mL). The combined organic layers was then sequentially washed with 20% LiCl/H2O, saturated NaHCO3/H2O, brine, dried over Na2SO4, and evaporated under reduced pressure to give the crude products 3-8.
4-N-(Undecanoyl)-2'-deoxy-2',2'-difluorocytidine (3). Treatment of 1 (34 mg, 0.11 mmol) with commercially available undecanoic acid (23.3 mg, 0.120 mmol) by Procedure A gave 45.7 mg of the crude product, which was then column chromatographed (5% MeOH/EtOAc) to give 3 (23.8 mg, 50%) as a white solid: 1H NMR (CD3OD) δ 0.90 (t, J = 6.9 Hz, 3H, CH3), 1.27-1.39 (m, 14H, 7 x CH2), 1.63-1.70 (m, 2H, CH2), 2.45 (t, J = 7.4 Hz, 2H, CH2), 3.79-3.83 (m, 1H, H5'), 3.94-3.99 (m, 2H, H5', H4'), 4.31 (dt, J = 20.8, 10.5 Hz, 1H, H3'), 6.24-6.28 (m, 1H, H1'), 7.50 (d, J = 7.6 Hz, 1H, H5), 8.34 (d, J = 7.6 Hz, 1H, H6); 13C NMR (CD3OD) 14.41, 23.69, 25.93, 30.15, 30.40, 30.40, 30.56, 30.64, 33.03, 38.16, 60.29 (C5'), 70.21 ("t," J = 23.1 Hz, C3'), 82.86 (d, J = 8.6 Hz, C4'), 86.44 (dd, J = 26.6, 38.3 Hz, C1'), 98.26 (C5'), 123.90 (t, J = 259.3 Hz, C2'), 145. 94 (C6), 157.65 (C2), 164.80 (C4), 175.97; 19F NMR (CD3OD) δ -120.09 (br. d, J = 240.9 Hz, 1F), -119.14 (dd, J = 11.3, 240.9 Hz, 1F); HRMS (ESI+) m/z calcd for C20H31F2N3NaO5 [M+Na]+ 454.2124; found 454.2136.
4-N-(8-Nonenoyl)-2'-deoxy-2',2'-difluorocytidine (4).  Treatment of 1 (34 mg, 0.110 mmol) with commercially available 8-nonenoic acid (21 µL, 19.5 mg, 0.120 mmol) by Procedure A gave 29.0 mg of the crude product, which was then column chromatographed (70 → 100% EtOAc/hexane) to give 4 (20 mg, 45%) as a white solid: 1H NMR (CD3OD) δ 1.32-1.46 (br. s, 6H, 3 x CH2), 1.65-1.69 (m, 2H, CH2), 2.03-2.07 (m, 2H, CH2), 2.45 (t, J = 7.4 Hz, 2H, CH2), 3.81 (dd, J = 12.3, 2.8 Hz, 1H, H5'), 3.96-3.99 (m, 2H, H5'', H4'), 4.30 (td, J = 12.2, 8.6 Hz, 1H, H3'), 4.90-5.01 (m, 2H, CH2), 5.81 (ddt, J = 16.9, 10.0, 3.4 Hz, 1H, CH), 6.24-6.28 (m, 1H, H1'), 7.50 (d, J = 7.6 Hz, 1H, H5), 8.34 (d, J = 7.6 Hz, 1H, H6); 13C NMR (CD3OD) δ 25.90, 29.87, 29.90, 30.00, 34.79, 38.15, 60.31 (C5'), 70.23 (dd, J = 21.9, 23.4 Hz, C3'), 82.86 (C4'), 86.14 (d, J = 20.1 Hz, C1'), 98.28 (C5), 114.83,  123.94 (t, J = 259.2 Hz, C2'), 140.03, 145.97 (C6) , 157.37 (C2), 164.84 (C4), 175.97; 19F NMR (CD3OD) δ -120.13 (br. d, J = 242.5 Hz, 1F), -119.21 (dd, J = 11.4, 240.0 Hz, 1F); HRMS (ESI+) m/z calcd for C18H25F2N3NaO5 [M+Na]+ 424.1654; found 424.1656.
4-N-(10-Undecenoyl)-2'-deoxy-2',2'-difluorocytidine (5). Treatment of 1 (40 mg, 0.134 mmol) with commercially available undecylenic acid (31 µL, 28 mg, 0.148 mmol) by Procedure A gave 114 mg of the crude product, which was then column chromatographed (80 → 100% EtOAc/hexane) to give 5 (38 mg, 66%) as a white solid: UV (CH3OH) λmax 252 nm (ε 15 150), 286 nm (ε 8950), λmin 228 nm (ε 5900), 275 nm (ε 8650); 1H NMR (DMSO-d6) δ 1.23-1.29 (br. s, 8H, 4 × CH2), 1.30-1.39 (m, 2H, CH2), 1.50-1.57 (m, 2H, CH2), 2.01 (q, J = 7.0 Hz, 2H, CH2), 2.40 (t, J = 7.3 Hz, 2H, CH2), 3.66 ("br. d," J = 12.4 Hz, 1H, H5''), 3.81 (br. d, J = 12.4 Hz, 1H, H5'), 3.89 (dt, J = 8.5, 2.7 Hz, 1H, H4'), 4.19 ("q," J = 10.6 Hz, 1H, H3'), 4.93 ("d. quin," J = 10.1, 1.0 Hz, 1H, CH), 4.99 ("d. quin," J = 17.2, 1.7 Hz, 1H, CH), 5.33 (br. t, J = 5.0 Hz, 1H, OH), 5.79 (tdd, J = 6.6, 10.3, 17.1 Hz, 1H, CH), 6.17 (t, J = 7.5 Hz, 1H, H1'), 6.35 (br. s, 1H, OH), 7.29 (d, J = 7.6 Hz, 1H, H5), 8.24 (d, J = 7.6 Hz, 1H, H6), 10.98 (br. s, 1, NH); 13C NMR (CD3OD) δ 25.95, 30.08, 30.15 (2 x CH2), 30.37, 30.39, 34.88, 38.18, 60.32 (C5'), 70.24 (dd, J = 21.9, 23.4 Hz, C3'), 82.89 (dd, J = 2.7, 5.2 Hz, C4'), 86.48 (dd, J = 25.8, 38.2 Hz, C1'), 98.28 (C5), 114.73, 123.93 (t, J = 259.2 Hz, C2'), 140.13, 145.97 (C6), 157.69 (C2), 164.83 (C4), 176.00; 19F NMR (CD3OD) δ -120.09 (br. d, J = 239.6 Hz, 1F), -119.16 (dd, J = 10.9, 239.9 Hz, 1F); MS (ESI+) m/z 430 (100, [M+H]+). HRMS (ESI+) m/z calcd for C20H29F2N3NaO5 [M+Na]+ 452.1967; found 452.1982. Elemental Anal. calcd for C20H29F2N3O5•0.5H2O (438.47): C, 54.79; H, 6.90; N, 9.58. Found: C, 54.48; H, 6.53; N, 9.21. 
4-N-(12-Tridecenoyl)-2'-deoxy-2',2'-difluorocytidine (6). Treatment of 1 (30 mg, 0.1 mmol) with commercially available 12-tridecenoic acid (23 mg, 0.11 mmol) by Procedure A gave 43.1 mg of the crude product, which was then column chromatographed (70 → 80% EtOAc/hexane) to give 6 (20.1 mg, 44%) as a white solid: 1H NMR (CD3OD) δ 1.27-1.38 (m, 14H, 7 x CH2), 1.66 (quin, J = 6.9 Hz, 2H, CH2), 2.04 (dd, J = 14.3, 6.7 Hz, 2H, CH2), 2.45 (t, J = 7.4 Hz, 2H, CH2), 3.81 (dd, J = 12.4, 2.8 Hz, 1H, H5'), 4.07-3.88 (m, 2H, H5'', H4'), 4.31 (dt, J = 20.8, 10.4 Hz, 1H, H3'), 4.89-5.00 (m, 2H, CH2), 5.80 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H, CH), 6.26 ("t," J = 7.2 Hz, 1H, H1'), 7.50 (d, J = 7.6 Hz, 1H, H5), 8.34 (d, J = 7.6 Hz, 1H, H6); 13C NMR (CD3OD) δ 25.94, 30.11, 30.15, 30.20, 30.39, 30.53 (2 x CH2), 30.62, 34.87, 38.16, 60.30, 70.24 (''t," J = 23.1 Hz, C3'), 82.83 (C4'), 86.46 ("t," J = 32.2 Hz, C1'), 98.26 (C5), 114.67, 123.1 (t, J = 260.1 Hz, C2'), 140.14, 145.95 (C6), 157.68 (C2), 164.82 (C4), 176.0; 19F NMR (CD3OD) δ -120.13 (br. d, J = 239.4 Hz, 1F), -119.21 (dd, J = 9.3, 239.3 Hz, 1F); HRMS (ESI+) m/z calcd for C22H33F2N3NaO5 [M+Na]+ 480.2280; found 480.2289.
4-N-(2-propylpentanoyl)-2'-deoxy-2',2'-difluorocytidine (7).149 Treatment of 1 (34 mg, 0.11 mmol) with commercially available 2-propylpentanoic acid (20 µL, 18 mg, 0.120 mmol) by Procedure A gave 25.0 mg of crude product, which was then column chromatographed (5% MeOH/EtOAc) to give 7 as a white solid (17.7 mg, 41%): 1H NMR (CD3OD) δ 0.92 (t, J = 7.1 Hz, 6H, 2 x CH3), 1.29-1.38 (m, 4H, 2 x CH2), 1.41-1.50 (m, 2H, CH2), 1.60-1.69 (m, 2H, CH2), 2.50-2.58 (m, 1H, CH), 3.79-3.83 (m, 1H, H5'), 3.95-3.99 (m, 2H, H5'', H4'), 4.31 (td, J = 12.2, 8.5 Hz, 1H, H3'), 6.25-6.28 (m, 1H, H1'), 7.53 (d, J = 7.6 Hz, 1H, H5), 8.36 (d, J = 7.6 Hz, 1H, H6); 13C NMR (CD3OD) 14.40, 21.62, 36.05, 48.36, 60.29 (C5'), 70.22 ("t," J = 23.1, C3'), 82.83 (C4'), 86.49 ("dd," J = 27.3, 37.8 Hz, C1'), 98.32 (C5'), 123.91 (t, J = 259.6 Hz, C2'), 146.09 (C6), 157.67 (C2), 164.76 (C4), 179.37; 19F NMR (CD3OD) δ -120.95 ("br. d," J = 240.0 Hz, 1F), -120.04 (dd, J = 9.4, 240.0 Hz, 1F).
4-N-(Diallylacetoyl)-2'-deoxy-2',2'-difluorocytidine (8). Treatment of 1 (40 mg, 0.134 mmol) with diallylacetic acid (A2, 21 mg, 0.150 mmol) by Procedure A gave 45 mg of the crude product, which was then column chromatographed (80 → 90% EtOAc/hexane) to give 8 as a colorless oil (26.6 mg, 52%): 1H NMR (DMSO-d6) δ 2.16-2.34 (m, 4H, 2 x CH2), 2.78-2.85 (m, 1H, CH), 3.66 (d, J = 12.5 Hz, 1H, H5'), 3.81 (d, J = 12.5 Hz, 1H, H5''), 3.89 (td, J = 2.8, 8.4 Hz, 1H, H4'), 4.15-4.25 (m, 1H, H3'), 4.99-5.07 (m, 4H, 2 CH2), 5.33 (br. s, 1H, OH), 5.69-5.79 (m, 2H, 2 x CH), 6.17 (t, J = 7.5 Hz, 1H, H1'), 6.37 (br. s, 1H, OH), 7.29 (d, J = 7.6 Hz, 1H, H5), 8.25 (d, J = 7.6 Hz, 1H, H6), 11.07 (br. s, 1H, NH); 1H NMR (CD3OD) δ 2.25-2.45 (m, 4H, 2 x CH2), 2.69-2.76 (m, 1H, CH), 3.83 (dd, J = 2.8, 12.6 Hz, 1H, H5'), 3.96-4.02 (m, 2H, H5'', H4'), 4.32 (dt, J = 8.6, 12.0 Hz, 1H, H3'), 5.02-5.12 (m, 4H, 2 x CH2), 5.76-5.86 (m, 2H, 2 x CH), 6.28 ("t," J = 7.2 Hz, 1H, H1'), 7.50 (d, J = 7.6 Hz, 1H, H5), 8.36 (d, J = 7.6 Hz, 1H, H6); 13C NMR (CD3OD) δ 37.25, 37.27, 48.28, 60.31 (C5'), 70.19 (dd, J = 21.8, 24.2 Hz, C3'), 82.89 ("dd," J = 3.3, 5.2 Hz, C4'), 86.50 (dd, J = 26.7, 37.4 Hz, C1'), 98.33 (C5), 117.63, 117.67, 123.93 (t, J = 259.4 Hz, C2'), 136.31, 136.33, 146.07 (C6), 157.66 (C2), 164.71 (C4), 177.61; 19F NMR (DMSO-d6) δ -116.93 (br. s); 19F NMR (CD3OD) δ -120.11 ("br. d," J = 240.0 Hz, 1F), -119.19 (dd, J = 11.4, 240.0 Hz, 1F); MS (ESI+) m/z 386 (100, [M+H]+). HRMS (ESI+) m/z calculated for C17H21F2N3NaO5 [M+Na]+ 408.1341; found 408.1339.
4-N-(10-Fluoroundecanoyl)-2'-deoxy-2',2'-difluorocytidine (9). Method A. Chilled hydrogen fluoride/pyridine (70%, 1.0 mL) was added to 5 (20 mg, 0.044 mmol) in an HDPE vessel at 0 °C and stirred. After 2 h, the reaction mixture was treated with saturated NaHCO3/H2O (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic layer was washed with brine, dried over Na2SO4, evaporated under reduced pressure and the resulting residue (24.6 mg) was then column chromatographed (70% EtOAc/hexane) to give 9 (19 mg, 91%; isomeric mixture of 9:10:11 in 75:20:5 ratio) as a white solid: UV (CH3OH) λmax 250 nm (ε 13 250), 298 nm (ε 5350), λmin 226 nm (ε 4650), 279 nm (ε 4700); 1H NMR (DMSO-d6) δ 1.22 (br. d, J = 6.1 Hz, 2H, CH2), 1.27 (br. s, 8H, 4 x CH2), 1.29 (br. s, 2H, CH2), 1.44-1.62 (m, 5H, CH2, CH3), 2.40 (t, J = 7.3 Hz, 2H, CH2), 3.66 (dt, J = 12.5, 4.3 Hz, 1H, H5''), 3.81 ("br. d," J = 12.0 Hz, 1H, H5'), 3.89 ("br. d," J = 8.5 Hz, 1H, H4'), 4.19 (sep, J = 6.4 Hz, 1H, H3'), 4.64 (dsex, J = 49.0, 6.0 Hz, 1H, CH), 5.31 (t, J = 5.1 Hz, 1H, OH), 6.17 (t, J = 7.5 Hz, 1H, H1'), 6.33 (d, J = 5.8 Hz, 1H, OH), 7.29 (d, J = 7.6 Hz, 1H, H5), 8.24 (d, J = 7.6 Hz, 1H, H6), 10.98 (s, 1H, NH); 13C NMR (DMSO-d6) δ 24.30, 24.42, 24.46, 28.37, 28.57, 28.71, 28.74, 36.13, 36.35, 58.78 (C5'), 68.37 (t, J = 22.5 Hz, C3'), 81.01 (t, J = 3.9 Hz, C4'), 84.50 (d, J = 82.2 Hz, C1'), 90.53 (d, J = 162.9 Hz), 95.87 (C5), 124.18 (d, J = 260.1 Hz, C2'), 144.68 (C6), 154.17 (C2), 162.85 (C4), 174.06; 19F NMR (DMSO-d6) δ -170.27 (symmetric m, 0.75F), δ -116.91 (br. s, 2F); MS (ESI) m/z 450 (100, [M+H]+); HRMS (ESI+) m/z calcd for C20H30F3N3NaO5 [M+Na]+ 472.2030; found 472.2048. Elemental Anal. Calcd for C20H30F3N3O4•H2O•0.33CH3CN (481.03): C, 51.59; H, 6.91; N, 9.70. Found: C, 51.36; H, 6.89; N, 9.97. 
Minor isomers 10 [4-N-(9-Fluoroundecanoyl)] and 11 [4-N-(8-Fluoroundecanoyl)] had the following distinguishable peaks: 1H NMR (DMSO-d6): δ 4.41 (d quin, J = 49.6, 5.8 Hz, 0.2, CHF); 19F NMR (DMSO-d6) δ -179.79 (symmetric m, 0.15F), -178.83 (m, 0.1F), -116.91 (br. s, 2F). 
Method B. Treatment of 1 (40 mg, 0.134 mmol) with 10-fluoroundecanoic acid (57, 31 mg, 0.148 mmol, isomeric ratio 75:20:5) by Procedure A gave 77.0 mg of the crude product, which was then column chromatographed (90 → 100% EtOAc/hexane) to give 9 as a white solid (23.5 mg, 39%, isomeric ratio 75:20:5) with data as reported above. 
4-N-[4-Fluoro-2-(2-fluoropropyl)-pentanoyl]-2'-deoxy-2',2'-difluorocytidine (12). Chilled hydrogen fluoride/pyridine (70%, 1.0 mL) was added to 8 (21.0 mg, 0.049 mmol) in an HDPE vessel at 0 °C and stirred. After 2.5 h, the reaction mixture was treated with saturated NaHCO3/H2O (10 mL) and extracted with EtOAc (3 x 10 mL). The combined organic layer was washed with brine, dried over Na2SO4, evaporated under reduced pressure and the resulting residue (15.0 mg) was then column chromatographed (70% EtOAc/hexane) to give 12 (12 mg, 58%; complex isomeric mixture) as a clear oil: MS (ESI) m/z 426 (100, [M+H]+).
4-N-(11-Fluoroundecanoyl)-2'-deoxy-2',2'-difluorocytidine (13). Treatment of 1 (69.8 mg, 0.233 mmol) with 11-fluoroundecanoic acid (63, 52 mg, 0.256 mmol) by Procedure A gave 82.7 mg of the crude product, which was then column chromatographed (70% EtOAc/hexane) to give 13 (42.1 mg, 41%) as a white solid: 1H NMR (CD3OD) δ 1.35 (br. s, 12H, 6 x CH2), 1.62-1.74 (m, 4H, 2 x CH2), 2.47 (t, J = 7.4 Hz, 2H, CH2), 3.83 (dd, J = 3.0, 12.8 Hz, 1H, H5'), 3.96-4.02 (m, 2H, H5'', H4'), 4.32 (dt, J = 8.6, 12.2 Hz, 1H, H3'), 4.42 (dt, J = 6.1, 47.5 Hz, 2H, CH2), 6.28 (t, J = 7.2 Hz, 1H, H1'), 7.51 (d, J = 7.6 Hz, 1H, H5), 8.35 (d, J = 7.6 Hz, 1H, H6); 13C NMR (CD3OD) δ 25.95, 26.35, 30.16, 30.38, 30.48, 30.59, 31.50, 31.69, 38.17, 60.29(C5'), 70.20 ("t," J = 23.0 Hz, C3'), 82.85 ("dd," J = 2.3, 3.6 Hz, C4'), 84.89 (d, J = 163.8 Hz, CH2F), 86.47 (dd, J = 29.6, 34.7 Hz, C1), 98.29 (C5), 123.94 (t, J = 259.2 Hz, C2'), 145.96 (C6), 157.69 (C2), 164.83 (C4), 176.01; 19F NMR (CD3OD) δ -219.87 (tt, J = 24.7, 47.5 Hz, 1F), -120.09 (br. d, J = 239.0 Hz, 1F), -119.17 (br. dd, J = 10.2, 239.0Hz, 1F); MS (ESI) m/z 450 (100, [M+H]+); HRMS (+ESI) m/z calcd for C20H30F3N3NaO5 [M+Na]+ 472.2023; found 472.2011.
4-N-[11-(1H-benzotriazol-1-yloxy)-undecanoyl]-2'-deoxy-2',2'-difluorocytidine (14). Treatment of 1 (50 mg, 0.167 mmol) with commercially available 11-bromoundecanoic acid (48.7 mg, 0.184 mmol) by Procedure A gave 85.5 mg of the crude product, which was then column chromatographed (5% MeOH/EtOAc) to give 14 (50 mg, 53%) as a white solid: 1H NMR (DMSO-d6) δ 1.28 (br. s, 10H, CH2), 1.45-1.57 (m, 4H, CH2), 1.73-1.80 (m, 2H, CH2), 2.40 (t, J = 7.3 Hz, 2H, CH2), 3.66 ("br. d," J = 13.6 Hz, 1H, H5'), 3.80 ("br. d," J = 13.6 Hz, 1H, H5''), 3.89 (dt, J = 2.7, 8.4 Hz, 1H, H4') , 4.20 ("br. dt," J = 9.1, 12.6 Hz, 1H, H3'), 4.55 (t, J = 6.5 Hz, 2H, CH2), 5.35 ("br. t," J = 4.6 Hz, 1H, OH), 6.17 (t, J = 7.5 Hz, 1H, H1'), 6.39 (br. s, 1H, OH), 7.28 (d, J = 7.6 Hz, 1H, H5), 7.48 (t, J = 7.6 Hz, 1H, Ar), 7.64 (t, J = 7.6 Hz, 1H, Ar), 7.82 (d, J = 8.4 Hz, 1H, Ar), 8.07 (d, J = 8.4 Hz, 1H, Ar), 8.25 (d, J = 7.6 Hz, 1H, H6), 10.99 (br. s, 1H, NH); 13C NMR (CD3OD) 25.90, 26.64, 29.12, 30.06, 30.24, 30.28, 30.35, 30.40, 38.14, 58.32, 60.30, 70.23 ("t," J = 23.1 Hz, C3'), 82.32, 82.89 (m, C4'), 98.25 (C5), 110.16, 120.50, 123.92, 126.38, 128.72, 129.55, 144.49, 145.95, 157.66, 164.81, 175.99;  19F NMR (CD3OD) δ -120.09 (br. d, J = 239.0 Hz, 1F), -119.14 (dd, J = 243.7, 12.3 Hz, 1F); HRMS (+ESI) m/z calcd for C26H34F3N6NaO6 [M+Na]+ 587.2406; found 587.2442.
4-N-(11-Chloroundecanoyl)-2'-deoxy-2',2'-difluorocytidine (15). Method A. TMSCl (79 μL, 68 mg, 0.630 mmol) was added to a suspension of 1 (150 mg, 0.500 mmol) in Pyr/MeCN (3:1, 2 mL) at 0 °C under Ar and stirred for 2.5 h, resulting in a clear solution. In a separate vessel, carbonyldiimidazole (CDI, 22.5 mg, 0.138 mmol) was added to a solution of 11-bromoundecanoic acid (36.5 mg, 0.138 mmol) in MeCN (1 mL) portion-wise and stirred at ambient temperature. After 30 minutes, the latter solution was combined with the previously prepared solution of transiently protected nucleoside and the new reaction mixture was stirred at 65 °C overnight. After 19 h, EtOH (2 mL) was added and mixture followed by H2O (4 mL) and the solution stirred at 65 °C for 20 min. The volatiles were then evaporated under reduced pressure and the residue was partitioned between EtOAc and H2O, the pH was adjusted to 2.0 with phosphoric acid, and the aqueous layer was extracted with EtOAc. The combined organic layer was washed with saturated NaHCO3/H2O, brine, dried over Na2SO4, evaporated under reduced pressure and the resulting residue (47.2 mg) was column chromatographed (70% EtOAc/hexane) to give 15 (11 mg, 5%) as a white solid: 1H NMR (CD3OD) δ 1.34 (br. s, 10H, 2 x CH2), 1.41-1.49 (m, 2H, CH2), 1.66-1.71 (m, 2H, CH2), 1.73-1.82 (m, 2H, CH2), 2.47 (t, J = 7.5 Hz, 2H, CH2), 3.56 (t, J = 6.7 Hz, 2H, CH2), 3.83 ("dd," J = 12.7, 3.1 Hz, 1H, H5'), 3.96-4.03 (m, 2H, H5'', H4'), 4.27-4.37 (m, 1H, H3'), 6.28 ("t," J = 7.2 Hz, 1H, H1'), 7.51 (d, J = 7.6 Hz, 1H, H5), 8.36 (d, J = 7.6 Hz, 1H, H6); 13C NMR (CD3OD) δ 25.94, 27.93, 29.94, 30.13, 30.35, 30.43, 30.51, 33.83, 38.15, 45.74, 60.31 (C5'), 70.25 (C3'), 82.89 (C4'), 86.81 (C1'), 98.26 (C5), 123.93 (t, J = 258.0 Hz, C2'), 145.97 (C6), 157.71 (C2), 164.86 (C4), 176.02 (CO); 19F NMR (CD3OD) δ -120.13 (br. d, J = 240.2 Hz, 1F), -119.2 (br. dd, J = 10.9, 240.2 Hz, 1F); MS (ESI+) m/z 466 (100, [M+H]+ for 35Cl), 468 (100, [M+H]+ for 37Cl); HRMS (ESI+) m/z calcd for C20H3035ClF2N3NaO5 [M+Na]+ 488.1734; found 488.1742.
Method B. Et3N (28 µL, 0.200 mmol) was added to a mixture of 11-bromoundecanoic acid (26.6 mg, 0.100 mmol) in THF (1 mL) and stirred at ambient temperature under Ar. The reaction mixture was then cooled to -15 ºC followed by the dropwise addition of a solution of ClCO2Et (19 µL, 0.200 mmol) in THF (0.5 mL) with continued stirring. After 15 minutes, a solution of 1 (30 mg, 0.100 mmol) in DMF/DMSO (2.5 mL, 1.5:1) was added dropwise and the reaction mixture allowed to warm up to ambient and kept stirring overnight. After 24 h, the reaction was treated with NaHCO3 and extracted with EtOAc (3x). The combined organic layer was washed with brine, dried over Na2SO4, evaporated under reduced pressure and the residue was column chromatographed (70% EtOAc/hexane) to give 15 (7 mg, 15%) with data as reported above.
4-N-(11-Bromoundecanoyl)-3',5'-di-O-(tert-butoxycarbonyl)-2'-deoxy-2',2'-difluorocytidine (17). A solution of 16159 (35.5 mg, 0.077 mmol) and NaHCO3 (400 mg, 4.76 mmol) in CH2Cl2 (0.5 mL) was added to a stirred solution of 11-bromoundecanoyl chloride (64, 0.1 mL, 122 mg, 0.43 mmol) in CH2Cl2 (1 mL) at 0°C under Ar. After 15 minutes, the reaction mixture was allowed to warm up to ambient temperature and kept stirring for 3 h. The reaction mixture was quenched by addition of saturated NaHCO3/H2O, the mixture partitioned with water and the aqueous layer was extracted with CH2Cl2 (2 x 10 mL). The combined organic layer was washed with brine, dried over Na2SO4, evaporated under reduced pressure and the resulting residue (141.0 mg) was chromatographed (25% EtOAc/hexane) to give 17 (18 mg, 33%) as a colorless oil: 1H NMR (CDCl3) δ 1.30 (br. s, 10H, 5 x CH2), 1.40-1.45 (m, 2H, CH2), 1.53 (s, 18H, 6 x CH3), 1.68 ("quin," J = 7.3 Hz, 2H, CH2), 1.86 ("quin," J = 7.3 Hz, 2H, CH2), 2.48 (t, J = 7.5 Hz, 2H, CH2), 3.42 (t, J = 6.9 Hz, 2H, CH2), 4.37-4.50 (m, 3H, H4', H5',5''), 5.14 ("dt," J = 4.5, 11.2 Hz, 1H, H3'), 6.46 (dd, J = 7.3, 9.5 Hz, 1H, H1'), 7.51 (d, J = 7.6 Hz, 1H, H5), 7.85 (d, J = 7.6 Hz, 1H, H6), 9.05 (br. s, 1H, NH); 13C NMR (CDCl3) δ 24.77, 27.54, 27.70, 28.14, 28.72, 28.96, 29.22, 29.26, 29.33, 32.82, 34.07, 37.58, 63.87 (C5'), 72.64 (dd, J = 17.2, 34.0 Hz, C3'), 77.79 (C4'), 83.37, 84.21 (m, C1'), 84.83, 97.02 (C5), 120.40 (dd, J = 260.7, 267.3 Hz, C2'), 145.27 (C6), 151.42, 152.91, 153.94 (C2), 163.40 (C4), 174.17; 19F NMR (CDCl3) δ -120.00 (br. d, J = 246.9 Hz, 1F), -115.57 (dt, J = 11.4, 246.9Hz, 1F); MS (ESI+) m/z 710 (100, [M+H]+ for 79Br), 712 (100, [M+H]+ for 81Br).
4-N-(11-Bromoundecanoyl)-2'-deoxy-2',2'-difluorocytidine (18). Compound 17 (32 mg, 0.045 mmol) was dissolved in TFA (1.0 mL) and the mixture was stirred at 20 ºC. After 4 h, the reaction mixture was diluted with toluene, the volatiles were evaporated, and the residue co-evaporated with a fresh portion of toluene. The resulting residue (32 mg) was column chromatographed (80 → 100% EtOAc/hexane) to give 18 (19.9 mg, 86%) as a colorless solid: 1H NMR (CD3OD): δ 1.31–1.41 (m, 10H, 5 x CH2), 1.41-1.52 (m, 2H, CH2), 1.63-1.73 (m, 2H, CH2), 1.81-1.89 (m, 2H, CH2), 2.47 (t, J = 7.4 Hz, 2H, CH2), 3.45 (t, J = 6.7 Hz, 2H, CH2), 3.75-3.89 (m, 1H, H5''), 3.93-4.05 (m, 2H, H4', H5''), 4.32 (dt, J = 8.5, 12.2 Hz, 1H, H3'), 6.28 ("t," J = 7.3 Hz, 1H, H1'), 7.51 (d, J = 7.6 Hz, 1H, H5), 8.35 (d, J = 7.6 Hz, 1H, H6); 13C NMR (CD3OD) δ 25.94, 29.17, 29.80, 30.13, 30.34, 30.43, 30.48, 34.01, 34.42, 38.17, 60.32 (C5'), 70.25 (dd, J = 22.2, 23.6 Hz, C3'), 82.88 ('d', J = 8.6 Hz, C4'), 86.48 (dd, J = 26.6, 37.6 Hz, C1), 98.29 (C5), 123.93 (t, J = 259.9 Hz, C2'), 145.98 (C6), 157.69 (C2), 164.84 (C4), 176.03;19F NMR (CD3OD) δ -120.10 (br. d, J = 240.0 Hz, 1F), -119.17 (ddd, J = 3.9, 12.1, 240.0 Hz, 1F); MS (ESI+) m/z 510 (100, [M+H]+ for 79Br), 512 (100, [M+H]+ for 81Br); HRMS (ESI+) m/z calcd for C20H3079BrF2N3NaO5 [M+Na]+ 532.1229; found 532.1239.
4-N-(5-Bromo-2-propylpentanoyl)-3',5'-di-O-(tert-butoxycarbonyl)-2'-deoxy-2',2'-difluorocytidine (19). A solution of 16159 (40 mg, 0.086 mmol) and NaHCO3 (447 mg, 5.32 mmol) in CH2Cl2 (0.5 mL) was added to a stirred solution of 5-bromo-2-propylpentanoyl chloride (55, 90 mg, 0.370 mmol) in CH2Cl2 (1 mL) at 0°C under Ar. After 15 minutes, the reaction mixture was allowed to warm up to ambient temperature and kept stirring for 6 h. The reaction mixture was quenched by addition of saturated NaHCO3/H2O, the mixture partitioned with water and the aqueous layer was extracted with CH2Cl2 (2 x 10 mL). The combined organic layer was washed with brine, dried over Na2SO4, evaporated under reduced pressure and the resulting residue (104 mg) was column chromatographed (33% EtOAc/hexane) to give 19 (25 mg, 43%) as a colorless oil: 1H NMR (CDCl3) δ 0.91 (t, J = 7.2 Hz, 3H, CH3), 1.31-1.39 (m, 2H, CH2), 1.53 (s, 18H, 6 x CH3), 1.64-1.92 (m, 6H, 3 x CH2), 2.49 (br. s, 1H, CH), 3.38-3.44 (m, 2H, CH2), 4.38-4.50 (m, 3H, H4', H5', H5''), 5.14 (dt, J = 4.2, 12.2 Hz, 1H, H3'), 6.46 (dd, J = 7.2, 9.5 Hz, 1H, H1'), 7.53 (d, J = 7.6 Hz, 1H, H5), 7.86 (d, J = 7.6 Hz, 1H, H6), 9.14 (br. d, J = 25.5 Hz, 1H, NH); 13C NMR (CDCl3) δ 13.98, 20.51, 27.54, 27.70, 30.27, 30.87, 33.08, 34.79, 47.80, 63.86 (C5'), 72.82 (dd, J = 18.0, 36.1 Hz, C3'), 77.77 (C4'), 83.37, 84.20 (C1'), 84.83, 97.04 (C5), 120.37 (t, J = 264.0 Hz, C2'), 145.09 (C6), 151.43, 152.93, 154.51 (C2), 162.73 (C4), 175.92; 19F NMR (CDCl3) δ -120.07 ("br. d," J = 246.7 Hz, 1F), -115.59 (dt, J = 11.4, 246.7 Hz, 1F); MS (ESI+) m/z 668 (100, [M+H]+ for 79Br), 670 (100, [M+H]+ for 81Br).
N4-(11-Hydroxyundecanoyl)-3',5'-O-di(tert-butoxycarbonyl)-2'-deoxy-2',2'-difluorocytidine (20). Treatment of 16159 (39 mg, 0.084 mmol) with commercially available 11-hydroxyundecanoic acid (29 mg, 0.144 mmol) by Procedure A gave 102 mg of the crude product, which was then column chromatographed (55 → 65% EtOAc/hexane) to give 20 (20 mg, 37%) as a colorless oil: 1H NMR (CDCl3) δ 1.30 (br. s, 12H, 6 x CH2), 1.53 (s, 18H, 6 x CH3), 1.58 ("quin," J = 6.9 Hz, 2H, CH2), 1.69 ("quin," J = 7.4 Hz, 2H, CH2), 2.47 (t, J = 7.5 Hz, 2H, CH2), 3.65 (t, J = 6.6 Hz, 2H, CH2), 4.37-4.50 (m, 3H, H4', H5',5''), 5.14 ("dt," J = 4.8, 11.1 Hz, 1H, H3'), 6.46 (dd, J = 7.2, 9.5 Hz, 1H, H1'), 7.51 (d, J = 7.6 Hz, 1H, H5), 7.85 (d, J = 7.6 Hz, 1H, H6), 9.08 (br. s, 1H, NH); 13C NMR (CDCl3) δ 24.75, 25.65, 27.53, 27.69, 28.88, 29.11, 29.16, 29.27, 29.38, 32.75, 37.78, 62.99, 63.88 (C5'), 72.67 (dd, J = 17.0, 33.8 Hz, C3'), 77.73 (C4'), 83.33, 84.16 (dd, J = 18.2, 37.9 Hz, C1'), 84.77, 97.08 (C5), 120.42 (t, J = 263.8 Hz, C2'), 144.78 (C6), 151.44, 152.93, 154.67 (C2), 162.93 (C4), 173.46; 19F NMR (CDCl3) δ -120.00 (br. d, J = 246.7 Hz, 1F), -115.58 (dt, J = 11.4, 246.7Hz, 1F); MS (ESI+) m/z 648 (100, [M+H]+).
4-N-(11-Hydroxyundecanoyl)- 2'-deoxy-2',2'-difluorocytidine (21). Method A. Compound 20 (4.0 mg, 0.008 mmol) was dissolved in TFA (1.0 mL) and the mixture was stirred at 20 ºC. After 4 h, the reaction mixture was diluted with toluene, the volatiles were evaporated, and the residue co-evaporated with a fresh portion of toluene. The resulting residue was column chromatographed (80 → 100% EtOAc/hexane) to give 21 (3.1 mg, 87%) as a white solid: 1H NMR (CD3OD) δ 1.33 (br. s, 12H, 6 x CH2), 1.49-1.54 (m, 2H, CH2), 1.66 (quin, J = 7.2 Hz, 2H, CH2), 2.45 (t, J = 7.4 Hz, 2H, CH2), 3.53 (t, J = 6.6 Hz, 2H, CH2), 3.81 (dd, J = 3.1, 12.8 Hz, 1H, H5'), 3.94-3.99 (m, 2H, H4', H5'), 4.26-4.34 (m, 1H, H3'), 6.26 ("t," J = 7.3 Hz, 1H, H1'), 7.49 (d, J = 7.6 Hz, 1H, H5), 8.33 (d, J = 7.6 Hz, 1H, H6); 13C NMR (CD3OD) δ 25.93, 26.94, 30.13, 30.37, 30.48, 30.53, 30.64, 33.65, 38.17, 60.30 (C5'), 63.01, 70.23 ("t," J = 23.0 Hz, C3'), 82.88 ("d," J = 9.0 Hz, C4'), 86.47 ("dd," J = 27.0, 37.6 Hz, C1'), 98.25 (C5), 123.91 (t, J = 258.9 Hz, C2'), 145.95 (C6), 157.67 (C2), 164.82 (C4), 176.00; 19F NMR (CD3OD) δ -120.16 ("br. d," J = 239.0 Hz, 1F), -119.21 (dd, J = 10.5, 242.6 Hz, 1F); HRMS (ESI+) m/z calcd for C20H31F2N3NaO6 [M+Na]+ 470.2073; found 470.2073.
Method B. Treatment of 1 (58 mg, 0.194 mmol) with commercially available 11-hydroxyundecanoic acid (43 mg, 0.213 mmol) by Procedure A gave 75.5 mg of the crude product, which was then column chromatographed (7.5% MeOH/CHCl3) to give 21 (35 mg, 40%) with data as reported above.
4-N-(11-Trifluoromethanesulfonyloxyundecanoyl)-3',5'-O-di(tert-butoxycarbonyl)-2'-deoxy-2',2'-difluorocytidine (22). Finely powdered NaHCO3 (4.2 mg, 0.050 mmol) and triflic anhydride (10 µL, 14.0 mg, 0.050 mmol) were sequentially added to a stirred solution of 20 (16.0 mg, 0.025 mmol) in CH2Cl2 at -60 ºC. After 1 h, the reaction mixture was diluted with CH2Cl2, washed with NaHCO3/H2O, brine and the volatiles evaporated under reduced pressure to give crude 22 (10.9 mg, 56%) as a colorless oil with 80% purity:  19F NMR (CDCl3) δ -121.05 (br. d, J =  241.7 Hz, 1F), -115.92 (d, J = 246.7 Hz, 1F), -78.8 (s, 3F); MS (ESI+) m/z 802.3 (100, [M+Na]+)
4-N-(11-Fluoroundecanoyl)-3',5'-di-O-(tert-butoxycarbonyl)-2'-deoxy-2',2'-difluorocytidine (23). A chilled (-78 ºC) solution of DAST (6.2 µL, 7.6 mg, 0.048 mmol,) in CH2Cl2 (500 µL) was added to a stirred solution of 20 (9.8 mg, 0.016 mmol) in CH2Cl2 (1.5 mL) at -78ºC. After 30 minutes, the reaction mixture was allowed to warm up to ambient temperature and kept stirring. After 2 h, the reaction mixture was then poured into a separatory funnel containing a chilled solution of NaHCO3/ H2O (10 mL, pH=8) and was then extracted with CHCl3 (3 x 10 mL). The combined organic layer was washed with brine, dried over MgSO4, evaporated under reduced pressure and the resulting residue (14 mg) was column chromatographed (5% MeOH/CHCl3) to give 23 (4.2 mg, 40%) as a colorless oil: 1H NMR (CDCl3) δ 1.28 (br. s, 12H, 6 x CH2), 1.51 (s, 9H, t-Bu), 1.52 (s, 9H, t-Bu), 1.60-1.78 (m, 4H, 2 x CH2), 2.45 (t, J = 7.4 Hz, 2H, CH2), 4.38-4.47 (m, 3H, H4', H5', H5''), 4.44 (dt, J = 6.2, 47.3 Hz, 2H, CH2), 5.12-5.15 (m, 1H, H3'), 6.43 (t, J = 7.3 Hz, 1H, H1'), 7.51-7.54 (m, 1H, H5), 7.87 (d, J = 7.0 Hz, 1H, H6); 19F NMR (CDCl3) δ -217.97 (dt, J = 25.0, 47.4 Hz, 2F), -120.27 (br. d, J =  240.7 Hz, 1F), -115.77 (dt, J = 10.9, 247.4 Hz, 1F); HRMS (ESI+) m/z calcd for C30H46F3N3NaO9 [M+Na]+ 672.3078; found 672.3096.
Treatment of 23 (4.0 mg, 0.008 mmol) with TFA as descibed for 21 gave 13 (2.9 mg, 82%) with data sa reported above.
4-N-(p-Toluenosulfonyl)-3',5'-di-O-(tert-butoxycarbonyl)-2'-deoxy-2',2'-difluorocytidine (24). Et3N (1.45 mL, 10.5 mmol) and TsCl (997 mg, 5.2 mmol) were added to a solution of 16159 (242 mg, 0.52 mmol) in dry 1,4-dioxane (4.0 mL) and stirred at ambient temperature under Ar. The tightly sealed reaction mixture was then gradually heated to 65 ºC and kept stirring. After 24 h, the reaction mixture was diluted with EtOAc, partitioned with saturated NaHCO3/H2O solution, and the aqueous layer was then extracted with EtOAc (2x). The combined organic layer was washed with brine, dried over Na2SO4, evaporated under reduced pressure and the resulting residue (403 mg) was then column chromatographed (35% EtOAc/hexane) to give 24 (146 mg, 45%) as a colorless, solidifying oil: 1H NMR δ 1.49 (s, 9H, 3 x CH3), 1.52 (s, 9H, 3 x CH3), 2.43 (s, 3H, CH3), 4.46–4.32 (m, 3H, H4', H5', 5''), 5.11 (dt, J = 4.0, 12.8 Hz, 1H, H3'), 5.80 (br. s, 1H, H5), 6.24 (dd, J = 6.6, 10.6 Hz, 1H, H1'), 7.31 (d, J = 8.1 Hz, 2H, Ar), 7.48 (dd, J = 1.9, 8.1, Hz, 1H, H6), 7.84 (d, J = 8.3 Hz, 2H, Ar), 10.96 (br. s, 1H, NH); 13C NMR δ 21.54, 27.51, 27.65, 63.80 (C5'), 72.40 (dd, J = 16.9, 33.8 Hz, C3'), 78.02 (dd, J = 2.2, 4.7 Hz, C4'), 83.31 (dd, J = 20.6, 38.7 Hz, C1'), 83.41, 84.99, 98.41 (C5), 120.38 (dd, J = 260.2, 266.5 Hz, C2'), 126.71 (Ar), 129.58 (Ar), 138.26 (d, J = 3.4 Hz, Ar), 139.88 (d, J = 2.2 Hz, C6), 143.74 (Ar), 147.16 (C2), 151.35, 152.82, 154.82 (C4); 19F NMR δ -120.59 (br. d, J = 247.6 Hz, 1F), -115.80 (br. d, J = 247.6 Hz, 1F); MS (ESI+) m/z 618 (100, [M+H]+); HRMS (ESI+) m/z calcd for C26H33F2N3NaO10S [M+Na]+ 640.1747; found 640.1754. 
4-N-(n-Butyl)-2'-deoxy-2',2'-difluorocytidine (25). In a tightly sealed vessel, a mixture of 24 (27 mg, 0.044 mmol) and n-butyl amine (0.5 mL) was stirred at 60 ºC. After 24 h, the volatiles were evaporated and the resulting residue (74 mg) was column chromatographed (5 → 8% MeOH/EtOAc) to give 25 as a colorless solid (7.7 mg, 55%): 1H NMR (CD3OD) δ 0.97 (t, J = 7.3 Hz, 3H, CH3), 1.37–1.47 (m, 2H, CH2), 1.55-1.63 (m, 2H, CH2), 3.40 (t, J = 7.1 Hz, 2H, CH2), 3.80 (dd, J = 3.3, 12.6 Hz, 1H, H5'), 3.89 (td, J = 2.7, 8.3 Hz, 1H, H4'), 3.95 (dd, J = 2.4, 12.7 Hz, 1H, H5''), 4.26 (dt, J = 8.3, 12.1 Hz, 1H, H3'), 5.87 (d, J = 7.6 Hz, 1H, H5), 6.23 ("t," J = 8.0 Hz, 1H, H1'), 7.74 (d, J = 7.6 Hz, 1H, H6); 13C NMR (CD3OD) δ 14.10, 21.12, 32.09, 41.46, 60.56 (C5'), 70.67 (dd, J = 22.4, 24.2 Hz, C3'), 82.26 (dd, J = 4.0, 4.9 Hz, C4'), 85.94 (dd, J = 26.7, 37.4 Hz, C1), 97.31 (C5), 124.05 (t, J = 258.4 Hz, C2'), 140.77 (C6), 158.30 (C2), 165.38 (C4); 19F NMR (CD3OD) δ -119.90 ("br. d," J = 240.1Hz, 1F), -118.84 (ddd, J = 3.8, 12.3, 238.5 Hz, 1F); MS (ESI+) m/z 320 (100, [M+H]+).
4-N-(10-Undecenyl)-2'-deoxy-2',2'-difluorocytidine (26). In a tightly sealed vessel, a mixture of 24 (40 mg, 0.065 mmol) and 1-amino-10-undecene (0.50 mL, 404 mg, 2.4 mmol) was stirred at 60 ºC. After 30 h, the volatiles were evaporated the resulting residue was column chromatographed (8% MeOH/EtOAc) to give 26 (9.5 mg, 36%) as colorless viscous oil: UV (CH3OH) λmax 268 nm (ε 11 600), λmin 228 nm (ε 7800); 1H NMR (CD3OD) δ 1.43-1.30 (m, 12H, 6 x CH2), 1.65-1.56 (m, 2H, CH2), 2.03-2.09 (m, 2H, CH2), 3.39 (t, J = 7.1 Hz, 2H, CH2), 3.80 (dd, J = 3.3, 12.6 Hz, 1H, H5'), 3.89 (td, J = 2.8, 8.3 Hz, 1H, H4'), 3.95 (d, J = 12.6 Hz, 1H, H5''), 4.26 (dt, J = 8.3, 12.1 Hz, 1H, H3'), 4.91-5.02 (m, 2H, CH2), 5.82 (tdd, J = 6.7, 10.3, 17.0 Hz, 1H, CH), 5.87 (d, J = 7.6 Hz, 1H, H5), 6.23 (t, J = 8.0 Hz, 1H, H1'), 7.74 (d, J = 7.6 Hz, 1H, H6); 13C NMR (CD3OD) δ 28.01, 29.98, 30.12, 30.19, 30.42, 30.51, 30.63, 34.88, 41.75, 60.56 (C5'), 70.67 (dd, J = 22.4, 23.8 Hz, C3'), 82.26 (dd, J = 3.6, 5.0 Hz, C4'), 85.94 (dd, J = 26.0, 38.0 Hz, C1), 97.33 (C5), 114.68, 124.05 (t, J = 258.4 Hz, C2'), 140.16, 140.77 (C6), 158.30 (C2), 165.37 (C4); 19F NMR (CD3OD) δ -119.89 (br. d, J = 240.1 Hz, 1F), -118.80 (br. d, J = 240.1 Hz, 1F); MS (ESI+) m/z 416 (100, [M+H]+); HRMS (ESI+) m/z calcd for C20H31F2N3NaO4 [M+Na]+ 438.2175; found 438.2178; Elemental Anal. Calcd for C20H31F2N3O4•0.5H2O•0.5CH3CN (445.01): C, 56.68; H, 7.59; N, 11.02. Found: C, 56.93; H, 7.77; N, 10.76.
4-N-(9-Fluoroundecanyl)-2'-deoxy-2',2'-difluorocytidine (28). Chilled hydrogen fluoride/pyridine (70%, 1.0 mL) was added to 26 (10.3 mg, 0.025 mmol) in an HDPE vessel at 0°C and stirred. After 4 h, the reaction mixture was treated with saturated NaHCO3/H2O (1.0 mL) and extracted with EtOAc (3 x 10 mL). The combined organic layer was washed with brine, dried over Na2SO4 and concentrated under reduced pressure and the resulting residue (10.6 mg) was column chromatographed (4% MeOH/CHCl3) to give 28 (8.4 mg, 78%, isomeric mixture of 27:28:29 in 20:45:35 ratio) as a colorless oil: 1H NMR (CD3OD) δ 0.89-1.00 (m, 3H, CH3), 1.24-1.68 (m, 18H, 9 x CH2), 3.39 (t, J = 7.2 Hz, 2H, CH2), 3.80 (dd, J = 3.3, 12.6 Hz, 1H, H5'), 3.89 (td, J = 2.8, 8.3 Hz, 1H, H4'), 3.95 (br. dd, J = 2.1, 12.6, 1H, H5''), 4.26 (dt, J = 8.3, 12.1 Hz, 1H, H3'), 4.46 (dm, J = 49.8 Hz, 1H, CHF), 5.87 (d, J = 7.6 Hz, 1H, H5), 6.23 ("t," J = 8.0 Hz, 1H, H1'), 7.74 (d, J = 7.6 Hz, 1H, H6); 13C NMR (CD3OD) δ 9.67, 9.72, 14.28, 14.32, 19.44, 19.49, 21.23, 21.45, 23.63, 26.19, 26.22, 27.91, 28.00, 29.90, 29.97, 30.35, 30.40, 30.56, 30.58, 32.87, 35.76, 35.93, 35.97, 36.14, 36.19, 36.25 (d, J = 21.1 Hz), 36.31 (d, J = 21.0 Hz), 38.10 (d, J = 20.6 Hz), 38.50 (d, J = 20.9 Hz), 41.73, 60.56 (C5'), 70.67 (dd, J = 22.4, 24.0 Hz, C3'), 82.26 (dd, J = 3.0, 5.7 Hz, C4'), 85.93 (dd, J = 27.1, 37.0 Hz, C1), 95.16 (d, J = 149.0 Hz), 97.32 (C5), 124.05 (t, J = 258.4 Hz, C2'), 140.77 (C6), 158.29 (C2), 165.37 (C4); 19F NMR (CD3OD) δ -181.90 (m, 0.45F), 119.90 (br. d, J = 238.8 Hz, 1F), -118.83 (dd, J = 9.2, 238.8Hz, 1F); MS (ESI+) m/z 436 (100, [M+H]+). HRMS (ESI+) m/z calcd for C20H32F3N3O4 [M + Na+] 458.2237; found 458.2248.
Minor isomers 27 [4-N-(10-fluoroundecanyl)]  and 29 [4-N-(8-fluoroundecanyl)]  had the following distinguishable peaks: 1H NMR (CD3OD) δ 4.36 (dm, J = 49.8 Hz, 0.2H, CHF), 4.61 (dm, J = 49.8 Hz, 0.35H, CHF); 13C NMR (CD3OD) δ 91.77 (d, J =        164.3 Hz, CHF), 94.95 (d, J = 142.2 Hz, CHF); 19F NMR (CD3OD) δ -183.01 (m, 0.2F), -173.68 (m, 0.35F),
4-N-(11-Hydroxyundecanyl)-2'-deoxy-2',2'-difluorocytidine (31). 11-Amino-1-undecanol (66, 88 mg, 0.47 mmol) and Et3N (0.5 mL) were added to a solution of 24 (23.2 mg, 0.038 mmol) in 1,4-dioxane (0.5 mL) and stirred at ambient temperature under Ar. The reaction mixture was then gradually heated to 65 ºC (oil bath) and kept stirring overnight. After 40 h, the volatiles were evaporated and the residue (97 mg) was column chromatographed (1 → 3% MeOH/EtOAc) to give mono-protected product 30 [9.5 mg, 47%: 1H NMR (CD3OD) δ 1.32 (br. s, 12H, 6 x CH2), 1.49 (s, 9H, t-Bu), 1.49-1.61 (m, 4H, 2 x CH2), 3.37 (t, J = 7.1 Hz, 2H, CH2), 3.49-3.62 (m, 2H, CH2), 4.17 (dt, J = 9.9, 19.4 Hz, 1H, H4'), 4.02-4.09 (m, 1H, H3'), 4.48 (dd, J = 2.6, 12.4 Hz, 1H, H5'), 4.33 (dd, J = 4.3, 12.4 Hz, 1H, H5''),  5.86 (d, J = 7.6 Hz, 2H, H5), 6.25 (t, J = 8.2 Hz, 2H, H1'), 7.51 (d, J = 7.6 Hz, 2H, C6); MS (ESI+) m/z 534 (100, [M+H]+)] followed by 31 (4 mg, 24%) of 90% purity. Compound 30 (9.5 mg, 0.018 mmol) was dissolved in TFA (1.0 mL) and reaction mixture was stirred at 18 ºC. After 5 h, the reaction mixture was diluted with toluene (2 mL), the volatiles were evaporated, and the residue was co-evaporated with a toluene (2 x 1 mL). The resulting residue (17 mg) was then column chromatographed (1% MeOH/EtOAc) to give 31 (2.2 mg, 29% from 30; 38% overall from 24) as a colorless oil: 1H NMR (CD3OD) δ 1.30-1.41 (m, 14H, 7 x CH2), 1.50-1.57 (m, 2H, CH2), 1.58-1.64 (m, 2H, CH2), 3.39 (t, J = 7.1 Hz, 2H, CH2), 3.55 (t, J = 6.6 Hz, 2H, CH2), 3.80 (dd, J = 3.3, 12.6 Hz, 1H, H5'), 3.89 (td, J = 2.8, 8.3 Hz, 1H, H4'), 3.95 (br. dd, J = 2.0, 12.6, 1H, H5''), 4.26 (dt, J = 8.3, 12.1 Hz, 1H, H3'), 5.87 (d, J = 7.6 Hz, 1H, H5), 6.23 ("t," J = 8.0 Hz, 1H, H1'), 7.74 (d, J = 7.6 Hz, 1H, H6); 13C NMR (CD3OD) δ 26.94, 28.01, 29.97, 30.42, 30.58, 30.63, 30.66, 30.71, 33.67, 41.74, 60.56 (C5'), 63.03, 70.63 (dd, J = 22.0, 24.8 Hz, C3'), 82.23 (dd, J = 3.8, 5.0 Hz, C4'), 85.82 (C1), 97.32 (C5), 124.04 (t, J = 259.8 Hz, C2'), 140.77 (C6), 158.29 (C2), 165.37 (C4); 19F NMR (CD3OD) δ -119.90 (br. d, J = 239.2 Hz, 1F), -118.83 (dd, J = 11.6, 239.2Hz, 1F); MS (ESI) m/z 434 (100, [M+H]+); HRMS (ESI+) m/z calcd for C20H33F2N3NaO5 [M+Na]+ 456.2280; found 456.2287.
4-N-(p-Toluenosulfonyl)-2'-deoxy-2',2'-difluorocytidine (32). TMSCl (5.1 mL) was added to a suspension of 1 (600 mg, 2.0 mmol) in anhydrous pyridine (10 mL) and stirred at ambient temperature under Ar. After 2 h, TsCl (3.8 g, 20.027 mmol) was added and the reaction mixture gradually heated to 60 ºC (oil-bath) and kept stirring. After 20 h, volatiles were evaporated under reduced pressure and the resulting residue was treated with MeOH/NH3 (10 mL) and stirred at ambient temperature overnight. After 24 h, volatiles were evaporated under reduced pressure and the resulting residue was column chromatographed (90% EtOAc/hexane) to give 32 (808 mg, 96%) as a white solid: 1H NMR (CD3OD) δ 2.42 (s, 3H, CH3), 3.78 (dd, J = 3.4, 12.8 Hz, 1H, H5'), 3.90-3.95 (m, 2H, H4', H5''), 4.28 (dt, J = 8.4, 12.0 Hz, 1H, H3'), 6.13 ("dd," J = 5.3, 9.5 Hz, 1H, H1'), 6.65 (d, J = 8.2 Hz, 1H, H5), 7.36 (d, J = 8.0 Hz, 2H, Ar), 7.79 (d, J = 8.3 Hz, 2H, Ar), 7.99 (d, J = 8.1 Hz, 1H, H6); 13C NMR (CD3OD) δ 21.43, 60.34 (C5'), 70.21 (dd, J = 18.8, 27.2 Hz, C3'), 82.99 (d, J = 8.4, C4'), 85.46 (dd, J = 23.9, 41.3 Hz, C1'), 98.46 (C5), 123.84 (t, J = 258.7 Hz, C2'), 127.58 (Ar), 130.52 (Ar), 140.71 (Ar), 142.62 (C6), 144.66 (Ar), 150.21 (C2), 160.54 (C4); 19F NMR (CD3OD) δ -120.17 (br. s, 1F), -119.41 (dd, J = 4.1, 12.7 Hz, 1F); MS (ESI+) m/z 440 (100, [M+Na]+. HRMS (ESI+) m/z calcd for C16H17F2N3NaO6S [M+Na]+ 440.0698; found 440.0711.
4-N-(11-Benzyloxyundecanyl)-2'-deoxy-2',2'-difluorocytidine (33). In a tightly sealed container, a solution of 55 (158 mg, 0.383 mmol), 11-(benzyloxy)undecanyl amine (70; 945 mg, 3.41 mmol) and TEA (2 mL) in 1,4-dioxane was stirred at 75 ºC. After 96 h, the volatiles were evaporated under reduced pressure and the resulting residue was column chromatographed (1% MeOH/EtOAc) to give 33 (122 mg, 61%): 1H NMR (CD3OD) δ 1.28 (br. s, 10H, 5 x CH2), 1.32 (br. s, 4H, 2 x CH2), 1.54-1.61 (m, 4H, 2 x CH2), 3.36 (t, J = 7.1 Hz, 2H, CH2), 3.47 (t, J = 6.6 Hz, 2H, CH2), 3.79 (dd, J = 3.3, 12.6, 1H, H5'), 3.88-3.96 (m, 2H, H4', H5''), 4.25 (dt, J = 8.3, 12.0 Hz, 1H, H3'), 4.48 (s, 2H, CH2), 5.89 (d, J = 7.6 Hz, 1H, H5), 6.21 (t, J = 8.0 Hz, 1H, H1'), 7.32 ("br. s," 5H, Ar), 7.70 (d, J = 7.6 Hz, 1H, H6); 13C NMR (CD3OD) δ 27.23, 28.00, 29.96, 30.42, 30.48, 30.60, 30.63, 30.65, 30.71, 41.74, 60.54, 68.14 (C3'), 71.44, 73.86, 82.24 ("t," J = 2.95 Hz, C4'), 85.92 ("dd," J = 26.7, 37.7 Hz, C1'), 97.31 (C5), 124.04 (t, J = 258.7 Hz, C2'), 128.62, 128.84, 129.35, 139.87, 140.75, 158.27, 165.34; 19F NMR (CD3OD) δ -119.47 (br. d, J = 236.7 Hz, 1F), -118.42 (dd, J = 8.6, 236.7 Hz, 1F); HRMS (ESI+) m/z calcd for C27H39F2N3NaO5 [M+Na]+ 546.2750; found 546.2774.
4-N-(11-Benzyloxyundecanyl)-3',5'-di-O-benzoyl-2'-deoxy-2',2'-difluorocytidine (34). BzCl (50 µL, 0.49 mmol) was added to a solution of 33 (117 mg, 0.22 mmol), 2,6-Lutidine (64 µL, 0.89 mmol) and 4-dimethylaminopyridine (27 mg, 0.22 mmol) in CH2Cl2 (10 mL) and stirred at 35 ºC under Argon. After 20 h, the reaction mixture was diluted with CH2Cl2 (40 mL), partitioned with H2O, and the aqueous layer extracted with CH2Cl2 (2 x 20 mL). The combined organic layer was sequentially washed with 1M HCl (20 mL), saturated NaHCO3/H2O (20 mL) and brine (20 mL), dried over Na2SO4, evaporated under reduced pressure and the resulting residue (157 mg) was column chromatographed (1% MeOH/CHCl3) to give 34 (50.6 mg, 60%) as a mixture of rotamers (80:20). The major rotamer had the following peaks:  1H NMR (CD3OD) δ 1.24 (br. s, 12H, 6 x CH2), 1.51-1.62 (m, 4H, 2 x CH2), 3.20 (t, J = 7.1 Hz, 2H, CH2), 3.39 (t, J = 12.3 Hz, 2H, CH2), 4.48 (s, 2H, CH2), 4.49-4.53 (m, 1H, H5'), 4.63-4.67 (m, 1H, H5'), 4.73-4.79 (m, 1H, H4'), 5.54 (d, J = 7.6 Hz, 1H, H5), 5.57-5.61 (m, 1H, H3'), 6.60-6.65 (m, 1H, H1'), 7.26-7.33 (m, 5H, Ar), 7.41-7.49 (m, 4H, Ar), 7.55-7.64 (m, 2H, Ar), 8.02-8.08 (m, 4H, Ar); 19F NMR (CD3OD) δ -120.48 (br. d, J = 246.7 Hz, 1F), -115.34 (dt, J = 13.6, 246.7 Hz, 1F); MS (ESI+) m/z 754 (100, [M+Na]+. HRMS (ESI+) m/z calcd for C41H47F2N3NaO7 [M+Na]+ 754.3274; found 754.3303.
The minor rotamer had the following distinguishable peaks: 1H NMR (CD3OD) δ 5.70 (d, J = 7.8, 1H, H5); 19F NMR (CD3OD): δ -115.82 (dt, J = 13.4, 246.7, 1F).
4-N-(11-Hydroxyundecanyl)-3',5'-di-O-benzoyl-2'-deoxy-2',2'-difluorocytidine (35). Ammonium cerium (IV) nitrate (63 mg, 0.115 mmol) was added to a solution of 34 (106 mg, 0.145 mmol) in CH3CN:H2O (9:1, 5 mL) and stirred at ambient temperature overnight. Additional portions of CAN (240 mg) were added to the reaction mixture every 24 h until no starting material could be detected by TLC. After 72 h, the reaction was quenched by the addition of saturated NaHSO3 (20 mL), the volatiles evaporated under reduced pressure and the resulting aqueous residue was extracted with EtOAc (3 x 20 mL). The combined organic layer was washed with brine (20 mL), dried over Na2SO4, evaporated under reduced pressure and the resulting residue (103.5 mg) was then column chromatographed (1% MeOH/EtOAc) to give 35 (66 mg, 70%) as a mixture of rotamers (72:28). The major rotamer had the following peaks:  1H NMR (CD3OD) δ 1.24 (br. s, 14H, 7 x CH2), 1.51-1.64 (m, 4H, 2 x CH2), 3.20 (t, J = 7.0 Hz, 2H, CH2), 3.63 (t, J = 6.6 Hz, 2H, CH2), 4.50-4.58 (m, 1H, H4'), 4.64-4.71 (m, 1H, H5'), 4.75-4.82 (m, 1H, H5''), 5.57-5.62 (m, 1H, H3') 5.60 (d, J = 7.6 Hz, 1H, H5), 6.58-6.61 (m, 1H, H1'), 7.31 ("d," J = 7.6 Hz, 1H, H6), 7.41-7.65 (m, 6H, Ar), 8.02-8.11 (m, 4H, Ar); 13C NMR (CDCl3) δ 25.79, 26.93, 29.20, 29.29, 29.44, 29.47, 29.53, 29.57, 32.78, 41.14, 62.90, 63.01, 71.86 (m, C3'), 77.74 (C4'), 83.51 (br. s, C1'), 96.55 (C5), 120.98 (t, J = 256.3 Hz, C2'), 128.10, 128.70, 128.81, 129.39, 129.81, 130.27, 133.60, 134.28, 139.86, 155.75, 163.59, 165.05, 166.09;  19F NMR δ -115.36 (dt, J = 13.7, 246.3 Hz, 1F), -120.50 (br. d, 1F); MS (ESI+) m/z 664 (100, [M+Na]+; HRMS (ESI+) m/z calcd for C34H41F2N3NaO7 [M+Na]+ 664.2805; found 664.2837.
The minor rotamer had the following distinguishable peaks: 1H NMR (400 MHz, CDCl3) δ 3.40-3.41 (m, 2H, CH2), 5.71 (d, J = 7.8 Hz, 1H, H5); 19F NMR δ -115.85 (dt, J = 12.4, 246.0 Hz, 1F).
5,6-dihydro-4-N-(11-Hydroxyundecanyl)-3',5'-O-di-benzoyl-2'-deoxy-2',2'-difluorocytidine (36). A flask containing a solution of 34 (40.5 mg, 0.055 mmol) and 5% Pd-C in EtOH was equipped with a H2 gas balloon and stirred at ambient temperature overnight. After 15 h, the reaction mixture (which still contained active Pd-C) was filtered, the volatiles evaporated under reduced pressure and the resulting residue (36.4 mg) column chromatographed (1% MeOH/EtOAc) to give 36 (6.1 mg, 25%) as a clear oil: MS (ESI+) m/z 643 (100, [M+Na]+.
4-N-[11-(Methanesulfoxy)undecanyl]-3',5'-di-O-benzoyl-2'-deoxy-2',2'-difluorocytidine (37). Et3N (3.8 µL, 2.7 mg, 0.027 mmol) and MsCl (1.5 µL, 2.3 mg, 0.020 mmol) were sequentially added to a stirred solution of 35 (11.6 mg, 0.018 mmol) in CH2Cl2 at 0 ºC. After 5 minutes, the reaction mixture was allowed to warm up to ambient temperature and kept stirring. After 3 h, the reaction mixture was then partitioned between H2O and CH2Cl2, and the aqueous layer then extracted with CH2Cl2 (2 x 20 mL). The combined organic layer was washed with brine, dried over MgSO4, evaporated under reduced pressure and the resulting residue (12.1 mg) was column chromatogramphed (50% EtOAc/hexane) to give 37 (11.7 mg, 90%) as a mixture of rotamers (71:29). The major rotamer had the following peaks: 1H NMR (CDCl3) δ 1.25 (br.s, 14H, 7 x CH2), 1.55-1.77 (m, 4H, 2 x CH2), 2.99 (s, 3H, CH3), 3.46-3.52 (m, 2H, CH2), 4.21 (t, J = 6.6 Hz, 2H, CH2), 4.51-4.58 (m, 1H, H4'), 4.64-4.81 (m, 2H, H5', H5''), 5.55 (d, J = 7.6 Hz, 1H, H5), 5.59-5.63 (m, 1H, H3'), 6.55-6.67 (m, 1H, H1'), 7.32 (dd, J = 1.6, 7.5 Hz, 1H, H6), 7.43-7.51 (m, 4H, Ar), 7.57-7.66 (m, 2H, Ar), 8.03-8.10 (m, 4H, Ar); 13C NMR (CDCl3) δ 21.15, 25.47, 26.94, 29.00, 29.22, 29.30, 29.39, 29.46, 29.55, 37.50, 41.18, 63.02 (C5'), 70.39, 71.96 ("dd," J = 17.3, 35.8 Hz, C3'), 77.36 (C4'), 84.00 (br. s, C1'), 96.22 (C5), 120.93 (t, J = 262.8 Hz, C2'), 128.13, 128.71, 128.82, 129.41, 129.82, 130.28, 133.61, 134.28, 139.97 (C6), 155.66, 163.55, 165.05, 166.08; 19F NMR δ -120.61 (br.d, J = 261.9 Hz, 1F), -115.38 (dt, J = 14.1, 246.7 Hz, 1F); MS (ESI) m/z 720 (100, [M+H]+); HRMS (ESI+) m/z calcd for C35H43F2N3NaO9S [M+Na]+ 742.2580; found 742.2603.
The minor rotamer had the following distinguishable peaks: 1H NMR (CDCl3) δ 3.23-3.25 (m, CH2N), 5.77 (d, J = 7.9 Hz, H5); 19F NMR δ -115.98 (dt, J = 13.1, 234.1 Hz, 1F).
4-N-(11-Fluoroundecanyl)-3',5'-di-O-benzoyl-2'-deoxy-2',2'-difluorocytidine (38). A chilled (-78 ºC) solution of DAST (14 µL, 17.2 mg, 0.107 mmol) in CH2Cl2 (250 µL) was added to a stirred solution of 35 (21.7mg, 0.034 mmol) in CH2Cl2 (1 mL) at -78 ºC. After 30 minutes, the reaction mixture was allowed to warm up to ambient temperature and kept stirring. After 3 h, the reaction mixture was poured into a separatory funnel containing a ice-cold solution of Na2HCO3 in H2O (10 mL, pH = 8) and was extracted with CHCl3 (3 x 10 mL). The combined organic layer was washed with brine, dried over MgSO4, evaporated under reduced pressure and the resulting oily residue (20.5 mg) was then column chromatographed (40% EtOAc/hexane) to give 38 (10.6 mg, 48%) as a mixture of rotamers (76:24). The major rotamer had the following peaks: 1H NMR (CDCl3) δ 1.27 (br. s, 14H, 7 x CH2), 1.55-1.69 (m, 4H, 2 x CH2), 3.47-3.52 (m, 2H, CH2), 4.43 (dt, J = 6.2, 47.4 Hz, 2H, CH2), 4.51-4.55 (m, 1H, H4'), 4.67 (dd, J = 4.5, 12.3 Hz, 1H, H5'), 4.79 (dd, J = 3.2, 12.3 Hz, 1H, H5''), 5.54 (d, J = 7.6 Hz, 1H, H5), 5.58-5.63 (m, 1H, H3'), 6.61 (br.s, 1H, H1'), 7.32 (d, J = 7.5 Hz, 1H, H6), 7.42-7.66 (m, 6H, Ar), 8.03-8.16 (m, 4H, Ar); 13C NMR (CDCl3) δ 25.30, 27.01, 29.24, 29.32, 29.49, 29.56, 29.83, 30.44, 30.63, 41.28, 63.02 (C5'), 71.87 (br. s, C3'), 79.16 (br. s, C4'), 83.56 (br. s, C1'), 84.37 (d, J = 164.0 Hz'), 96.17 (C5), 121.88 (t, J = 255.7 Hz, C2'), 128.14, 128.73, 128.84, 129.43, 129.84, 130.31, 133.59, 134.29, 140.10, 155.46, 163.39, 165.06, 166.10; 19F NMR (CDCl3) δ -217.94 (tt, J = 24.9, 47.3 Hz, 1F), -120.62 (br. d, J = 203.1, 1F), -115.40 (dt, J = 14.1, 247.3 Hz, 1F); MS (ESI) m/z 644 (100, [M+H]+); HRMS (ESI-TOF+) m/z calcd for C34H40F3N3NaO6 [M+Na]+ 666.2761; found 666.2763.
The minor rotamer had the following distinguishable peaks: 1H NMR (400 MHz, CDCl3) δ 3.20-3.21 (m, 2H, CH2N), 5.71 (d, J = 7.8 Hz, 1H, H5); 19F NMR δ -115.98 (dt, J = 12.9, 247.5 Hz, 1F)
4-N-(11-Fluoroundecanyl)-2'-deoxy-2',2'-difluorocytidine (39). Method A. Compound 38 (10.6 mg, 0.017 mmol) was dissolved in methanolic ammonia (2 mL) and stirred at ambient temperature. After 2 h, volatiles were evaporated under reduced pressure and the resulting residue was chromatographed (5% MeOH/EtOAc) to give 39 (6.5 mg, 90%) as a clear oil:  1H NMR (CD3OD) δ 1.32 (br.s, 14H, 7 x CH2), 1.55-1.73 (m, 4H, 2 x CH2), 3.37 (t, J = 7.1 Hz, 2H, CH2), 3.78 (dd, J = 3.3, 12.6 Hz, 1H, H5'), 3,87 (dt, J = 3.0, 8.28 Hz, 1H, H3'), 3.93 ('d', J = 13.3 Hz, 1H, H5''), 4.20-4.28 (m, 1H, H4'), 4.40 (dt, J = 6.1, 47.6 Hz, 1H, CH2), 5.85 (d, J = 7.6 Hz, 1H, H5), 6.21 ("t", J = 7.96 Hz, H1'), 7.73 (d, J = 7.6 Hz, 1H, H6); 19F NMR δ -219.94  (tt, J = 25.5, 47.3 Hz, 1F, CH2F), -119.60 (br. s, 1F), -119.14 (br. s, 1F); MS (ESI) m/z 436 (100, [M+H]+); HRMS (ESI+) m/z calcd for C20H32F3N3NaO4 [M+Na]+ 458.2237; found 458.2256.
Method B. In a tightly sealed cylindrical pressure vessel with screw cap, a solution of KF (1.6 mg, 0.028 mmol), K2CO3 (3.8 mg, 0.028 mmol), Kryptofix 2.2.2 (10.5 mg, 0.028 mmol) and 37 (5.0 mg, 0.007 mmol) in CH3CN (1 mL) was stirred at 110 ºC. After 18 min, the reaction mixture was quickly cooled in a water bath and vacuum filtrated into another pressure vessel. The effluent containing crude 38 was concentrated under reduced pressure and the resulting residue treated with 0.5 CH3ONa/MeOH (1 mL), then stirred and heated at 100 ºC. After 8 min, the reaction mixture was neutralized with 1N HCl and evaporated under reduced pressure to dryness. The crude sample was then dissolved in 45% CH3CN/H2O to a total volume of 4.5 mL, passed through a 0.2 µm PTFE syringe filter and then injected into a semi-preparative HPLC column (Phenomenex Gemini RP-C18 column; 5µ, 25 cm X 1 cm) via 5 mL loop. The HPLC column was eluted with an isocratic mobile phase mixture 45% CH3CN/H2O at a flow rate = 5 mL/min to give 39 (1.9 mg, 62% overall yield from 37, tR = 13.1 min) with data as reported above.
4-N-[4-(4,7-Bis(2-tert-butoxy-2-oxoethyl)-1,4,7-triazonan-1-yl)-5-tert-butoxy-5-oxopentanoyl]-2'-deoxy-2',2'-difluorocytidine (40). Compound 1 (12.6 mg, 0.042 mmol) was treated with commercially available 4-(4,7-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7-triazacyclononan-1-yl)-5-(tert-butoxy)-5-oxopentanoic acid (25 mg, 0.046 mmol) according to coupling conditions from Procedure. After 20h, the reaction mixture was treated with H2O and EtOH, the volatiles evaporated under reduced pressure and the resulting residue (75 mg) diluted with a solution of 95% H2O/CH3CN to a total volume of 1.5 mL, passed through a 0.2 µm PTFE syringe filter and then injected into a preparative HPLC column (XTerra Prep RP-C18 column; 5µ, 19 X 150 mm) via 2 mL loop. The HPLC column was eluted with a gradient program (isocratic mobile phase mixture 95% H2O/CH3CN for 60 min, gradient 95 → 0% H2O/CH3CN over 30 min) at a flow rate = 2.5 mL/min, to give 40 with Rt = 98-129 min (3.4 mg, 10% yield) as a clear oil: MS (ESI) m/z 789 (100, [M+H]+).
4-N-[4-(4,7-Bis(carboxymethyl)-1,4,7-triazonan-1-yl)-4-carboxybutanoyl]-2'-deoxy-2',2'-difluorocytidine (41). Compound 40 (3.4 mg, 0.004 mmol) was dissolved in TFA (1.0 mL) and the mixture was stirred at ambient temperature overnight. After 15 h, the reaction mixture was diluted with toluene, the volatiles were evaporated, and the residue co-evaporated with a fresh portion of toluene. The resulting residue was then dissolved with a solution of 95% H2O/CH3CN to a total volume of 1.5 mL, passed through a 0.2 µm PTFE syringe filter and then injected into a preparative HPLC column (XTerra Prep RP-C18 column; 5µ, 19 X 150 mm) via 2 mL loop. The HPLC column was eluted with a gradient program (isocratic mobile phase mixture 95% H2O/CH3CN for 60 min, gradient 95 → 0% H2O/CH3CN over 30 min) at a flow rate = 2.5 mL/min, to give 41 with Rt = 63-70 min (1.0 mg, 37% yield) as a clear oil: MS (ESI) m/z 621 (100, [M+H]+).
4-N-[N'-Boc-(3-aminopropanoyl)-2'-deoxy-2',2'-difluorocytidine (43). Treatment of 1 (42 mg, 0.140 mmol) with commercially available N-Boc-β-alanine (29.2 mg, 0.154 mmol) by Procedure A gave 46.4 mg of the crude product, which was then column chromatographed (5% MeOH/EtOAc) to give 43 (40.1 mg, 65%) as a white solid: 1H NMR (CD3OD) δ 1.42 (s, 9H, 3 x CH3), 2.63 (t, J = 6.5 Hz, 2H, CH2), 3.37 (t, J = 6.5 Hz, 2H, CH2), 3.81 (dd, J = 3.2, 12.8 Hz, 1H, H5'), 3.95-3.99 (m, 2H, H4', H5''), 4.30 (m, 1H, H3'), 6.26 (t, J = 7.3 Hz, 1H, H1'), 7.49 (d, J = 7.6 Hz, 1H, H5), 8.33 (d, J = 7.6 Hz, 1H, H6);  19F NMR (CD3OD) δ -121.01 (br. d, J = 237.0 Hz, 1F), -119.16 (dd, J = 243.4, 12.1 Hz, 1F); MS (ESI+) m/z 435 (100, [M+H]+).
4-N-[N'-Boc-(3-aminopropanyl)-2'-deoxy-2',2'-difluorocytidine (45). In a tightly sealed vessel, a mixture of 24 (11.5 mg, 0.018 mmol) and commercially available N-Boc-1,3-propanediamine (150 µL, 150 mg, 0.86 mmol) was stirred at 65 ºC. After 48 h, the volatiles were evaporated the resulting residue was column chromatographed (30% EtOAc/hexane → 5% MeOH/EtOAc) to give fully protected 4-N-[N-Boc-(3-aminopropanyl)-gemcitabine [3.6 mg, 31% MS (ESI+) m/z 621 (100, [M+H]+)] followed by 45 (3.5 mg, 59%) as colorless oil: 1H NMR (CD3OD) δ 1.43 (s, 9H, 3 x CH3), 1.74 (quin, J = 6.8 Hz, 2H, CH2), 3.10 (t, J = 6.7 Hz, 2H, CH2), 3.41 (t, J = 6.9 Hz, 2H, CH2), 3.77 (dd, J = 3.2, 12.6 Hz, 1H, H5'), 3.87 (dt, J = 2.8, 8.3 Hz, 1H, H4'), 3.93 ("d," J = 2.1, 12.6 Hz, 1H, H5''), 4.24 (dt, J = 8.4, 12.1 Hz, 1H, H3'), 5.85 (d, J = 7.6 Hz, 1H, H5), 6.21 ("t," J = 8.0 Hz, 1H, H1'), 7.75 (d, J = 7.6 Hz, 1H, H6); 19F NMR (CD3OD) δ -119.94 (br. d, J = 240.6 Hz, 1F), -118.83 (dd, J = 10.3, 238.3 Hz, 1F); MS (ESI+) m/z 421 (100, [M+H]+).
4-N-(3-Aminopropanyl)-2'-deoxy-2',2'-difluorocytidine (46). Method A. Compound 45 (3.4 mg, 0.004 mmol) was dissolved in TFA (1.0 mL) and the mixture was stirred at ambient temperature overnight. After 15 h, the reaction mixture was diluted with toluene, the volatiles were evaporated, and the residue co-evaporated with a fresh portion of toluene. The resulting residue was then column chromatographed (10% MeOH/EtOAc) to give 46 (2.4 mg, 93%) as a white solid: 1H NMR (CD3OD) δ 1.95 (t, J = 6.8 Hz, 2H, CH2), 3.19 (t, J = 6.8 Hz, 2H, CH2), 3.51-3.57 (m, 2H, CH2), 3.81 (dd, J = 3.1, 12.0 Hz, 1H, H5'), 3.91-3.99 (m, 2H, H4', H5''), 4.28 (dt, J = 8.2, 12.1 Hz, 1H, H3'), 5.92 (d, J = 7.5 Hz, 1H, H5), 6.25 ("t," J = 8.1 Hz, 1H, H1'), 7.88 (d, J = 7.1 Hz, 1H, H6); 19F NMR (CD3OD) δ -119.54 (br. d, J = 241.2 Hz, 1F), -118.54 (dd, J = 10.4, 237.8 Hz, 1F); MS (ESI+) m/z 321 (100, [M+H]+).
Method B. In a tightly sealed container, a solution of 32 (9.8 mg, 0.024 mmol), commercially available N-Boc-1,3-propanediamine (50 µL, 50 mg, 0.29 mmol) and TEA (2 mL) in 1,4-dioxane was stirred at 75 ºC. After 96 h, the volatiles were evaporated, the resulting residue treated with TFA (1.0 mL) and the mixture stirred at ambient temperature overnight. After 15 h, the reaction mixture was diluted with toluene, the volatiles were evaporated, and the residue co-evaporated with a fresh portion of toluene, and the resulting residue was then column chromatographed (10% MeOH/EtOAc) to give 46 (7.8 mg, 94%) with data as reported above.
4-N-(3-N'-[SCN-Bn-NOTA]aminopropanyl)-2'-deoxy-2',2'-difluorocytidine (47). A mixture of SCN-Bn-NOTA (2.5 mg, 0.004 mmol) and 46 (2.4 mg, 0.007 mmol) in 0.1 M Na2CO3 buffer (pH 11) was stirred at ambient termperature for 60 h. The reaction mixture was injected into a Phenomenex Gemini semi-preparative RP-C18 column (5µ, 25 cm X 1 cm) via 2 mL loop and eluted with 0% → 100% ethanol gradient in 0.01% TFA/H2O from 0 to 30 min at a flow rate = 5 mL/min. Analogue 47 (2.0 mg, 35% yield) eluted with rt = 14.1 min: MS (ESI+) m/z 771.3 (100, [M+H]+); HRMS (ESI+) m/z calcd for C32H45F2N8O10S [M+H]+ 771.2942; found 771.2879.
Gallium-4-N-(3-N'-[SCN-Bn-NOTA]aminopropanyl)-2'-deoxy-2',2'-difluorocytidine (48). Gallium chloride (5.1 mg, 0.029 mmol) was added to a stirred solution of 47 (1.0 mg, 0.001 mmol) in 0.6 N NaCH3CO2/H2O (1 mL, pH = 9.3) at ambient temperature. After 30 min, the reaction mixture was diluted to a total volume of 1.5 mL with H2O and injected into a Phenomenex Gemini semi-preparative RP-C18 column (5µ, 25 cm x 1 cm) via 2 mL loop and eluted with 0% → 100% ethanol gradient in 0.01% TFA/H2O from 0 to 30 min at a flow rate = 5 mL/min. Analogue 48 (0.5 mg, 46% yield) eluted with tR = 12.4 min. HRMS (ESI+) m/z calcd for C32H42F2GaN8NaO10S [M+H]+ 837.1963; found 837.1977.
Diallylacetic acid (50). A solution of KOH (2.6 g, 47 mmol) in H2O (7.5 mL) was added to a stirred solution of commercial diethyl diallylmalonate 49 (5.1 g, 21 mmol) in EtOH (12.5 mL) under Ar atmosphere and refluxed at 95 °C. After 6 h, volatiles were evaporated and the residue diluted with water, acidified with HCl (1N), and extracted with Et2O (3x). The combined organic extract was dried over Na2SO4 and evaporated under reduced pressure to give a crude white solid (3.881 g, 100%): 1H NMR (400 MHz, CDCl3) δ 2.71 (d, J = 7.4 Hz, 4H), 5.15-5.21 (m, 4H), 5.65-5.76 (m, 2H). The crude mixture was then stirred and heated at 156 °C. After 30 min the temperature was lowered to 144 °C. After 3 hrs reaction mixture was column chromatographed (20 → 30% EtOAc/hexane) to give 50177 (1.12 g, 38%) as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 2.26-2.44 (m, 4H), 2.53-2.60 (m, 1H), 5.05-5.12 (m, 4H), 5.72-5.82 (m, 2H).
4-Fluoro-2-(2-fluoropropyl)pentanoic acid (51). HF-pyridine (70%, 2 mL) was added to a stirred solution of 50 (0.26 mL 250 mg, 1.8 mmol) in a PFA container at 0 °C. After 1 hour, a fresh portion of HF-pyridine (70%, 2 mL) was added to the reaction mixture and stirring continued. After another 1 h, the last portion of HF-pyridine (70%, 4 mL) was added and the reaction mixture continued stirring while gradually allowing vessel to reach ambient temperature. After 15 h, the reaction mixture was diluted with ice-H2O and extracted with CHCl3 (3x). The combined organic extract was washed with brine, dried over Na2SO4, concentrated under reduced pressure and the resulting residue was then column chromatographed (10 → 20% EtOAc/Hex) to give 51 (1.270 g, 62%): MS (ESI+) m/z 209 (100, [M+H]+.
Diethyl 2-(3-phenoxypropyl)-2-propylmalonate (53). LDA (2 M solution in THF/heptanes/ethylbenzene) was added to a stirred solution of diethyl propylmalonate (52, 2.26 mL, 12 mmol) in anhydrous DMF (12 mL) at 0°C. After 30 minutes 3-phenoxypropyl bromide (2.238 mL, 3.096 g, 14.4 mmol) was added dropwise. Resulting yellow, clear solution was stirred for 32 hrs at ambient temperature. Reaction mixture was then diluted with Et2O, treated with NaHCO3 and extracted in the organic phase. Combined extract was washed with brine, dried over Na2SO4, and concentrated to give crude 53 (1.70 g, 42%): 1H NMR (400 MHz, CDCl3) δ 0.94 (t, J = 7.3 Hz, 3H), 1.22-1.26 (m, 8H), 1.64-1.72 (m, 2H), 1.88-1.92 (m, 2H), 2.04-2.09 (m, 2H), 3.95 (t, J = 6.3 Hz), 4.18 (q, J = 7.1 Hz, 4H), 6.87 (d, J = 8.7 Hz, 2H), 6.92 (t, J = 7.3 Hz, 1H), 7.24-7.28 (m, 2H); GC-MS m/z 336 (M+; tR = 23.36 min).
5-Bromo-2-propylpentanoic acid (54). HBr (5 mL, 49%) was added to a stirred 53 (40 mg, 0.12 mmol) and refluxed at 140 °C. After 3 hrs the reaction mixture was diluted with H2O and extracted with EtOAc. The combined organic extract was then washed with brine, dried over Na2SO4, evaporated under reduced pressure and the resulting residue column chromatographed (30 → 40% EtOAc/hexane) to give 54 (8.7 mg, 33%): 1H NMR (400 MHz, CDCl3) δ 0.93 (t, J = 7.2 Hz, 3H, CH3), 1.32-1.41 (m, 2H, CH2), 1.44-1.52 (m, 1H, CH), 1.61-1.80 (m, 3H, CH3), 1.84-1.95 (m, 2H, CH2), 2.37-2.44 (m, 1H, CH), 3.41 (“dt”, J = 1.2, 6.7 Hz, 2H, CH2); 13C NMR (400 MHz, CDCl3) δ 14.1, 20.5, 30.5, 30.6, 33.4, 34.4, 44.5, 181.7; GC-MS m/z 222/224 ([79Br]/[81Br] M+; tR = 13.78 min).
5-Bromo-2-propylpentanoyl chloride (55). Compound 54 was dissolved in freshly distilled SOCl2 (1 mL, 13.8 mmol)) was added to at ambient temperature and stirred. After 4 h, volatiles were evaporated to give 55 as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 0.95 (t, J = 7.3 Hz, 3H), 1.35-1.44 (m, 2H), 1.52-1.59 (m, 3H), 1.73-1.83 (m, 2H), 1.84-1.96 (m, 3H), 2.78-2.85 (m, 1H), 3.39-3.44 (m, 2H); 13C NMR (400 MHz, CDCl3) δ 14.0, 20.2, 29.9, 30.5, 32.8, 34.2, 56.3, 100.1.
10-Fluoroundecanoic Acid (57). HF-pyridine (70%, 10 mL) was added to a stirred solution of commercially available undecylenic acid (56, 2.03 mL 2.23 mg, 10 mmol) in a HDPE container at 0 °C. After 1 hour, a fresh portion of HF-pyridine (70%, 5 mL) was added to the reaction mixture and stirring was continued for 1 hour.  Reaction mixture was diluted with ice-H2O and extracted with chloroform (3x). The combined organic layer was washed with brine, dried with Na2SO4 and then column chromatographed (20 → 30% EtOAc/hexane) to give 57167 (1.270 g, 62%): 1H NMR (400 MHz, CDCl3) δ 1.27-1.67 (m, 17H), 2.35 (t, J = 7.5 Hz, 2H), 4.65 (‘dm’, J = 50.1 Hz, CHF, 1H); 13C NMR (400 MHz, CDCl3) δ 21.1 (d, J = 22.8 Hz, CH3), 24.8, 25.15, 25.2, 29.2, 29.3, 29.4, 29.5,  34.0, 37.1 (d, J = 20.7 Hz, CH2CHF), 91.2 (d, J = 164 Hz, CHF), 179.1 (HOCO); 19F NMR (376 MHz, CDCl3) δ -171.91 ̶ -172.34 (m, 1F). 
Minor isomers 58 and 59 had the following distinguishable peaks: 1H NMR (400 MHz, CDCl3) δ 4.40 (d of m, J = 50.7 Hz, CHF, 1H); 19F NMR (376 MHz, CDCl3) δ -181.07 ̶ -181.45 (m, ~20% intensity of a peak) and -180.19  ̶ - 180.56 (m, 5% intensity of a peak).
Methyl 11-Bromoundecanoate (61). Diazomethane [10 mL of ethereal solution generated from Diazald (10g, 46 mmol)] was added to a stirred solution of commercially available 11-bromoundecanoic acid (60, 4.47g, 17 mmol) in Et2O (5 mL) at 0 °C. After 30 minutes, volatiles were evaporated under reduced pressure to give 61151 (4.70 g. 100%) as a solid: 1H NMR (CDCl3) δ 1.29 (s, 10H, 5 x CH2), 1.42 (m, 2H, CH2), 1.62 (m, 2H, CH2), 1.85 (quint, J = 7.2 Hz, 2H, CH2), 2.30 (t, J = 7.5 Hz, 2H, CH2), 3.41 (t, J = 6.8 Hz, CH2), and 3.67 (s, 3H, CH3); GC-MS m/z 278/280 ([79Br]/[81Br] M+, tR = 17.92 min). 
Methyl 11-Fluoroundecanoate (62). Neat TBAF·3H2O (585 mg, 2.28 mmol) was added to methyl 11-bromoundecanoate 61 (200 mg, 0.90 mmol) and stirred at 85 °C. After 25 minutes, the reaction was quenched with water and extracted with pentane (3x). The combined organic layer was dried with Na2SO4, evaporated under reduced pressure and the resulting residue was column chromatographed (0 → 3% EtOAc/hexane) to give 62169 (65 mg, 33%) as a viscous oil: 1H NMR (CDCl3) δ 1.18-1.38 (m, 12H, 6 x CH2), 1.54-1.71 (m, 4H, 2 x CH2), 2.26 (t, J = 7.5 Hz, 2H, CH2), 3.62 (s, 3H, CH3), 4.39 (dt, J = 47.4, 6.2 Hz, CH2); 19F NMR (376 MHz, CDCl3) δ -217.99 (tt, J = 24.0, 47.3 Hz, 1F); GC-MS m/z 218 (M+; tR = 14.86 min). 
Note:  Compound 62 contained approximately 8% (1H NMR, GC-MS) of the corresponding methyl 10-undecenoate as judged by the presence of the olefinic hydrogens at δ 4.95 and δ 5.80. GC-MS m/z 198 (M+; tR = 13.19 min).
11-Fluoroundecanoic Acid (63). NaOH (1M, 1.25mL) was added to a solution of 62 (65 mg, 0.30 mmol) in MeOH (1mL) and stirred at ambient temperature. After 90 minutes, the reaction mixture was diluted with water and was extracted with Et2O to remove any unreacted starting material. The aqueous layer was then acidified with HCl (3 M) and extracted with fresh portions of Et2O (2x). The combined fresh organic layer was then washed with brine, dried over Na2SO4 and evaporated under reduced pressure to give 63178 (52 mg, 85%) as a solid: 1H NMR (CDCl3) δ 1.34 (m, 12H, 6 x CH2), 1.64-1.79 (m, 4H, 2 x CH2), 2.40 (t, J = 7.5 Hz, 2H, CH2), 4.48 (dt, J = 47.3, 6.2 Hz, 2H, CH2); 13C NMR (CDCl3) δ 24.96, 25.27, 29.20, 29.33, 29.44, 29.55, 30.44, 30.63, 34.36, 84.34 (d, J = 164.0 HZ), 179.62; 19F NMR (CDCl3) -217.97 (tt, J = 24.2, 47.4 Hz); GC-MS m/z 204 (M+; tR = 15.70 min); HRMS (ESI+) m/z calcd for C11H22FO2 [M+H]+ 299.0849; found 299.0861.
Note: Compound 63 contained approximately 8% (1H NMR) of the corresponding 10-undecelenic acid as judged by the presence of the olefinic hydrogens at δ 4.93 and δ 5.81. GC-MS m/z 198 (M+; tR = 13.19 min).
11-Bromoundecanoyl chloride (64). Commercially available 11-bromoundecanoic acid 60 (1.03 g, 3.9 mmol) was dissolved in freshly distilled SOCl2 (1 mL, 13.8 mmol) and stirred overnight at ambient temperature. After 18 h, excess SOCl2 was evaporated under reduced pressure to give 64167 (1.09 g, 99%) as a clear oil of sufficient purity to be used in subsequent step: 1H NMR (CDCl3) δ 1.30-1.48 (m, 12H, 6 x CH2), 1.73 (quint, J = 7.3 Hz, 2H, CH2), 1.87 (m, 2H, CH2), 2.90 (t, J = 7.3 Hz, 2H, CH2), 3.43 (t, J = 6.9 Hz, 2H, CH2.
11-Aminoundecan-1-ol (66). Lithium aluminum hydride (LAH, 1.6 g, 26.35 mmol) was added to a stirred solution of commercially available 11-aminoundecanoic acid 65 (6 g, 30 mmol) in THF (60 mL) at -20 ºC under Argon. After stirring for 30 min, the reaction mixture was allowed to warm up to ambient temperature and gradually heated to 70 ºC (oil-bath) while stirring continued. After 24 h, a second portion of LAH (1.6 g) was added to the reaction mixture under Argon and the reaction kept stirring at 70 ºC. After another 24 h, the reaction mixture was chilled to 0 ºC (ice-bath) and then quenched by careful addition of 10% NaOH (20 mL) and subsequent addition of H2O (30 mL). A pasty white precipitate formed and the mixture was stirred overnight at room temperature. The resulting solution was decanted and kept separate from the precipitate. The precipitate was washed with fresh portions of THF (30 mL), shaken rigorously and the resulting solution also decanted. The combined organic layer was then dried over MgSO4 and evaporated under reduced pressure to give 66170 (4.3 g, 75%) as a white solid of sufficient purity to be used in next step: 1H NMR (CDCl3) δ 1.28 (br. s, 14H, 7 x CH2), 1.39-1.44 (m, 2H, CH2), 1.56 (quin, J = 7.0 Hz, 2H, CH2), 2.67 (t, J = 7.0 Hz, 2H, CH2), 3.63 (t, J = 6.6 Hz, 2H, CH2). 
tert-Butyl N-(11-Hydroxyundecyl) carbamate (67). di-tert-Butyl-dicarbonate (1.3 g, 5.96 mmol) was added to a solution of 66 (1 g, 3.48 mmol) in MeOH (30 mL) and stirred at ambient temperature. After 1 h, the volatiles were evaporated under reduced pressure and the resulting residue was then column chromatographed (CHCl3) to give 67170 (1.5 g, 98%) as a white solid. 1H NMR (CDCl3): δ 1.26 (br. s, 14H, 7 x CH2), 1.43 (br. s, 11H, C(CH3)3 + CH2), 1.55 (quint, J = 7.0 Hz, 2H, CH2), 3.09 (q, J = 6.4 Hz, 2H, CH2), 3.62 (t, J = 6.4 Hz, 2H, CH2). 
tert-Butyl N-(11-Benzyloxyundecyl) carbamate (69). Step a. Methanesulfonyl chloride (370 µL, 545 mg, 4.8 mmol) was added to a stirred solution of 67 (1.1 g, 4.0 mmol) and triethylamine (830 μL, 602 mg, 5.9 mmol) in CH2Cl2 (20 mL) at 0 ºC under Argon. After stirring for 5 min, the resulting mixture was allowed to warm up to ambient temperature and kept stirring. After 1 h, the reaction mixture was diluted with CH2Cl2 (30 mL) and partitioned with H2O (30 mL) and the aqueous layer extracted with fresh portions of CH2Cl2 (2 x 30 mL). The combined organic layer was then washed with brine (30 mL), dried over Na2SO4 and evaporated under reduced pressure to give the tert-butyl N-(11-methanesulfonyloxyundecyl) carbamate 68 (1.41 g, 98%) as a crude yellow solid of sufficient purity (≥95%) for the subsequent step: 1H NMR (CDCl3) δ 1.27 (br. s, 14H, 7 x CH2), 1.35-1.49 (m, 11H, C(CH3)3, CH2), 1.75 ("quin," J = 8.0 Hz, 2H, CH2), 3.00 (s, 3H, CH3), 3.10 ("q," J = 6.9 Hz, 2H, CH2), 4.22 (t, J = 6.6 Hz, 2H, CH2). Step b. Sodium benzoxide [prepared by addition of NaH (228 mg, 4.76 mmol; 60% in dispersion paraffin) to a stirred solution of benzyl alcohol (591 µL, 657 mg, 4.76 mmol) in DMF (10 mL) at 0 oC (ice-bath) placed in a flame-dried flask under argon atmosphere (stirred 30 min)] was added dropwise to a solution of the crude 68 from Step a in DMF (10 mL) and stirred at ambient temperature. After 22 h, the reaction mixture was poured into a separatory funnel containing H2O and extracted with EtOAc (3 x 30 mL). The combined extracts was dried over Na2SO4 and evaporated under reduced pressure to give 69 (1.43 g, 95%) as a clear oil of sufficient purity (≥95%) for the subsequent step: 1H NMR (CDCl3) δ 1.25 (br. s, 14H, 7 x CH2), 1.32-1.38 (m, 2H, CH2), 1.44 (s, 9H, C(CH3)3), 1.57-1.64 (m, 2H, CH2), 3.09 (q, J = 6.3 Hz, 2H, CH2), 3.46 (t, J = 13.3 Hz, 2H, CH2), 4.50 (s, 2H, CH2), 7.27-7.35 (m, 5H, Ar). HRMS (ESI+) m/z calcd for C23H40NO3 [M+H]+ 378.3003; found 378.3010.
11-Benzyloxyundecan-1-amine (70). TFA (10 mL) was added to a stirred solution of the crude 69 (1.40 g, 3.95 mmol) in CH2Cl2 (30 mL) at 0 ºC. After 5 min, the mixture was allowed to warm up to ambient temperature and kept stirring for 1 h. Volatiles were evaporated under reduced pressure and the resulting residue was column chromatographed (2.5% MeOH/EtOAc) to give 70 (953 mg, 92%) as a colorless oil: 1H NMR (CDCl3) δ 1.18 (br. s, 14H, 7 x CH2), 1.50-1.57 (m, 4H), 2.80 (t, J = 7.4 Hz, 2H, CH2), 3.39 (t, J = 6.7 Hz, 2H, CH2), 4.42 (s, 2H, CH2), 7.26-7.27 (m, 5H, Ar); 13C NMR (CDCl3) δ 26.31, 26.47, 27.66, 29.10, 29.44, 29.56, 29.58, 29.65, 29.89, 40.05, 70.68, 72.98, 127.59, 127.75, 128.47, 138.85; MS (ESI+) m/z 278 (100, [M+H]+. HRMS (ESI+) m/z calcd for C18H32NO [M+H]+ 278.2478; found 278.2499.
[bookmark: _Toc384825392]4.3. Biological screening and evaluation
[bookmark: _Toc384825393]4.3.1. Preliminary cytostatic evaluation
4.3.1.1. Cell line and culture conditions
MCF-7 (human breast adenocarcinoma) cells were cultured in DMEM/F-12 media supplemented with 10% heat-inactivated fetal bovine serum, antibiotics (10,000 units/mL Penicillin, 10,000 µg/mL Streptomycin) and HEPES Buffer (1M solution). Cells were maintained in a humidified atmosphere at 37°C with 5% CO2 and sub-cultured twice a week and harvested by trypsinization during the exponential growth phase. Analogues to be tested were solubilized in EtOH, 1000-fold more concentrated than the maximum desired test concentration. At the time of compound addition, the analogue concentrate was diluted in full culture medium to 2-fold more concentrated than the maximum desired test concentration. From this working solution, additional test concentrations were prepared (10X serial dilutions). 
4.3.1.2 Cytostatic activity by sulphorhodamine B (SRB) staining 
Cells were plated in 96-well flat-bottom microtiter plates with a seeding density of 5 x 103/well in 100 µL full culture medium. Microtiter plates were then pre-incubated for 24 h ensuring cell attachment. After 24 h, 100 µL aliquots of the selected analogues (test concentrations 25 µM to 2.5 nM) were added in the appropriate wells. Microtiter plates were then incubated in a humidified atmostphere at 37°C with 5% CO2 for 72 h. Cells were fixed by treatment with 50 µL of 50% trichloroacetic acid (TCA), gently added to the wells, followed by incubation of microtiter plates at 4°C. After 1 h, TCA was removed flicking plates and washing four times with tap water. Cells were then treated with 100µL of 0.4% SRB solution and allowed to stain for 15 min at ambient temperature.  Excess unbound dye was removed by flicking and quickly washing with 1% acetic acid (4 x 200 µL).  Plates were air dried overnight and bound dye was solubilized via treatment with 200 µL of 10mM Tris base. After 30 min, absorbance was measured using microplate reader at a wavelength of 560 nm.
4.3.1.3. Quantification of cell proliferation by measurement of 5-Bromo-  deoxyuridine (BrdU) incorporation 

Cells were plated in 96-well flat-bottom microtiter plates with a seeding density of 5 x 103/well in 100 µL full culture medium. Microtiter plates were then pre-incubated for 24 h ensuring cell attachment. After 24 h, cells were exposed to 100 µL aliquots of the selected analogues resulting in 25 µM and 2.5 µM testing concentrations. Microtiter plates were then incubated in a humidified atmostphere at 37°C with 5% CO2 for either 24 h, 48 h, 72 h or 96 h. A commercially available kit (Cell Proliferation ELISA BrdU, colorimetric, Roche Diagnostics, Mannheim, Germany) was then used according to manufacturer’s instructions. Shortly, 20 µL/well BrdU labeling solution (final concentration 10 µM) was added and the cells incubated for two hours at 37°C. After incubation, labeling solution was removed by flicking. The cells were then fixed with 200 µL/well FixDenat solution and incubated at ambient temperature. After 30 min, FixDenat solution was removed by flicking followed by treatment of the cells with 100 µL/well anti-BrdU-POD working solution and incubation at ambient temperature. After 90 min, antibody conjugate was removed by flicking and the cells washed three times with 1X DPBS. After removal of washing solution by flicking, 100 µL/well of substrate solution was added and the cells were incubated at ambient temperature for a period of 30 min. Absorbance was measured using microplate reader at a wavelength of 370 nm.
[bookmark: _Toc384825394]4.3.1.4. Cell cycle analysis by flow cytometry using propidium iodide staining. 
Cells were plated into 6-well flat-bottom microtiter plates with a seeding density of 1 x 105 cells/well in 2 mL culture medium containing 0.5% FBS. Microtiter plates were pre-incubated in a humidified atmosphere at 37°C with 5% CO2 for 24 h ensuring cell attachment. After 24 h, existing media was removed and to the appropriate wells were exposed to 2 mL aliquots of the selected analogues resulting in 25 µM and 2.5 µM testing concentrations. Microtiter plates were then incubated in a humidified atmostphere at 37°C with 5% CO2 for either 24 h or 48 h. A commercially available kit (Cell Cycle Phase Determination Kit, Cayman Chemical, Michigan, USA) was then used according to manufacturer’s instructions. Shortly, Cells were then harvested by trypsinization and suspended in wash buffer. Cells were then pelleted by centrifugation and washed twice using assay Buffer. The cell pellet was then resuspended at 1 x 106 cells/mL in Assay Buffer and treated with 1 mL Assay Fixative and incubated for 2 hrs. Fixed cells were then centrifuged at 500 x g for five minutes. Assay Fixative was decanted thoroughly and the cell pellet suspended in 500 µL Staining Solution (20 µL/mL RNase and 20µg/mL in Assay Buffer) and incubated at ambient temperature, in the dark for 30 min. Measurements were then performed on a flow cytometer (Accuri C6, BD Accuri Cytometers, Michigan, USA) with a 488 nm excitation laser and analyzed using the accompanying BD CFlow Plus software.  
[bookmark: _Toc384825395]
4.3.2. Cytostatic evaluation in Panc-1 cells.
The Panc-1 cells were cultured in DMEM medium supplemented with 10% fetal bovine serum and antibiotics (Penicillin and streptomycin) with 5% CO2 incubator maintained at 37 °C. Cells were harvested and plated at 1.0 x 104 cells/well in 96-well microtiter plates. After cell attachment was assured, cells in microtiter plates were treated with increasing concentrations of gemcitabine analogs (0-200 µg/ml) and incubated in the CO2 incubator at 37 °C for 48 h. MTT assay was performed using the Cell Proliferation kit I (MTT) from Roche Biochemicals, IN and the plates were read in a Bio-Rad Benchmark multiwell plate reader at 570 nm wavelength with a reference wavelength of 655 nm. For the assay, healthy viable cells produce blue crystals and non-viable cells do not produce any color. The absorbance estimates were used to calculate the percentage of viable cells which were plotted against drug concentrations and IC50, IC75 and IC90 values were derived from the graphs.
[bookmark: _Toc384825396]4.3.3. In Vitro evaluation in L1210, CEM/0, CEM/dCK‑, HeLa and MCF-7 murine and human tumor cell lines.179

4.3.3.1. Tumor cell and enzyme sources. 
The murine (leukemia L1210, human lymphocyte CEM) and human (cervix carcinoma HeLa) cell lines were purchased from ATCC, Rockville, MD. The human breast carcinoma MCF-7 cells were obtained as a gift to J. Balzarini from G. Peters (Amsterdam, The Netherlands). Based on the presence of arabinocytidine, the dCK-deficient CEM cell line was obtained upon selection of cells found to be deficient in cytosolic dCK activity.
4.3.3.2. Cytostatic activity assays. 
The analogues were added to murine leukemia L1210, human T-lymphocyte CEM, human cervix carcinoma HeLa and human breast carcinoma MCF-7 cell cultures in 96-well microtiter plates at varying test concentrations. After two (L1210) or three (CEM) or four (HeLa, MCF-7) days incubation at 37°C, the number of viable cells was determined by a Coulter counter. The IC50 values were determined as the analogues concentration required to inhibit cell proliferation by 50%. 
4.3.3.3. Deoxycytidine kinase and thymidine Kinase-2 activity assays. 
The activity of recombinant mitochondrial thymidine kinase (TK-2) and cytosolic 2'-deoxycytidine kinase (dCK) were evaluated in the presesnce or absence of the analogues with assays conducted in 50 μL reaction mixtures containing 50 mM Tris/HCl (pH 8.0), 2.5 mM MgCl2, 10 mM dithiothreitol, 0.5 mM CHAPS, 3 mg/mL bovine serum albumin, 2.5 mM ATP, 1 μM [5-3H]dCyd or [CH3-3H]dThd  and enzyme. The samples were incubated at 37 °C for 30 min with varying concentrations (5-fold dilutions) of the tested analogues. Aliquots (45 μL) of the reaction mixtures were spotted on Whatman DE-81 filter paper disks, the filters were each washed three times, (1) for 5 min each in 1 mM ammonium formate, (2) once for 1 min in water and (3) once for 5 min in ethanol. Scintillation counting was then used to determine the amount of radioactivity retained on the filter discs. 
The selected analogues were exposed to TK-2 or dCK enzyme reactions mixtures at 100 µM test concentrations. Substrate activity against TK-2 and dCK was evaluated by HPLC on an anion exchange Partisil Sax column, measuring conversion of the analogues to their 5'-monophosphate forms.
4.3.3.4. Human Serum and Murine Liver Extract Stability Assays. 
The selected analogues were exposed to 50% human serum or murine liver extract in PBS at 100 µM test concentrations and incubated at varying time points (0, 60, 240 min for human serum and 0, 30, 120 min for murine liver extract) at 37 °C. At each respective time point, an aliquot was then taken and evaluated by HPLC on a reverse phase RP-18 column with a CH3CN/H2O mobile phase.  Elution times were 13.2 min and 16.4  min for dFdU  and gemcitabine, respectively, and 22.8 min and 22.7 min for the 4-N-alkanoylgemcitabine 21 and the 4-N-alkylgemcitabine 31, respectively.
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In this dissertation, I have reported the synthesis of a library of gemcitabine analogues with chemotherapeutic properties which feature 4-N-alkanoyl and 4-N-alkyl modifications with additional functional groups on the alkyl chain. These varying terminal modifications were designed to enable the incorporation of either 18F or 68Ga radionuclides, adding a new depth and utility to these novel gemcitabine prodrugs as PET radiotracers.
In general, the synthesis of non-radioactive 4-N-alkanoylgemcitabines was achieved by coupling of gemcitabine (1) with the various carboxylic acids (C9-C13) using peptide coupling conditions (HOBt/NMM/EDCI). This method was versatile in that it allowed introduction of aliphatic chains featuring different terminal functional groups (olefin, halo, alkyl ether or hydroxyl). Preparation of 4-N-alkanoylgemcitabines with more labile terminal functionalities present on the aliphatic chain (such as bromo- or triflate- groups) required alternative condensation of 3',5'-di-O-Boc-gemcitabine (16) with the corresponding acyl halides. The synthesis of the 4-N-alkylgemcitabines was achieved by displacement of the p-toluenesulfonamido group in the 4-N-tosylgemcitabine(s) with the corresponding alkyl amines having different terminal functionalities (hydroxyl, olefin and benzyloxy). 
 The 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues featuring a terminal olefin on the aliphatic chain were efficiently fluorinated with HF/pyridine (Olah’s reagent) to give the desired 4-N-fluoroalkanoyl and 4-N-fluoroalkyl derivatives as regioisomeric mixtures. This demonstrated the application of the olefinic gemcitabine analogues as convenient precursors for the fluorination with [18F]-HF/pyr reagent. Direct fluorination of the 3',5'-di-O-Boc-protected 4-N-(11-hydroxyundecanoyl)gemcitabine with diethylaminosulfur trifluoride via SN2 type reaction gave the desired 4-N-(11-fluoroundecanoyl)gemcitabine, demonstrating again the synthetic versatility of the 4-N-alkanoyl analogues. Since it was concluded that radiosynthetic protocols using KF and Kryptofix 222 typically require conditions in which the 4-N-amide linkage is cleaved, the 4-N-alkylgemcitabine bearing a terminal hydroxyl group was prepared. This 4-N-hydroxyalkyl gemcitabine analogue was efficiently fluorinated employing the common radiosynthetic protocols (KF/Kryptofix 222) via the mesylate intermediate. The developed fluorination protocol was then applied for the synthesis of the [18F]-4-N-(11-fluroundecanyl)gemcitabine radioligand. The preliminary in vivo PET studies demonstrated dCK specific accumulation in the spleen tissues as well as dCK-nonspecific accumulation in CEM leukemia tumors. 
The coupling of the tetraazacyclododecane NODAGA to gemcitabine afforded the NODAGA-4-N-alkanoylgemcitabine conjugate. Condensation of the tetraazacyclododecane SCN-Bn-NOTA with the “2nd generation” 4-N-(3-aminopropyl)gemcitabine gave the NOTA-4-N-alkylgemcitabine conjugate. Labeling of the NOTA-4-N-alkylgemcitabine conjugate with [68Ga]+3 afforded the desired [68Ga]-gallium-4-N-[3-(SCN-Bn-NOTA)-propanyl]gemcitabine radioligand with high labeling efficiency; substantiated by phosphor screen image amplification.
Evaluation on a panel of murine and human tumor cell lines revealed potent cytostatic activities for the 4-N-alkanoylgemcitabines, with IC50 values in the nM range across most cell types, comparable to the parent gemcitabine. The cytostatic activities for the 4-N-alkanoylgemcitabines seemed to be independent of chain length and varied only slightly for the different functional groups. The 4-N-alkylgemctiabines displayed less potent cytostatic activities with IC50 values in the low to modest µM range. Interestingly, the cytostatic activities for the 4-N-valprolylgemcitabines were more comparable to the 4-N-alkylgemctiabines. A drastic decline in cytostatic activity for the 4-N-alkanoylgemcitabines and a lesser reduction observed for the 4-N-alkylgemcitabines in the CEM/dCK- cell line validated the role deoxycytidine kinase plays in the metabolism of the analogues. When evaluated as substrates for deoxycytidine kinase and cytidine deaminase, none of the 4-N-alkanoyl or the 4-N-alkyl gemcitabine derivatives were found to be efficient substrates for the enzymes. Additionally, incubation of the 4-N-modified gemcitabine analogues in human serum and murine liver extracts demonstrated the susceptibility of the 4-N-alkanoylgemcitabines to undergo cleavage and eventual conversion to gemcitabine. Taken together with the marked loss of activity in the deoxycytidine kinase deficient cell line, it is likely that the 4-N-alkanoylgemcitabines need to be converted to gemcitabine before interacting with deoxycytidine kinase or exhibiting their significant cytostatic activity. The 4-N-alkylgemcitabines on the other hand were resistant to cleavage and appear to attain their modest activity via an alternative dCK-independent pathway or without a "measurable" conversion to gemcitabine. Quantification of cell proliferation and cell cycle analysis indicated inhibition of DNA synthesis and anti-proliferative activity as a mechanism of action for all 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues. Cytostatic activity evaluated in Panc-1 cells was the first known example of a 4-N-alkyl gemcitabine derivative having comparable activity to a 4-N-alkanoyl gemcitabine derivative. Additionally, the 4-N-alkylgemcitabines demonstrated the capacity to overcome the gemcitabine's inability to achieve IC75 and IC90 concentrations in Panc-1 cells.
In this dissertation, I have demonstrated that the developed 4-N-alkanoyl and 4-N-alkyl gemcitabine analogues display cytostatic activity dependent on cancer cell type and possess potentially important therapeutic significance. The methodologies established herein not only set the precedence but might contribute towards developing the gemcitabine-based prodrugs as potential PET-based radiotracers.
Our preliminary PET-imaging results with the [18F]-modified 4-N-fluoroalkylgemcitabine indicated that the [18F]-radioligand underwent in vivo defluorination, as apparent by the accumulation of 18F- signal in the bones. The preparation and testing of a 4-N-alkylgemcitabine derivative lacking hydrogens at the -carbon to the fluorine atom is proposed as a possible means for overcoming the observed defluorination.
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