Tailoring heme -thiolate proteins into efficient biocatalysts with high specificity and selectivity

Hui Tian, Florida International University

Abstract

Cytochrome P450 monooxygenases, one of the most important classes of heme-thiolate proteins, have attracted considerable interest in the biochemical community because of its catalytic versatility, substrate diversity and great number in the superfamily. Although P450s are capable of catalyzing numerous difficult oxidation reactions, the relatively low stability, low turnover rates and the need of electron-donating cofactors have limited their practical biotechnological and pharmaceutical applications as isolated enzymes. The goal of this study is to tailor such heme-thiolate proteins into efficient biocatalysts with high specificity and selectivity by protein engineering and to better understand the structure-function relationship in cytochromes P450. In the effort to engineer P450cam, the prototype member of the P450 superfamily, into an efficient peroxygenase that utilizes hydrogen peroxide via the “peroxide-shunt” pathway, site-directed mutagenesis has been used to elucidate the critical roles of hydrophobic residues in the active site. Various biophysical, biochemical and spectroscopic techniques have been utilized to investigate the wild-type and mutant proteins. Three important P450cam variants were obtained showing distinct structural and functional features. In P450camV247H mutant, which exhibited almost identical spectral properties with the wild-type, it is demonstrated that a single amino acid switch turned the monooxygenase into an efficient preoxidase by increasing the peroxidase activity nearly one thousand folds. In order to tune the distal pocket of P450cam with polar residues, Leu 246 was replaced with a basic residue, lysine, resulting in a mutant with spectral features identical to P420, the inactive species of P450. But this inactive-species-like mutant showed catalytic activities without the facilitation of any cofactors. By substituting Gly 248 with a histidine, a novel Cys-Fe-His ligation set was obtained in P450cam which represented the very rare case of His ligation in heme-thiolate proteins. In addition to serving as a convenient model for hemoprotein structural studies, the G248H mutant also provided evidence about the nature of the axial ligand in cytochrome P420 and other engineered hemoproteins with thiolate ligations. Furthermore, attempts have been made to replace the proximal ligand in sperm whale myoglobin to construct a heme-thiolate protein model by mimicking the protein environment of cytochrome P450cam and chloroperoxidase.

Subject Area

Biochemistry|Biophysics

Recommended Citation

Tian, Hui, "Tailoring heme -thiolate proteins into efficient biocatalysts with high specificity and selectivity" (2010). ProQuest ETD Collection for FIU. AAI3470232.
https://digitalcommons.fiu.edu/dissertations/AAI3470232

Share

COinS