Date of this Version


Document Type



The first part of this paper deals with an extension of Dirac's Theorem to directed graphs. It is related to a result often referred to as the Ghouila-Houri Theorem. Here we show that the requirement of being strongly connected in the hypothesis of the Ghouila-Houri Theorem is redundant.

The Second part of the paper shows that a condition on the number of edges for a graph to be hamiltonian implies Ore's condition on the degrees of the vertices.


This article was originally published in Hindawi International Journal of Mathematics and Mathematical Sciences Volume 14 (1991).

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 2.0 License.

Included in

Mathematics Commons



Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).