A framework for transforming, analyzing, and realizing software designs in unified modeling language

Zhijiang Dong, Florida International University

Abstract

Unified Modeling Language (UML) is the most comprehensive and widely accepted object-oriented modeling language due to its multi-paradigm modeling capabilities and easy to use graphical notations, with strong international organizational support and industrial production quality tool support. However, there is a lack of precise definition of the semantics of individual UML notations as well as the relationships among multiple UML models, which often introduces incomplete and inconsistent problems for software designs in UML, especially for complex systems. Furthermore, there is a lack of methodologies to ensure a correct implementation from a given UML design. The purpose of this investigation is to verify and validate software designs in UML, and to provide dependability assurance for the realization of a UML design. In my research, an approach is proposed to transform UML diagrams into a semantic domain, which is a formal component-based framework. The framework I proposed consists of components and interactions through message passing, which are modeled by two-layer algebraic high-level nets and transformation rules respectively. In the transformation approach, class diagrams, state machine diagrams and activity diagrams are transformed into component models, and transformation rules are extracted from interaction diagrams. By applying transformation rules to component models, a (sub)system model of one or more scenarios can be constructed. Various techniques such as model checking, Petri net analysis techniques can be adopted to check if UML designs are complete or consistent. A new component called property parser was developed and merged into the tool SAM Parser, which realize (sub)system models automatically. The property parser generates and weaves runtime monitoring code into system implementations automatically for dependability assurance. The framework in the investigation is creative and flexible since it not only can be explored to verify and validate UML designs, but also provides an approach to build models for various scenarios. As a result of my research, several kinds of previous ignored behavioral inconsistencies can be detected.

Subject Area

Computer science

Recommended Citation

Dong, Zhijiang, "A framework for transforming, analyzing, and realizing software designs in unified modeling language" (2006). ProQuest ETD Collection for FIU. AAI3235930.
https://digitalcommons.fiu.edu/dissertations/AAI3235930

Share

COinS