Date of this Version


Document Type



Conventional splines offer powerful means for modeling surfaces and volumes in three-dimensional Euclidean space. A one-dimensional quaternion spline has been applied for animation purpose, where the splines are defined to model a one-dimensional submanifold in the three-dimensional Lie group. Given two surfaces, all of the diffeomorphisms between them form an infinite dimensional manifold, the so-called diffeomorphism space. In this work, we propose a novel scheme to model finite dimensional submanifolds in the diffeomorphism space by generalizing conventional splines. According to quasiconformal geometry theorem, each diffeomorphism determines a Beltrami differential on the source surface. Inversely, the diffeomorphism is determined by its Beltrami differential with normalization conditions. Therefore, the diffeomorphism space has one-to-one correspondence to the space of a special differential form. The convex combination of Beltrami differentials is still a Beltrami differential. Therefore, the conventional spline scheme can be generalized to the Beltrami differential space and, consequently, to the diffeomorphism space. Our experiments demonstrate the efficiency and efficacy of diffeomorphism splines. The diffeomorphism spline has many potential applications, such as surface registration, tracking and animation.


Originally published in Axioms.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Files over 15MB may be slow to open. For best results, right-click and select "Save as..."



Rights Statement

Rights Statement

In Copyright. URI:
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).