Date of this Version


Document Type



We study atomic coherence and interference in four-level atoms confined in an optical cavity and explores the interplay between cavity QED and electromagnetically induced transparency (EIT). The destructive interference can be induced in the coupled cavityatom system with a free-space control laser tuned to the normal mode resonance and leads to suppression of the normal mode excitation. Then by adding a pump laser coupled to the four-level atoms from free space, the control-laser induced destructive interference can be reversed and the normal mode excitation is restored. When the free-space control laser is tuned to the atomic resonance and forms a Λ-type EIT configuration with the cavity-atom system, EIT is manifested as a narrow transmission peak of a weak probe laser coupled into the cavity mode. With the free-space pump laser driving the cavity-confined atoms in a four-level configuration, the narrow transmission peak of the cavity EIT can be split into two peaks and the dressed intra-cavity dark states are created analogous to the dressed states in free space. We report experimental studies of such coherently coupled cavityatom system realized with cold Rb atoms confined in an optical cavity and discuss possible applications in quantum nonlinear optics and quantum information science.

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.


Originally published in Journal of Physics: Conference Series

Published under licence by IOP Publishing Ltd.

Included in

Physics Commons



Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).