Date of this Version


Document Type



Power quality assessment is an important performance measurement in smart grids. Utility companies are interested in power quality monitoring even in the low level distribution side such as smart meters. Addressing this issue, in this study, we propose segregation of the power disturbance from regular values using one-class support vector machine (OCSVM). To precisely detect the power disturbances of a voltage wave, some practical wavelet filters are applied. Considering the unlimited types of waveform abnormalities, OCSVM is picked as a semi-supervised machine learning algorithm which needs to be trained solely on a relatively large sample of normal data. This model is able to automatically detect the existence of any types of disturbances in real time, even unknown types which are not available in the training time. In the case of existence, the disturbances are further classified into different types such as sag, swell, transients and unbalanced. Being light weighted and fast, the proposed technique can be integrated into smart grid devices such as smart meter in order to perform a real-time disturbance monitoring. The continuous monitoring of power quality in smart meters will give helpful insight for quality power transmission and management.


Originally published in Journal of Modern Power Systems and Clean Energy.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Included in

Engineering Commons



Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).