FCE LTER Journal Articles

Title

Growth and gas exchange responses of Brazilian pepper (Schinus terebinthifolius) and native South Florida species to salinity

Abstract

Schinus terebinthifolius Raddi (Schinus) is an invasive exotic species widely found in disturbed and native communities of Florida. This species has been shown to displace native species as well as alter community structure and function. The purpose of this study was to determine if the growth and gas exchange patterns of Schinus, under differing salinity conditions, were different from native species. Two native upland glycophytic species (Rapanea punctata and Randia aculeata) and two native mangrove species (Rhizophora mangle and Laguncularia racemosa) were compared with the exotic. Overall, the exotics morphologic changes and gas exchange patterns were most similar to R. mangle. Across treatments, increasing salinity decreased relative growth rate (RGR), leaf area ratio (LAR) and specific leaf area (SLA) but did not affect root/shoot ratios (R:S). Allocation patterns were however significantly different among species. The largest proportion of Schinus biomass was allocated to stems (47%), resulting in plants that were generally taller than the other species. Schinus also had the highest SLA and largest total leaf area of all species. This meant that the exotic, which was taller and had thinner leaves, was potentially able to maintain photosynthetic area comparable to native species. Schinus response patterns show that this exotic exhibits some physiological tolerance for saline conditions. Coupled with its biomass allocation patterns (more stem biomass and large area of thin leaves), the growth traits of this exotic potentially provide this species an advantage over native plants in terms of light acquisition in a brackish forested ecosystem.

Comments

Sharon Ewe is now a faculty member in the Department of Earth Science and Southeast Environmental Research Center at Florida International University.

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. Any opinions, findings, conclusions, or recommendations expressed in the material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

This document is currently not available here.

Share

COinS