Design and Synthesis of Novel Nucleoside Analogues: Oxidative and Reductive Approaches toward Synthesis of 2'-Fluoro Pyrimidine Nucleosides

Ramanjaneyulu Rayala
Florida International University, rraya002@fiu.edu

DOI: 10.25148/etd.FIDC000129
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Carbohydrates Commons, Heterocyclic Compounds Commons, and the Nucleic Acids, Nucleotides, and Nucleosides Commons

Recommended Citation
https://digitalcommons.fiu.edu/etd/2172

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.
DESIGN AND SYNTHESIS OF NOVEL NUCLEOSIDE ANALOGUES: OXIDATIVE AND REDUCTIVE APPROACHES TOWARD SYNTHESIS OF 2'-FLUORO PYRIMIDINE NUCLEOSIDES

A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in CHEMISTRY by Ramanjaneyulu Rayala

2015
To: Dean Michael R. Heithaus
College of Arts and Sciences

This dissertation, written by Ramanjaneyulu Rayala, and entitled Design and Synthesis of Novel Nucleoside Analogues: Oxidative and Reductive Approaches toward Synthesis of 2'-Fluoro Pyrimidine Nucleosides, having been approved in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Kathleen S. Rein

David A. Becker

Anthony P. DeCaprio

Salvatore D. Lepore

Stanislaw F. Wnuk, Major Professor

Date of Defense: June 17, 2015

The dissertation of Ramanjaneyulu Rayala is approved.

Dean Michael R. Heithaus
College of Arts and Sciences

Dean Lakshmi N. Reddi
University Graduate School

Florida International University, 2015
DEDICATION

This Ph.D. is dedicated to:

Padma Rayala, Nagaiah Rayala, Aneela Rayala, Yashitha Rayala, Radhika Mandapalli,
Muralidhar Mandapalli, Rishitha Chowdary Mandapalli, and Srikarprasad Chowdary
Mandapalli.

You have been a great inspiration.
ACKNOWLEDGMENTS

I would like to thank my mentor Professor Stanislaw F. Wnuk for giving me the opportunity to work in his research group and for his constant support over the years. Also, I am really thankful to my dissertation committee members for their constructive criticism and guidance throughout my PhD. I also want to thank senior group members Jean-Philippe Pitteloud, Adam Sobczak, and Aparna Malladi for their guidance during my initial days in the lab. I would like to give many special thanks to my friends at FIU Jesse Pulido, Jessica Zayas, Yong Liang, Mukesh Mudgal, Nagarju Birudukota, Cesar Gonzalez, and Sazzad Hossain for their support and tolerance, they have been an extended family to me. I would like to acknowledge my undergraduate students Patricia Theard, Brenna Walsh and Maria Barrios for assisting me during different stages of my dissertation.

I would like to express my sincere gratitude to the following people and institutions who supported me and provided me with guidance at various phases of my life: Ravi Convent, Ms. Mamatha, Naveen and all the wonderful people of Vuyyalawada, Dornakal; Mr. Venkateshwarlu, and other faculty and staff at Sri Vivekananda Vidyalayam, Dornakal; Faculty and staff at Spectra Junior College, Khammam; Faculty and staff at DRS Degree College, Khammam; Faculty and staff at PG College of Science, Saifabad; Faculty and staff at KLR Degree College, Palwancha; Mr. Harikrishna and Ms. Bhuwaneshwari, and other faculty and staff at VISU, Hyderabad; Mr. Verma and Ms. Padma at Periscope, Hyderabad; Seniors from my M.Sc., Ramesh, Raghu, and Satheesh; My friends Hareesh, Srikanth, Anil, Harish, Sudhakar, Vijay, Santosh, Surya, Alankar, Madhukar, and Chandu.
I want to show my gratitude to the Department of Chemistry and Biochemistry at Florida International University for providing me with Teaching Assistantship for major part of my PhD. I would like to thank the University Graduate School for the Dissertation Year Fellowship Award which was immensely helpful during my last year as a graduate student. Last, but not the least, I would like to thank Florida International University and the United States of America.
ABSTRACT OF THE DISSERTATION

DESIGN AND SYNTHESIS OF NOVEL NUCLEOSIDE ANALOGUES: OXIDATIVE AND REDUCTIVE APPROACHES TOWARD SYNTHESIS OF 2'-FLUORO PYRIMIDINE NUCLEOSIDES

by

Ramanjaneyulu Rayala

Florida International University, 2015

Miami, Florida

Professor Stanislaw F. Wnuk, Major Professor

Fluorinated nucleosides, especially the analogues with fluorine atom(s) in the ribose ring, have been known to exert potent biological activities. The first part of this dissertation was aimed at developing oxidative desulfurization-fluorination and reductive desulfonylation-fluorination methodologies toward the synthesis of 2'-mono and/or 2',2'-difluoro pyrimidine nucleosides from the corresponding 2'-aryltiopyrimidine precursors. Novel oxidative desulfurization-difluorination methodology was developed for the synthesis of α,α-difluorinted esters from the corresponding α-aryltiho esters, wherein the arylthio group is present on a secondary internal carbon. For the reductive desulfonylation studies, cyclic voltammetry was utilized to measure the reduction potentials at which the sulfone moiety of substrates can be cleaved.

The 5-bromo pyrimidine nucleosides and 8-bromo purine nucleosides act as crucial intermediates in various synthetic transformations. The second part of the present dissertation was designed to develop a novel bromination methodology using 1,3-dibromo-5,5-dimethylhydantoin (DBH). Various protected and deprotected pyrimidine
and purine nucleosides were converted to their respective C5 and C8 brominated counterparts using DBH. The effect of Lewis acids, solvents, and temperature on the efficiency of bromination was studied. Also, N-bromosuccinimide (NBS) or DBH offered a convenient access to 8-bromotoyocamycin and 8-bromosangivamycin.

Third part of this research work focuses on the design and synthesis of 6-N-benzylated derivatives of 7-deazapurine nucleoside antibiotics, such as tubercidin, sangivamycin and toyocamycin. Target molecules were synthesized by two methods. First method involves treatment of 7-deazapurine substrates with benzylbromide followed by dimethylamine-promoted Dimroth rearrangement. The second method employs fluoro-diazotization followed by S_{N}Ar displacement of the 6-fluoro group by a benzylamine. The 6-N-benzylated 7-deazapurine nucleosides showed type-specific inhibition of cancer cell proliferation at micromolar concentrations and weak inhibition of human equilibrative nucleoside transport protein (hENT1).

In the fourth part of this dissertation, syntheses of C7 or C8 modified 7-deazapurine nucleosides, which might exhibit fluorescent properties, were undertaken. 8-Azidotoyocamycin was synthesized by treatment of 8-bromotoyocamycin with sodium azide. Strain promoted click chemistry of 8-azidotoyocamycin with cyclooctynes gave the corresponding 8-triazolyl derivatives. Alternatively, 7-benzotriazolyl tubercidin was synthesized by iodine catalyzed CH arylation of tubercidin with benzotriazole.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Notable nucleoside analogues with anticancer and antiviral activity</td>
<td>2</td>
</tr>
<tr>
<td>1.2. Importance of fluorine substitution</td>
<td>3</td>
</tr>
<tr>
<td>1.3. Prominent nucleoside analogues with fluorine atom in sugar moiety</td>
<td>4</td>
</tr>
<tr>
<td>1.4. Gemcitabine, a critical anticancer drug</td>
<td>5</td>
</tr>
<tr>
<td>1.4.1. Existing methods for the synthesis of gemcitabine</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2. Mechanism of action of gemcitabine</td>
<td>7</td>
</tr>
<tr>
<td>1.5. Short survey on desulfurization-fluorination reactions</td>
<td>10</td>
</tr>
<tr>
<td>1.6. 5-Bromopyrimidines and 8-bromopurines: Syntheses and importance</td>
<td>12</td>
</tr>
<tr>
<td>1.6.1. 1,3-dibromo-5,5-dimethylhydantoin, an important brominating reagent</td>
<td>13</td>
</tr>
<tr>
<td>1.7. Selected aspects of the chemistry of 7-deazapurine nucleosides</td>
<td>14</td>
</tr>
<tr>
<td>1.8. Nucleoside transport inhibitors</td>
<td>16</td>
</tr>
<tr>
<td>2. RESEARCH OBJECTIVES</td>
<td>17</td>
</tr>
<tr>
<td>3. RESULTS AND DISCUSSION</td>
<td>22</td>
</tr>
<tr>
<td>3.1. Bromination of nucleobases with 1,3-dibromo-5,5-dimethylhydantoin</td>
<td>22</td>
</tr>
<tr>
<td>3.1.1 Bromination at C5 position of pyrimidine nucleosides with DBH</td>
<td>22</td>
</tr>
<tr>
<td>3.1.2 Bromination at C8 position of purine nucleosides with DBH</td>
<td>28</td>
</tr>
<tr>
<td>3.1.3. Bromination at C8 position of 7-deazapurine nucleosides with NBS and DBH</td>
<td>31</td>
</tr>
<tr>
<td>3.1.4. Plausible mechanism of bromination of nucleobases with DBH</td>
<td>33</td>
</tr>
<tr>
<td>3.2. Attempted synthesis of 2'-deoxy-2',2''-difluoropyrimidine nucleosides</td>
<td>35</td>
</tr>
<tr>
<td>3.2.1. Oxidative desulfurization-fluorination approaches</td>
<td>36</td>
</tr>
<tr>
<td>3.2.1.1. Model desulfurization-fluorination studies</td>
<td>36</td>
</tr>
<tr>
<td>3.2.1.2. Oxidative desulfurization-fluorination approaches with uridine derivatives</td>
<td>43</td>
</tr>
<tr>
<td>3.2.2. Reductive desulfonylation-fluorination approaches</td>
<td>47</td>
</tr>
<tr>
<td>3.2.2.1. Cyclic voltammetry studies of 2'-arylsulfonyl uridine derivatives</td>
<td>48</td>
</tr>
<tr>
<td>3.2.2.2. Reductive desulfonylation-fluorination studies of 2'-deoxy-2'-arylsulfonyl uridine and 2'-deoxy-2'-fluoro-2'-arylsulfonyl uridine substrates</td>
<td>51</td>
</tr>
<tr>
<td>3.3. One electron oxidation of gemcitabine and analogues</td>
<td>59</td>
</tr>
<tr>
<td>3.3.1. Detection of C2' and C3' sugar radicals</td>
<td>60</td>
</tr>
<tr>
<td>3.4. Synthesis and biological activity of 6-N-benzyl-7-deazapurine nucleoside derivatives</td>
<td>62</td>
</tr>
<tr>
<td>3.4.1. Synthesis of 6-N-benzyl-7-deazapurine nucleosides</td>
<td>62</td>
</tr>
<tr>
<td>3.4.2. Biological activity of 6-N-benzyl-7-deazapurine nucleoside derivatives</td>
<td>68</td>
</tr>
<tr>
<td>3.4.2.1. Nucleoside transport inhibition activity</td>
<td>68</td>
</tr>
<tr>
<td>3.4.2.2. Antiviral activity</td>
<td>69</td>
</tr>
<tr>
<td>3.4.2.3. Inhibition of Cell Proliferation</td>
<td>70</td>
</tr>
<tr>
<td>3.5. C7- and C8-modified-7-deazapurine nucleoside derivatives</td>
<td>71</td>
</tr>
</tbody>
</table>
3.5.1. Strain promoted click reactions of 8-azido-7-deazanucleosides with
cyclooctynes.. 71
3.5.1. Attempted synthesis of 8-alkynyl-7-deazanucleosides via Sonagashira
reaction.. 74
3.5.2. Iodine catalyzed direct C-H activation of 7-deazapurine nucleosides 79

4. EXPERIMENTAL SECTION ... 82

5. CONCLUSION ... 124

REFERENCES ... 127
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1. FDA approved anticancer purine and pyrimidine nucleoside analogues.</td>
<td>2</td>
</tr>
<tr>
<td>Table 2. Antiviral properties of purine and pyrimidine nucleoside analogues.</td>
<td>3</td>
</tr>
<tr>
<td>Table 3. Effect of various reaction parameters on C5-bromination of 2',3',5'-tri-O-acetyluridine 45a with DBH<sup>a</sup></td>
<td>24</td>
</tr>
<tr>
<td>Table 4. Bromination at C5 position of the pyrimidine based nucleosides 45a-f and 57-59<sup>a</sup></td>
<td>26</td>
</tr>
<tr>
<td>Table 5. Bromination of selected purine nucleosides at ambient temperature (see Figure 11 for structures)<sup>a</sup></td>
<td>30</td>
</tr>
<tr>
<td>Table 6. Desulfurization-difluorination studies of α-thioester derivatives with DBH/Py.9HF<sup>a</sup></td>
<td>38</td>
</tr>
<tr>
<td>Table 7. Antiviral activity in human embryonic lung (HEL) cell cultures-part 1</td>
<td>69</td>
</tr>
<tr>
<td>Table 8. Antiviral activity human embryonic lung (HEL) cell cultures-part 2</td>
<td>70</td>
</tr>
<tr>
<td>Table 9. Inhibitory effects on the proliferation of cells in culture</td>
<td>71</td>
</tr>
<tr>
<td>Table 10. Reaction conditions for the attempted Sonagashira cross-coupling reactions on 8-bromo tubercidin and toyocamycin<sup>a</sup></td>
<td>76</td>
</tr>
<tr>
<td>FIGURE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Figure 1. Structures of RNA and DNA nucleosides.</td>
<td>1</td>
</tr>
<tr>
<td>Figure 2. Examples of the prominent nucleoside drugs with fluorine modifications in sugar moieties.</td>
<td>4</td>
</tr>
<tr>
<td>Figure 3. Original synthesis of gemcitabine developed by Hertel.</td>
<td>5</td>
</tr>
<tr>
<td>Figure 4. Synthesis of 2'-difluorocytidine derivatives from 2'-keto derivatives by deoxyfluorination.</td>
<td>6</td>
</tr>
<tr>
<td>Figure 5. Synthesis of 2'-deoxy-2'-2'-difluorouridine derivative by desulfurization-difluorination of the corresponding 2'-dithioketal derivative.</td>
<td>7</td>
</tr>
<tr>
<td>Figure 6. Gemcitabine cellular metabolism.</td>
<td>9</td>
</tr>
<tr>
<td>Figure 7. Mechanism for the covalent inhibition of RNR by dFdCDP in the absence and in the presence of reductant, proposed by Prof. Stubbe, et al.</td>
<td>10</td>
</tr>
<tr>
<td>Figure 8. Structures of DBH and NBS.</td>
<td>14</td>
</tr>
<tr>
<td>Figure 9. Structures of 7-deazapurine nucleosides.</td>
<td>14</td>
</tr>
<tr>
<td>Figure 10. Important base-modified 7-deazapurine nucleoside derivatives.</td>
<td>15</td>
</tr>
<tr>
<td>Figure 11. Structures of Important nucleoside transport inhibitors.</td>
<td>17</td>
</tr>
<tr>
<td>Figure 12. Different classes of 2'-arylthionucleosides for oxidative desulfurization-fluorination and reductive desulfonylation-fluorination procedures.</td>
<td>18</td>
</tr>
<tr>
<td>Figure 13. Various aryl-alkyl thioether substrates for model oxidative desulfurization-difluorination reactions.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 14. Gemcitabine and its analogues for one electron oxidation studies.</td>
<td>20</td>
</tr>
<tr>
<td>Figure 15. Structures of 7-deazapurine antibiotics and the proposed 6-N-benzyl analogues.</td>
<td>21</td>
</tr>
<tr>
<td>Figure 16. Structures of various 8-modified-7-deazapurine derivatives.</td>
<td>21</td>
</tr>
<tr>
<td>Figure 17. Selected pyrimidine nucleoside precursors (series a) and their brominated products (series b).</td>
<td>28</td>
</tr>
<tr>
<td>Figure 18. Selected purine nucleoside precursors (series a) and their brominated products (series b).</td>
<td>29</td>
</tr>
</tbody>
</table>
Figure 19. General scheme for the proposed C2'-quarternization of 2'-aryltiouridine derivatives ... 36

Figure 20. α-Thioaldehyde, α-thioketone and α-thioalkane substrates for attempted desulfurization-(di)fluorination reactions. .. 41

Figure 21. Products for attempted fluorination of 2'-S-(4-chlorophenyl)-2'-thiouridine derivatives 89a and 89b .. 46

Figure 22. Cyclic voltammetry of α-sulfones 92a (C = 2.25 mM, blue curve) and 92b (C = 2.75 mM, pink curve); in DMF + n-Bu4NPF6 0.1M; v = 0.2 V/s........... 49

Figure 23. Cyclic voltammetry of α-fluorosulfones 95a (2.64 mM) and 95b (2.91 mM) 50

Figure 24. Structures of organic electron donors used for the reductive desulfonylation. 53

Figure 25. Selected substrates for 1e⁻ oxidation studies .. 60
<table>
<thead>
<tr>
<th>SCHEME</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 1. Oxidative desulfurization-difluorination of aldehyde, ketone dithiolanes; and alkyl aryl thioethers.</td>
<td>11</td>
</tr>
<tr>
<td>Scheme 2. Hara's oxidative desulfurization-difluorination of benzylic sulfides.</td>
<td>12</td>
</tr>
<tr>
<td>Scheme 3. Synthesis of 4-N-methyltubercidin by Dimroth-rearrangement approach</td>
<td>16</td>
</tr>
<tr>
<td>Scheme 4. Bromination of uracil-derived nucleosides 1 with 1,3-dibromo-5,5-dimethylhydantoin (DBH). See Table 3 and 4 for specific reaction parameters.</td>
<td>23</td>
</tr>
<tr>
<td>Scheme 5. Synthesis of 8-bromo-7-deazanucleosides. Reagents and conditions: d) NBS (1.1-1.5 eq), DMF, rt, 1-2.5 h; e) DBH (0.75-1.1 eq), MeOH, rt, 30-45 min.</td>
<td>32</td>
</tr>
<tr>
<td>Scheme 6. Plausible mechanism of C-5 bromination of pyrimidine nucleosides by DBH</td>
<td>33</td>
</tr>
<tr>
<td>Scheme 7. Plausible mechanism of C-8 bromination of purine nucleosides by DBH.</td>
<td>34</td>
</tr>
<tr>
<td>Scheme 8. Plausible mechanism of TMSOTf enhanced DBH bromination</td>
<td>35</td>
</tr>
<tr>
<td>Scheme 9. General scheme for Haufe’s desulfurization-difluorination of aryl-alkyl thioethers.</td>
<td>36</td>
</tr>
<tr>
<td>Scheme 10. Desulfurization-difluorination of α-thioesters.</td>
<td>37</td>
</tr>
<tr>
<td>Scheme 11. Proposed mechanism for the oxidative desulfurization-difluorination of alkyl-aryl thioethers by DBH/Py.9HF</td>
<td>40</td>
</tr>
<tr>
<td>Scheme 12. Attempted synthesis of α,α-difluoro-δ-valerolactone 82.</td>
<td>42</td>
</tr>
<tr>
<td>Scheme 13. Attempted synthesis of α,α-difluoro-γ-butyrolactone 86.</td>
<td>42</td>
</tr>
<tr>
<td>Scheme 14. Synthesis of 2'-arylthio substrates for the desulfurization-fluorination reactions</td>
<td>44</td>
</tr>
<tr>
<td>Scheme 15. Oxidative desulfurization-difluorination of 2'-S-aryl-2'-thiouridine analogue 89a. Conditions A: DBH (1.1 eq), Py.9HF (excess), CH₂Cl₂, -78 °C, 2 h; Conditions B: NIS (3 eq), DAST (6 eq), CH₂Cl₂, 0 °C (6 h), then rt (32 h); Conditions C: NIS (3 eq), DAST (6 eq), CH₂Cl₂, 35 °C, 24 h.</td>
<td>45</td>
</tr>
</tbody>
</table>
Scheme 16. Attempted oxidative desulfurization-fluorination of 2'-S-(4-methoxyphenyl)-2'-thiouridine analogue 90b. Conditions A: NIS (2.1 eq), Py.9HF (3 eq); Conditions B: NIS (2.1 eq), DAST (6 eq).

Scheme 17. Attempted oxidative desulfurization-fluorination of 2'-fluoro-2'-S-(4-methoxyphenyl)-2'-thiouridine analogue 94b with DBH/Py.9HF.

Scheme 18. Stability studies of sulfones 91a-b on silica gel chromatography or with treatment of base. ...

Scheme 19. Reduction studies of acetyl protected sulfone substrates 91a with TDAE and Murphy’s SED. ...

Scheme 20. Reduction studies of benzyl protected sulfone substrate 91b with Murphy’s SED. ...

Scheme 21. Stability studies of acetyl protected α-fluorosulfone 95a with Murphy’s SED. ...

Scheme 22. Stability studies of benzyl protected α-fluorosulfones 95b with Murphy’s SED ...

Scheme 23. Attempted synthesis of 2'-2''-difluorouridine by reductive desulfonylation-fluorination of 2'-arylsulfonyl-2'-deoxy-2'-fluorouridine 95a with TDAE/Selectrfluor ...

Scheme 24. Reductive-desulfonylation/methylation of 2'-arylsulfonyl-2'-deoxy-2'-fluorouridine 95a with TDAE/MeI ...

Scheme 25. One electron oxidation of 2'-deoxy-2'-fluorocytidine ...

Scheme 26. One electron oxidation of gemcitabine ...

Scheme 27. One electron oxidation of PSI-6130 ...

Scheme 28. General mechanism of Dimroth rearrangement on Adenosine183,184 ...

Scheme 29. Synthesis of 4-N-benzylated tubercidin and sangivamycin by Dimroth rearrangement approach. ...

Scheme 30. Synthesis of 4-N-(4-nitrobenzyl)toyocamycin by direct alkylation ...

Scheme 31. Synthesis of 2',3',5'-tri-O-acetyl-4-fluorotubercidin (124) by diazotive-fluoredeamination. ...

Scheme 32. Synthesis of 4-N-(4-nitrobenzyl)tubercidin (122b) from 2',3',5'-tri-O-acetyl-4-fluorotubercidin (124) ...
Scheme 33. Synthesis of 8-bromo-7-deazaadenosine and 8-azidotoyocamycin derivatives. .. 73

Scheme 34. Click reaction between 8-azidotoyocamycin and cyclooctynes 130 and 131. Reagents and conditions: g) Cyclooctyne 130 or 131 (1 eq), ACN:H₂O (3:1), rt, 4 h. ... 74

Scheme 35. Proposed scheme for the synthesis and subsequent transformations of 8-alkynyl-7-deazapurine nucleoside analogues 135. .. 75

Scheme 36. Attempted synthesis of 8-alkynyltoyocamycin derivative 140 via sonagashira coupling. .. 78

Scheme 37. Attempted synthesis of 8-alkynyltoyocamycin derivative 143 via sonagashira coupling. .. 79

Scheme 38. Iodine catalyzed oxidative cross-coupling of Indoles and Azoles. 79

Scheme 39. Iodine catalyzed oxidative cross-coupling of tubercidin and benzotriazole. .. 80

Scheme 40. Iodine catalyzed oxidative cross-coupling of acetylated tubercidin and benzotriazole. .. 81

Scheme 41. Attempted synthesis of iodine catalyzed oxidative cross-coupling of sangivamycin or toyocamycin and benzotriazole. .. 82
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>Ar</td>
<td>aromatic (NMR)</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>br</td>
<td>broad (NMR)</td>
</tr>
<tr>
<td>t-But</td>
<td>tert-butyl</td>
</tr>
<tr>
<td>calcd</td>
<td>calculated (MS or HRMS)</td>
</tr>
<tr>
<td>CDA</td>
<td>cytidine deaminase</td>
</tr>
<tr>
<td>$^\circ$ C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>δ</td>
<td>delta</td>
</tr>
<tr>
<td>d</td>
<td>doublet (NMR) or deuterium (in DMSO-d_6)</td>
</tr>
<tr>
<td>DAST</td>
<td>diethylaminosulfur trifluoride</td>
</tr>
<tr>
<td>dCK</td>
<td>deoxycytidine kinase</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DCTD</td>
<td>deoxycytidylate deaminase</td>
</tr>
<tr>
<td>dFdC</td>
<td>2',2'-difluoro-2'-deoxycytidine</td>
</tr>
<tr>
<td>dFdCMP</td>
<td>2',2'-difluoro-2'-deoxycytidine monophosphate</td>
</tr>
<tr>
<td>dFdCDP</td>
<td>2',2'-difluoro-2'-deoxycytidine diphosphate</td>
</tr>
<tr>
<td>dFdCTP</td>
<td>2',2'-difluoro-2'-deoxycytidine triphosphate</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-(N,N-dimethylamino)pyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dUMP</td>
<td>deoxyuridine monophosphate</td>
</tr>
<tr>
<td>ε</td>
<td>epsilon</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>FdC</td>
<td>2'-fluoro-2'-deoxycytidine</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>h or hr or hrs</td>
<td>hour(s)</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>hCNT</td>
<td>human concentrative nucleoside transporter</td>
</tr>
<tr>
<td>hENT</td>
<td>human equilibrative nucleoside transporter</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectroscopy</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>half maximal inhibitory concentration</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant in Hz (NMR)</td>
</tr>
<tr>
<td>λ</td>
<td>lambda</td>
</tr>
<tr>
<td>L</td>
<td>liter(s)</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium diisopropylamide</td>
</tr>
<tr>
<td>m</td>
<td>milli; multiplet (NMR)</td>
</tr>
<tr>
<td>µ</td>
<td>micro</td>
</tr>
<tr>
<td>M</td>
<td>moles per liter</td>
</tr>
<tr>
<td>MeFdC</td>
<td>2'-deoxy-2'-fluoro-2'-C-methylcytidine</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>mol</td>
<td>mole(s)</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>m/z</td>
<td>mass to charge ratio (MS)</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>nM</td>
<td>nano Molar</td>
</tr>
<tr>
<td>p</td>
<td>para</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>pyr</td>
<td>pyridine</td>
</tr>
<tr>
<td>%</td>
<td>percentage</td>
</tr>
<tr>
<td>q</td>
<td>quartet (NMR)</td>
</tr>
<tr>
<td>quin</td>
<td>quintet (NMR)</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNR</td>
<td>Ribonucleotide reductase</td>
</tr>
<tr>
<td>rt</td>
<td>room temperature</td>
</tr>
<tr>
<td>RP</td>
<td>reverse phase (HPLC)</td>
</tr>
<tr>
<td>s</td>
<td>second(s); singlet (NMR)</td>
</tr>
<tr>
<td>SET</td>
<td>single electron transfer</td>
</tr>
<tr>
<td>t</td>
<td>triplet (NMR)</td>
</tr>
<tr>
<td>TBDMS</td>
<td>tert-butyldimethylsilyl</td>
</tr>
<tr>
<td>TBDPS</td>
<td>tert-butyldiphenylsilyl</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetra-n-butylammonium fluoride</td>
</tr>
<tr>
<td>TBHP</td>
<td>tert-butyl hydroperoxide</td>
</tr>
<tr>
<td>TEA</td>
<td>triethylamine</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

In 1909, the term “nucleoside” was proposed by Levene and Jacobs to describe carbohydrate derivatives of purines and pyrimidines. Nucleosides, held together by phosphodiester linkages, are the core components of the biopolymers DNA and RNA. Nucleosides are composed of a furanose sugar moiety, linked to either a purine or a pyrimidine heterocyclic base via a beta-glycosidic bond. The four nucleosides prevailing in RNA are adenosine, guanosine, cytosine and uridine. Whereas, 2'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxycytidine and thymidine form the core part in DNA (see Figure 1 for structures of RNA and DNA nucleosides). Development of drug therapy progressed rapidly after the discovery of DNA as the primary genetic material in 1944 and subsequent elucidation of its physical structure in 1953. Since then, DNA and RNA have been regarded as potential targets for drug design, as they play vital role in many biological processes. Since nucleosides form the major part of DNA and RNA, nucleosides have also been considered prospective targets.

![Figure 1. Structures of RNA and DNA nucleosides](image)

Figure 1. Structures of RNA and DNA nucleosides
1.1. Notable nucleoside analogues with anticancer and antiviral activity

Pyrimidine nucleoside analogues such as 5-fluoro-2'-deoxyuridine (Floxuridine), 1-(β-d-arabinofuranosyl)cytosine (araC) were among the initial nucleoside analogues approved by U.S. Food and Drug Administration (FDA) for cancer treatment (Table 1). Remarkable biological activity resulting from slight structural modifications to the normal nucleosides prompted various scientists all over the world to develop modified nucleoside analogues as anticancer agents. Currently, there are 11 nucleoside based drugs approved by FDA for the treatment of cancer.

Table 1. FDA approved anticancer purine and pyrimidine nucleoside analogues.4

<table>
<thead>
<tr>
<th>Drug Category</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2'-Deoxyctydine</td>
<td>2006</td>
</tr>
<tr>
<td>Guanosine</td>
<td>2005</td>
</tr>
<tr>
<td>2'-Deoxyadenosine</td>
<td>2004</td>
</tr>
<tr>
<td>Cytidine</td>
<td>2004</td>
</tr>
<tr>
<td>Cytidine</td>
<td>1998</td>
</tr>
<tr>
<td>2'-Deoxyctydine</td>
<td>1996</td>
</tr>
<tr>
<td>2'-Deoxyadenosine</td>
<td>1992</td>
</tr>
<tr>
<td>Adenosine</td>
<td>1991</td>
</tr>
<tr>
<td>Purine analogue</td>
<td>1991</td>
</tr>
<tr>
<td>2'-Deoxyuridine</td>
<td>1970</td>
</tr>
<tr>
<td>Cytidine</td>
<td>1969</td>
</tr>
<tr>
<td>Guanine</td>
<td>1966</td>
</tr>
<tr>
<td>Uracil</td>
<td>1962</td>
</tr>
<tr>
<td>Purine</td>
<td>1953</td>
</tr>
</tbody>
</table>

Parallel to the anticancer drugs, researchers also developed various nucleoside analogues with antiviral properties. The sounding success of prominent antiviral drugs such as Acyclovir (anti-HSV), and Zidovudine (anti-HIV) revealed the potential value of
modified nucleoside analogues as antiviral agents (Table 2). There are currently 13 FDA approved nucleoside based drugs used in the treatment of various viruses. Most recent of them being Sofosbuvir, an anti-HCV drug, which is considered to be a huge step forward in HCV treatment.5,6

Table 2. Antiviral properties of purine and pyrimidine nucleoside analogues.4

<table>
<thead>
<tr>
<th>Drug</th>
<th>Category</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2’-deoxy-2’-fluoro-2’-methyluridine-5’-phosphate (Sofosbuvir)</td>
<td>Uridine</td>
<td>2013</td>
</tr>
<tr>
<td>Tenofovir disoproxil fumarate, mixture of purine analogues (Tenofovir)</td>
<td>Purine</td>
<td>2008</td>
</tr>
<tr>
<td>1-2-deoxy-β-L-erythro-pentofuranosylthymine (Telbivudine)</td>
<td>Thymidine</td>
<td>2006</td>
</tr>
<tr>
<td>5-fluoro-1-(2R,5S)-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine (Emtricitabine)</td>
<td>Cytidine</td>
<td>2003</td>
</tr>
<tr>
<td>2’,3’-didehydro-2’,3’-dideoxythymidine (Stavudine)</td>
<td>Thymidine</td>
<td>2001</td>
</tr>
<tr>
<td>2’,3’-dideoxy-3’-thiacytidine (Lamivudine)</td>
<td>Cytidine</td>
<td>1998</td>
</tr>
<tr>
<td>2’,3’-didehydro-2’,3’-dideoxythymidine (Stavudine)</td>
<td>Thymidine</td>
<td>1994</td>
</tr>
<tr>
<td>3’-azido-3’-deoxythymidine (Zidovudine)</td>
<td>Thymidine</td>
<td>1987</td>
</tr>
<tr>
<td>2-amino-1,9-dihydro-9-[(2-hydroxyethoxy)methyl]-6H-purin-6-one (Acyclovir)</td>
<td>Guanosine</td>
<td>1982</td>
</tr>
<tr>
<td>(E)-5-(2-bromovinyl)-2’-deoxyuridine (Brivudine)</td>
<td>Uridine</td>
<td>1980</td>
</tr>
<tr>
<td>9-β-D-arabinofuranosyladenine (Vidarabine)</td>
<td>Adenosine</td>
<td>1976</td>
</tr>
<tr>
<td>5-ethyl-2’-deoxyuridine (Edoxudine)</td>
<td>Thymidine</td>
<td>1969</td>
</tr>
<tr>
<td>5-iido-2’-deoxyuridine (Idoxuridine)</td>
<td>Uridine</td>
<td>1962</td>
</tr>
</tbody>
</table>

1.2. Importance of fluorine substitution

Fluoro organic compounds have been known to possess a wide variety of biological activity and several of them are used as drugs for the treatment of various types of diseases.7,8 Introduction of fluorine atom(s) into the organic molecules dramatically changes their electronic and steric properties, which often leads to the molecules rendering potent biological activities.9,10 Though a fluorine atom is close in size to a hydrogen atom, presence of fluorine causes various electronic changes because of its electronegativity. Moreover, fluorine atoms can also act as hydrogen bond
acceptors. Also, a fluorine atom can serve as a replacement for hydrogen, since the Van der Waals radius of fluorine (1.35 Å) is so close to that of a hydrogen atom (1.1 Å). The C-F bond strength (484 kJ/mol) is also greater than that of a C-H bond (411 kJ/mol), offering a measure of increased biological and chemical stability to the structure.

1.3. Prominent nucleoside analogues with fluorine atom in sugar moiety

Of the variety of nucleoside analogues with biological activity, the class of fluorinated nucleosides is known to possess a wide range of medicinal and biological activity. Prominent examples of fluorinated nucleoside analogues include: 2′-deoxy-2′,2′-difluorocytidine (1, Gemcitabine)\(^{12,13}\) the phosphoramidate analogue of 2′-deoxy-2′-fluoro-2′-C-methyluridine (2, Sofosbuvir) and 2-chloro-1-(2′-deoxy-2′-fluoroarabinofuranosyl)uracil (3, Clofarabine)\(^{14,15}\) (Figure 2). Gemcitabine (1) and Clofarabine (3) are potent anti-cancer drugs that are commonly used in the treatment of various types of cancers.\(^{13,16}\) Sofosbuvir (3) acts as potent inhibitor of Hepatitis C virus replication.\(^{5,6}\)

![Figure 2](image_url)

Figure 2. Examples of the prominent nucleoside drugs with fluorine modifications in sugar moieties.
1.4. Gemcitabine, a critical anticancer drug

Gemcitabine is a nucleoside analog that has been used as a chemotherapeutic agent for last two decades. Gemcitabine is approved in the treatment of various types of cancers including pancreatic, breast, ovarian, and non-small cell lung cancer.13,16-20

1.4.1. Existing methods for the synthesis of gemcitabine

Gemcitabine was first synthesized by Hertel and co-workers in 1988.12 Their method used ethyl bromodifluoro acetate and (R)-2,3-\textit{O}-isopropylidene glyceraldehyde as the precursors for the construction of ribose sugar with two fluorine atoms at the 2-position (Figure 3). Coupling of the latter to the heterocyclic base and subsequent deprotection gives 1. As shown in Figure 2, their approach suffers from two stereoselective setbacks: one being the Reformatsky reaction (the desired product is generated in 65\% and required separation from the \textit{threo} byproduct) and the other being the coupling of the sugar derivative to pyrimidine base (the desired \textit{β} anomer is generated in 10\%).

\textbf{Figure 3.} Original synthesis of gemcitabine developed by Hertel.12
Over the last 25 years, several research groups have published improved methods for the synthesis of gemcitabine. Some of these synthetic approaches followed Hertel’s original approach and differ mainly in employing either different protecting groups on the ribose or different coupling conditions to improve stereoselectivity/isomer-separation. Additionally gemcitabine was also synthesized from various furanose and pyranose derivatives. The synthesis of gemcitabine has been subject to an excellent review published recently.21

Even though the synthesis of gemcitabine is widely studied from the standpoint of sugar-base coupling, much less attention has been paid toward the synthesis from parent nucleosides. To our knowledge, only three literature examples have described the synthesis of gemcitabine via direct carbohydrate fluorination of the parent nucleoside derivatives.

A 1996 patent from Eli Lily reported the synthesis of 2'-deoxy-2',2'-difluorocytidine derivative 6 by treating the corresponding 2'-keto cytidine derivative 5 with DAST and Pyr.HF reagent combination (Figure 4). Whereas a more recent Chinese patent (2013) described the similar transformation with the new deoxyfluorinating agents Xtalfluor-M and Xtalfluor-E.

![Figure 4. Synthesis of 2'-difluorocytidine derivatives from 2'-keto derivatives by deoxyfluorination](image)

Figure 4. Synthesis of 2'-difluorocytidine derivatives from 2'-keto derivatives by deoxyfluorination
Synthesis of difluorouridine derivative 10 by desulfurization-difluorination of the corresponding dithiouridine derivative 9 with DBH/Py:9HF reagent combination was reported in a 2007 patent (Figure 5). However, the crucial uridine-2'-dithioketal precursor 9, was prepared by coupling the uracil base with the pre-constructed dithioacetal ribose derivative 8, which in turn was prepared from the open chain ribonolactone derivative 7.

![Figure 5](image)

Figure 5. Synthesis of 2'-deoxy-2'-2'-difluorouridine derivative by desulfurization-difluorination of the corresponding 2'-dithioketal derivative

1.4.2. Mechanism of action of gemcitabine

The mechanism of action of gemcitabine has been widely studied\(^\text{13,16-20}\) and is only discussed briefly here. Gemcitabine (dFdC) is a prodrug and must be metabolized to the active triphosphate form 2',2'-difluoro-2'-deoxycytidine triphosphate (dFdCTP) to exert biological activity (Figure 6). Human nucleoside transporters (hNTs), an important class of membrane proteins, mediate the cellular uptake of gemcitabine. Gemcitabine is converted into its monophosphate (dFdCMP) by deoxycytidine kinase (dCK); to its diphosphate (dFdCDP) by pyrimidine nucleoside monophosphate kinase (UMP-CMP kinase); and subsequently to the active metabolite triphosphate by nucleoside diphosphate
kinase. Gemcitabine may become inactivated through deamination by cytidine deaminase (CDA) and, when in the monophosphate form by deoxycytidylicate deaminase (dCTD). The product of gemcitabine deamination by CDA is 2′,2′-difluoro-2′-deoxyuridine (dFdU), which is cytotoxic itself. Also, dFdU monophosphate (dFdUMP) could inhibit the activity of thymidylate synthase, directly effecting the deoxynucleotide triphosphate (dNTP) pool. Gemcitabine can also become inactivated by dephosphorylation of the monophosphate form by 5′-nucleotidases (5′-NTs), converting nucleotides back to nucleosides. These enzymes play a critical role in the balance of dNTP pools and, therefore, in gemcitabine metabolism. In this way, the rate-limiting step of phosphorylation by dCK may be also be affected, compromising the overall beneficial cytotoxicity of gemcitabine.
Figure 6. Gemcitabine cellular metabolism.18

hNT: human nucleoside transporter; dFdCMP: gemcitabine monophosphate; dFdCDP: gemcitabine diphosphate; dFdCTP: gemcitabine triphosphate; dFdU: 2\textprime,2\textprime- difluoro-2\textprime-deoxyuridine, dFdUMP: 2\textprime,2\textprime- difluoro-2\textprime-deoxyuridine monophosphate.

The most important mechanism of action of gemcitabine is inhibition of DNA synthesis. When dFdCTP is incorporated into DNA, a single deoxynucleotide is incorporated afterwards, and stops chain elongation. The non-terminal position of gemcitabine makes DNA polymerases unable to proceed, as well as inhibits removal of gemcitabine by exonucleases.

An additional mechanism of action of gemcitabine is inhibition of deoxycytidylate deaminase (dCTD), by dFdCTP and indirectly by dFdCDP.23,24 By covalently binding to the active site, dFdCDP inhibits Ribonucleotide reductase (RNR), which catalyzes the reduction of ribonucleotides to deoxyribonucleotides.25-31 The covalent inhibition of RNR causes decrease in the dNTP pool and consequently reduces dCTD activity.32,33 In addition, decrease in the dNTP pool stimulates dFdC phosphorylation, thereby increasing the level of dFdCTP, making dFdCTP more likely to be incorporated into DNA competing with the NTPs.25,27 In addition, another important mechanism of gemcitabine is the induction of apoptosis through caspase signaling. In response to cellular stress, Gemcitabine activates p38 mitogen-activated protein kinase (MAPK) to trigger apoptosis in tumour cells, but not in normal cells.

The widely accepted mechanism of covalent inhibition of RNR by dFCDP in the presence and absence of reductant is shown in Figure-7.31 Crucial steps in RNR mechanism include generation of tyrosine (Y122) radical from R2 subunit of RNR, abstraction of a hydrogen radical from Cysteine (C439) in R1 subunit of RNR by Y122
radical to produce A, subsequent abstraction of H3' by C439 radical to produce the crucial C3'-centered radical B (first two steps are not shown in figure). The C3'-centered radical then loses a molecule of HF to generate C2'-centered radical C, which is resonance stabilized by oxygen centered radical intermediate D, which eventually leads to covalent inhibition of RNR.

![Figure 7](image)

Figure 7. Mechanism for the covalent inhibition of RNR by dFdCDP in the absence and in the presence of reductant, proposed by Prof. Stubbe, et al. \(^{31}\)

1.5. Short survey on desulfurization-fluorination reactions

Although the preparation of the organofluorine compounds remains a difficult task, in the last 40 years numerous methods of incorporating fluorine into organic molecules have been developed, as summarized in many excellent reviews.\(^{34-38}\) Oxidative desulfurization-(di)fluorination is one of the most important fluorination protocols for the
preparation of numerous fluoro/gem-difluoro organic compounds. Various reagents or reagent-combinations have been developed for oxidative desulfurization-fluorination reactions over the years. Of which, desulfurization-difluorination of aldehyde and ketone dithiolanes with oxidants such as N-halosuccinimides (NBS, NIS) or 1,3-dibromo-5,5-dimethylhydantoin (DBH) and pyridinium poly(hydrogen fluoride) (PPHF) and desulfurization-difluorination of alkyl aryl thioethers with DBH and Olah’s reagent (Py.9HF) share similar mechanistic traits (Scheme 1).

Katzenellenbogen’s protocol:

\[
\begin{align*}
11 & \quad \text{R} = \text{alkyl} \\
12 & \quad \text{R}' = \text{H or alkyl} \\
13 & \quad \text{NXS/DBH} \\
\end{align*}
\]

Haufe’s protocol:

\[
\begin{align*}
14 & \quad X = \text{NO}_2, \text{Cl, F, Me}; \quad Y = \text{Br, OMe, OPhNO}_2, \text{NPhth, CO}_2\text{Me}; \quad n = 3, 9, 10, 13 \\
15 & \quad 16 & \quad \text{DBH} \\
\text{Py.9HF} & \quad \text{Py.9HF} \\
\end{align*}
\]

Scheme 1. Oxidative desulfurization-difluorination of aldehyde, ketone dithiolanes; and alkyl aryl thioethers.

Hara’s research group has developed three reagents or reagent combinations for oxidative desulfurization-fluorination reactions. First among them was Iodine pentafluoride (IF₅), which mainly causes the desulfurization-difluorination of benzyl sulfides (Scheme 2). Later, an air- and moisture-stable IF₅-pyridine-HF reagent was developed for the desulfurization-difluorination of benzyl sulfides, thioacetals, and dithianes. Recently, an air-stable fluorinating agent BrF₃-KHF₂ was also developed for
desulfurization-difluorination of benzyl sulfides, dithioacetals, and (phenylthio)glycosides.

Scheme 2. Hara's oxidative desulfurization-difluorination of benzylic sulfides.

Interesting point to note is that none of the above mentioned methods provide access to gem-difluoro products from alkyl aryl thioethers where in the thioether is present on an internal secondary carbon atom (See Figure 13 in Section 2).

1.6. 5-Bromopyrimidines and 8-bromopurines: Syntheses and importance

The C-5 halogenated pyrimidine and C-8 halogenated purine nucleosides are widely used as substrates in reactions involving direct displacement of halo groups with nucleophiles.51,52 Especially, 5-bromopyrimidine and 8-bromopurine nucleoside derivatives have been shown to possess interesting synthetic and biological properties.51,52 Also, the halogenated pyrimidine and purine nucleoside derivatives are often used in transition metal catalyzed cross-coupling reactions53 resulting in the syntheses of a variety of nucleoside analogues with biological activity and/or fluorescent probes.54 For example, a number of 5-substituted uracil derivatives, especially arabinofuranosyl- and 2'-deoxyuridines, have been investigated extensively for the clinical treatment of viral diseases.55 The 5-bromo and 5-iodo uridine derivatives are used as substrates for high yield coupling with terminal alkynes to generate 5-alkynyluracil nucleosides with antiviral activity56,57 and the 5-alkynyl products can also be transformed into bifurane derivatives which possess potent and selective inhibition of Varicella-Zoster
virus. Moreover, radiolabeled 5-bromo- and 5-iodouracil nucleosides have applications in cellular biochemistry.

Halogenated pyrimidine and purine nucleosides have been prepared by direct treatment with halogens or halonium ion (X⁺) sources but most of these methods utilize harsh reaction conditions. Various C5-bromouridine derivatives have been synthesized using Br₂/Ac₂O/AcOH, Br₂/H₂O, N-bromosuccinimide (NBS) in DMF or ionic liquids, combination of 3-chloroperoxybenzoic acid/HBr in aprotic solvents, ceric ammonium nitrate (CAN)/LiBr in protic or aprotic solvents, or KBr/Oxone. The C5-bromination of cytidine nucleosides has been accomplished with Br₂/CCl₄/hv or NBS in DMF or ionic liquids. On the other hand, the synthesis of C8-bromo purine nucleosides has been typically achieved with Br₂/AcOH/AcONa or NBS/DMF. Hence, a universal brominating reagent for C5-bromination of pyrimidines and C8-bromination of purines and also development of a bench-friendly bromination methodology is warranted.

1.6.1. 1,3-dibromo-5,5-dimethylhydantoin, an important brominating reagent

The 1,3-dibromo-5,5-dimethylhydantoin (DBDMH or DBH, Figure 8) is a useful reagent for various organic transformations including aromatic bromination. Enhanced efficiency of DBH towards aromatic bromination in the presence of acids has been known. Moreover, Lewis acid-catalyzed benzylic bromination with DBH has also been reported. DBH also efficiently oxidizes thiols to disulfides with DBH. In addition, α-bromination of aliphatic ketones is achieved with DBH in combination with p-toluenesulfonic acid (TsOH). Interestingly, compared to NBS, DBH can donate two bromines and can be doubly efficient.
1.7. Selected aspects of the chemistry of 7-deazapurine nucleosides

The 7-deazapurine nucleosides, namely, tubercidin, sangivamycin and toyocamycin (19a-c, Figure 9) are a group of natural products isolated from the species *Streptomyces*. Analogues and derivatives of these 7-deazapurine nucleoside antibiotics have been synthesized and subjected to extensive biological testing. Chemical modifications of the parent 7-deazapurine antibiotics as well as sugar-base coupling has provided access to a sizeable number of biologically active 7-deazapurine compounds.

Noteworthy examples of such molecules include: (a) 5-iodotubercidin 20, an up-field activator of the p53 pathway; (b) sangivamycin analogues such as 6-hydrinzinosangivamycin 22 and 4-Amino-6-bromo-7-(β-L-xylofuranosyl)pyrrolo[2,3-d]pyrimidine-5-carboxamide (xylocidine, 23), in vitro down-field inhibitors of PKC and CDK in cancer cell lines; (c) a methyl-substituted tubercidin 21, which acts against the
replication of polio and dengue viruses; (d) the anti-HSV agent xylotubercidin;101 (e) substituted toyocamycin analogues 24102 and 2'-\beta-C-methyl derivative of toyocamycin,103 sangivamycin,103 and tubercidin104,105 that have activity against HCV; (f) 2'-deoxy-2'-fluoroarabinotubercidin106 and 2-amino-2'-deoxy-2'-fluoroarabinotubercidin,107,108 which exhibit antiviral activity; (g) 4N,5-diaryltubercidin derivatives 25, which act as adenosine kinase inhibitors;96,109,110 and (h) tubercidin derivatives such as 4-(het)aryl,111 5-(het)aryl112 and some 4-substituted-5-(het)aryl113 compounds 26 with nanomolar cytostatic activity against several cancer cell lines. Important base-modified analogues are shown in Figure 10.

![Figure 10. Important base-modified 7-deazapurine nucleoside derivatives.](image)

Direct alkylation of exocyclic amino groups on 7-deazapurine nucleosides has not been noted. However, 4-N-methyltubercidin (6-N-methyl-7-deazaadenosine) 28 was reported to be synthesized from the reaction of tubercidin with methyl iodide followed by 1N sodium hydroxide (Scheme 3).86 Thus, treatment of tubercidin with CH\textsubscript{3}I (rt, 24 h,
DMA) gave the corresponding N1-methyltubercidin hydroiodide 27 after recrystallization from methanol. Base treatment of this cationic intermediate (1N NaOH 100 °C, 1.25 h) produced 4-N-methyltubercidin 28 via Dimroth rearrangement.86

![Scheme 3. Synthesis of 4-N-methyltubercidin by Dimroth-rearrangement approach](image)

Scheme 3. Synthesis of 4-N-methyltubercidin by Dimroth-rearrangement approach

Even though direct alkylation or Dimroth type rearrangement has been scarce in 7-deazapurine chemistry, the 4-N-substituted-7-deazapurine derivatives have been widely prepared by aromatic nucleophilic substitution (S_NAr). For example, S_NAr displacement of chloro group from 4-cholo analogues86,113 or triazolyl group from 4-N-(1,2,4-triazol-4-yl) intermediates114 gave access to various other 4-N-modified tubercidin derivatives. Also, 4-N-substituted toyocamycin derivatives were prepared from the S_NAr displacement of chloro group from the corresponding 4-chloro compounds.102 Likewise, the 7-N-benzylformycin was prepared via 7-chloro derivative of the C-nucleoside antibiotic formycin (3-β-D-ribofuranosylpyrazolo[4,3-d]pyrimidine).115

1.8. Nucleoside transport inhibitors

As discussed in previous sections (Chapter 1, Sections 1.1-1.3), nucleoside based drugs have been in use for the treatment of various infections. Since the hydrophilic nature of nucleosides limits their cell permeability, nucleoside-specific membrane transport carriers (NT) facilitate and regulate the cellular uptake and therapeutic actions
of many nucleoside based drugs. The nucleoside transporter proteins are classified into two categories: equilibrative NT (ENT) and concentrative NT (CNT). Human equilibrative NTs (hENTs) are found in the outer plasma membrane and some intracellular membranes of most, if not all, human cells.

Nitrobenzylmercaptopurine ribonucleoside (NBMPR, 29a) and structurally related hENT1 probes such as 6-\textit{N}-(4-nitrobenzyl)adenosine (29b) and 5'-S-{2-(6-[3-(fluorescein-5-yl)thioureido-1-yl]hexanamido})ethyl-6-\textit{N}-(4-nitrobenzyl)-5'-thioadenosine (FITC-SAHERNTA) inhibit hENT1 with nM affinity (Figure 11). Discovery and development of such nucleoside transport inhibitors has greatly aided investigations on the structure, function, and cell surface abundances of hENT1 proteins.

Figure 11. Structures of Important nucleoside transport inhibitors.

2. RESEARCH OBJECTIVES

(i) The first research objective of this dissertation was to develop novel fluorination methodologies for the synthesis of mono-fluoro and geminal-difluoro uridine analogues from their parent nucleoside precursors. These strategies were envisioned to eliminate the current need to couple fluorinated sugar precursors with nucleosides bases, a process which has severe regiochemical and stereochemical limitations. On the basis of literature
precedence, I would explore the possibility of insertion of the fluorine or geminal-difluoro unit into the 2'-position of ribose moiety of nucleosides using oxidative desulfurization-fluorination of substrates of type 30 and 31 with 1,3-dibromo-5,5-dimethylhydantoin (DBDMH or DBH) and Olah’s reagent (Py.9HF) (Figure 12).

\[\text{Figure 12. Different classes of 2'-arylthionucleosides for oxidative desulfurization-fluorination and reductive desulfonylation-fluorination procedures.} \]

A complementary approach was designed based on reductive-desulfonylation/fluorination processes of 2'-arylsulfonyl-2'-deoxyuridine 32 or 2'-arylsulfonyl-2'-deoxy-2'-fluorouridine 33 with electrophilic fluorine reagents (Figure 12). Treatment of sulfone 32 or α-fluorosulfone 33 with organic electron donors such as tetrakis(dimethylamino)ethylene (TDAE), Murphy’s reagent, would be expected to lead to the reductive cleavage of sulfone moiety and generation of C2'-centered carbanion. The intermediate carbanion would then be quenched with fluoronium ion (F+) to give mono- or di-fluorinated uridine derivatives. Alternatively, treatment of 2'-arylsulfonyl-2'-deoxyuridine 32 with a base would lead to abstraction of the most acidic proton H2' and then the intermediary carbanion would be quenched with electrophilic fluorine (F+) to give products of type 33.
(ii) Since nucleosides are complex molecules and also because of the lack of literature precedence for the desulfurization-difluorination of aryl-alkyl thioethers wherein the arylthio unit is positioned on a secondary internal carbon atom, I planned to perform model studies on simpler aryl-alkyl thioether substrates of type 34-37 (Figure 13). The proposed substrates would have different functional groups such as ester (34), keto (35), alkane (36) and lactone (37), and mimic the C2’ of ribose unit in the pyrimidine nucleoside precursor (30, Figure 12), which also has a carbon at the carbonyl oxidation state (as an aminal group) on the α-carbon atom.

Figure 13. Various aryl-alkyl thioether substrates for model oxidative desulfurization-difluorination reactions

(iii) Since DBH is a source of electrophilic bromine (Br⁺) and as bromonium ions are known to brominate pyrimidines at C-5 position and purines C-8 position, I explored the bromination at C-5 of pyrimidines and C-8 of purines with DBH. The goal of this part of my dissertation was to develop an efficient bromination methodology, which could be applicable for the bromination of all DNA and RNA nucleosides, and which would also be compatible with commonly used protection groups in nucleoside chemistry.

(iv) The next goal of my dissertation was to investigate the behavior of gemcitabine and its 2’-modified analogues such as 2’-deoxy-2’-fluorocytidine (38) and 2’-deoxy-2’-fluoro-2’-C-methylcytidine (PSI-6130, 39) in one electron oxidation systems and evaluate if
stereo electronic differences at C2'-position among these substrates would allow us to detect C2' and/or C3' sugar radicals using electron spin resonance (ESR) spectroscopy studies (Figure 14). This part of my dissertation was planned in collaboration with Dr. Michael D. Sevilla’s research group of Oakland University.

![Chemical structures](image)

Figure 14. Gemcitabine and its analogues for one electron oxidation studies

(v) Since 6-N-(4-nitrobenzyl) derivatives of adenosine and other adenine nucleosides possess potent nucleoside transport inhibition activity, in the next goal, I proposed to synthesize novel 6-N-benzyl-7-deazapurine nucleoside derivatives (40a-d) of 7-dezaadenosine antibiotics (19a-c) in order to test their biological activity (Figure 15). I envisioned two methods for achieving the synthesis of the target molecules (40a-d). One involved alkylation of the 7-dezaadenosine antibiotics (19a-c) at N1 with a benzyl bromide followed by a base-promoted Dimroth rearrangement. The second route employed diazotization–fluorodediazoniation followed by S_NAr displacement of fluoride with a benzyl amine.
Figure 15. Structures of 7-deazapurine antibiotics and the proposed 6-N-benzyl analogues.

(vi) I also intended to synthesize 7-deazapurine nucleoside derivatives with various novel modifications at C-8 and C-7 position (Figure 16). For example, 8-bromo-7-deazapurine derivatives (41, \(Y = \text{Br} \)) are envisioned as substrates for the synthesis of novel 8-azido-7-deazapurine analogues (41, \(Y = \text{N}_3 \)). These 8-azido-7-deazapurine nucleosides might act as substrates for Copper-catalyzed and copper-free click reactions with alkynes and cycloalkynes respectively. The resultant novel 8-triazolyl-7-deazapurine derivatives (41, \(Y = \text{triazolyl} \)) might possess fluorescent properties because of extended conjugation.

![Structures of various 8-modified-7-deazapurine derivatives](image)

Figure 16. Structures of various 8-modified-7-deazapurine derivatives

Also, the 8-bromo-7-deazapurine substrates (41, \(Y = \text{Br} \)) can be converted to the corresponding 8-alkynyl-7-deazapurine counterpart 42. The crucial 8-alkynyl intermediates 42 might give access to \(\alpha \)-halovinyl (43, \(Z = \text{Cl, Br} \)), \(\beta \)-ketosulfone (43, \(Z = \text{Cl, Br} \))
OH), and α-vinylazide (44) derivatives, analogous to recent findings on similar modifications at C5-position of pyrimidines (unpublished results from our research group).

3. RESULTS AND DISCUSSION

3.1. Bromination of nucleobases with 1,3-dibromo-5,5-dimethylhydantoin

Since DBH is known to be a good source of bromonium ion (Br⁺), I envisioned a novel bromination protocol toward C5-bromination of pyrimidines and C8-bromination of purines.

3.1.1 Bromination at C5 position of pyrimidine nucleosides with DBH

To test my hypothesis, I initially treated 2',3',5'-tri-O-acetyluridine (45a) with 1.1 equivalents of DBH in CH₂Cl₂ at ambient temperature (Scheme 4; Table 3, entry 1). After 28 h of reaction time TLC showed conversion of most of the substrate to a new spot, which was less polar than the substrate spot. The less polar spot was isolated by aqueous workup (95%) and ¹H-NMR of the crude material was very clean and implied a single compound. Characteristic doublet for H5 at 5.73 ppm was missing in ¹H-NMR and the doublet for H6 (7.33 ppm) collapsed to a singlet (7.82 ppm), indicating the formation of 2',3',5'-tri-O-acetyl-5-bromouridine (46a; 95%). Furthermore, structure of the product was confirmed by comparing NMR data with literature NMR data for 2',3',5'-tri-O-acetyl-5-bromouridine.⁶⁴ To optimize the amount of DBH required for the bromination, I treated 45a with 0.55 equiv. of DBH. But the TLC showed only 60% conversion to 46a even after 48 h of reaction time. Although, two bromonium ions (Br⁺) can be delivered by one equivalent of DBH, it seemed that 1.1 equiv. of DBH is required for complete conversion of 45a to 46a at room temperature.
Role of Lewis acids

Since it was reported that Lewis acids enhance the efficiency of bromination by DBH,76 I decided to compare the rate of bromination in presence of Lewis acids. Remarkably, treatment of 45a with 0.55 equiv. of DBH in presence of 0.55 equiv. of trimethylsilyl trifluoromethanesulfonate (TMSOTf) significantly enhanced the rate of bromination yielding 46a after only 6 h (94% yield) (entry 2). The efficiency of bromination did not differ much when 1.1 equiv. of TMSOTf was used (entry 3). Also, replacing TMSOTf with other organic acids such as \(p \)-toluenesulfonic acid (TsOH, 0.75 equiv.) required 0.75 equiv. of DBH for complete conversion of 45a to 46a (entry 4). Next, I studied the effect of temperature and role of solvents on bromination in order to establish optimal reaction conditions.

\textbf{Scheme 4.} Bromination of uracil-derived nucleosides 1 with 1,3-dibromo-5,5-dimethylhydantoin (DBH). See Table 3 and 4 for specific reaction parameters.

\textit{Effect of Temperature}

Treatment of 45a with equimolar quantities of DBH and TMSOTf (0.55 equiv.) at 40 °C in CH\(_2\)Cl\(_2\) afforded 46a quantitatively in only 2 h (entry 5). Whereas, analogous
treatment of 45a with DBH/TMSOTf at 0 °C gave 46a in only 65% yield after 8 h (TLC) and required 1.1 equiv. of DBH for complete conversion (entry 6).

Role of Solvents

Treatment of 45a with 0.55 equiv. of DBH at room temperature in CH3CN gave 46a after 11 h (entry 7). Analogous treatment of 45a with DBH in presence of TMSOTf (0.55 equiv.) yielded 46a after only 2.5 h (entry 8). Moreover, the DBH/DMF system was much more effective than CH3CN or CH2Cl2 affording 46a in much shorter time (entries 9-10). In addition, bromination of 45a with DBH in the presence or absence of TMSOTf was less efficient in polar protic solvent MeOH, producing 46a in low yields. Hence, it can be concluded that bromination of 45a with DBH and/or TMSOTf was very efficient in polar aprotic solvents such as CH3CN or DMF. However, it is noteworthy that prior removal of these polar solvents from crude reaction mixture was required before proceeding to aqueous workup, which is not the case with CH2Cl2.

Table 3. Effect of various reaction parameters on C5-bromination of 2',3',5'-tri-O-acetyluridine 45a with DBH

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Temp. (°C)</th>
<th>DBH (equiv.)</th>
<th>TMSOTf (equiv.)</th>
<th>Time (h)</th>
<th>Yield 46a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH2Cl2</td>
<td>25</td>
<td>1.1</td>
<td>-</td>
<td>28</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>CH2Cl2</td>
<td>25</td>
<td>0.55</td>
<td>0.55</td>
<td>6</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>CH2Cl2</td>
<td>25</td>
<td>0.55</td>
<td>1.10</td>
<td>6</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>CH2Cl2</td>
<td>25</td>
<td>0.75</td>
<td>0.75</td>
<td>8</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>CH2Cl2</td>
<td>40</td>
<td>0.55</td>
<td>0.55</td>
<td>2</td>
<td>98</td>
</tr>
</tbody>
</table>
Bromination was performed on 0.1 mmol scale of 45a. Isolated yield after aqueous work-up. Purity of the product 46a was determined by TLC and 1H NMR and was higher than 97% unless otherwise noted. Reaction without TMSOTf showed 60% conversion to 46a (TLC) after 48 h and complete conversion after 68 h with purity over 90% (1H NMR). TsOH was used instead of TMSOTf. Reaction with 0.55 eq. of DBH was complete in 65% after 8 h. With purity over 90%.

Extension to other protected uridine nucleosides

I also wanted to test the applicability of the optimized bromination procedure for the 5-bromination of the other uracil nucleosides. Thus, treatment of 1-(2,3,5-tri-O-acetyl-β,D-arabinofuranosyl)uracil 45b with DBH and TMSOTf yielded the corresponding C5-brominated analogue 46b in 91% yield after 10 h (Scheme 4; Table 4, entry 2). Replacing CH$_2$Cl$_2$ with polar aprotic solvent such as CH$_3$CN generated 46b in 98% yield after only 2 h (entry 3). In addition, treatment of 3',5'-di-O-acetyl-2'-deoxyuridine 45c with DBH produced the 5-bromo counterpart 46c in 72% isolated yield after 18 h (entry 4). 46c was also obtained after only 2.5 h in the presence of TMSOTf (entry 5). Moreover, the rate of bromination increased five-fold when the reaction was carried out at 40 $^\circ$C (entry 6).

C5-Bromination of unprotected uridine nucleosides with DBH

<table>
<thead>
<tr>
<th></th>
<th>CH$_2$Cl$_2$</th>
<th>0</th>
<th>1.1f</th>
<th>0.55</th>
<th>3</th>
<th>98</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>CH$_3$CN</td>
<td>25</td>
<td>0.55</td>
<td>-</td>
<td>11</td>
<td>86g</td>
</tr>
<tr>
<td>8</td>
<td>CH$_3$CN</td>
<td>25</td>
<td>0.55</td>
<td>0.55</td>
<td>2.5</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>DMF</td>
<td>25</td>
<td>0.55</td>
<td>-</td>
<td>0.6</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>DMF</td>
<td>25</td>
<td>0.55</td>
<td>0.55</td>
<td>0.3</td>
<td>98</td>
</tr>
</tbody>
</table>

a Bromination was performed on 0.1 mmol scale of 45a. b Isolated yield after aqueous work-up. c Purity of the product 46a was determined by TLC and 1H NMR and was higher than 97% unless otherwise noted. d Reaction without TMSOTf showed 60% conversion to 46a (TLC) after 48 h and complete conversion after 68 h with purity over 90% (1H NMR). e TsOH was used instead of TMSOTf. f Reaction with 0.55 eq. of DBH was complete in 65% after 8 h. g With purity over 90%.
On the basis of the successful C5-bromination of protected uridine nucleosides, I envisioned the extension of DBH bromination protocol for the C5-bromination of unprotected uridine nucleosides. Thus, bromination of uridine 45d with DBH in DMF yielded 5-bromouridine 46d in 75% crystallized yield after only 20 minutes (Scheme 4; Table 4, entry 7). Analogously, treatment of 1-(β, D-arabinofuranosyl)uracil 45e and the acid sensitive 2’-deoxyuridine 45f with DBH at ambient temperature produced the corresponding 5-brominated products in good yields (entries 8 and 9).

Extension to cytidine nucleosides

With the successful application of C5-bromination of uridine nucleosides with DBH, I imagined the extension of the DBH-bromination methodology toward the synthesis of C5-brominated cytidine analogues. Thus, treatment of cytidine 47a with 0.55 equiv. of DBH at room temperature in DMF produced 5-bromocytidine 47b after only 30 minutes (72% yield, Figure 17; Table 4, entry 10).

Table 4. Bromination at C5 position of the pyrimidine based nucleosides 45a-f and 57-59

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Solvent</th>
<th>Temp. (°C)</th>
<th>DBH (equiv.)</th>
<th>TMSOTf (equiv.)</th>
<th>Time (h)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45a</td>
<td>46a</td>
<td>CH₂Cl₂</td>
<td>25</td>
<td>0.55</td>
<td>0.55</td>
<td>6</td>
<td>94c</td>
</tr>
<tr>
<td>2</td>
<td>45b</td>
<td>46b</td>
<td>CH₂Cl₂</td>
<td>25</td>
<td>0.55</td>
<td>0.55</td>
<td>10</td>
<td>91c</td>
</tr>
<tr>
<td>3</td>
<td>45b</td>
<td>46b</td>
<td>CH₃CN</td>
<td>25</td>
<td>0.55</td>
<td>0.55</td>
<td>2</td>
<td>98c</td>
</tr>
<tr>
<td>4</td>
<td>45c</td>
<td>46c</td>
<td>CH₂Cl₂</td>
<td>25</td>
<td>1.10</td>
<td>-</td>
<td>18</td>
<td>72d</td>
</tr>
<tr>
<td>5</td>
<td>45c</td>
<td>46c</td>
<td>CH₂Cl₂</td>
<td>25</td>
<td>0.55</td>
<td>0.55</td>
<td>2.5</td>
<td>90c</td>
</tr>
</tbody>
</table>
Bromination was performed on 0.25-2.0 mmol scale. Isolated yield. After aqueous work-up with purity higher than 97% (1H NMR). After column chromatography. After crystallization. Direct crystallization of the crude reaction mixture from MeOH gave 48b in 46% yield.

Analogously, bromination of 4-N-benzoylcytidine 48a proceeded smoothly generating 48b (entry 11), which implies that the presence of an electron withdrawing group on the cytosine ring (N4-benzoyl) does not affect the efficiency of bromination.

Protection group compatibility

I also found that DBH bromination methodology was compatible with common protection groups used in nucleoside chemistry. Thus, treatment of 5‘-O-(tert-butyl(dimethyl)silyl)-2‘,3‘-O-isopropylideneuridine 49a with 0.55 equiv. of DBH in DMF afforded the corresponding 5-bromo product 49b in quantitative yield (Figure 17; Table 4, entry 12). It was already shown that base-labile acetyl groups were stable during DBH-bromination (e.g., Table 3). Therefore, it can be concluded that acid
labile as well as base labile protection groups are stable toward DBH-bromination protocol.

Figure 17. Selected pyrimidine nucleoside precursors (series a) and their brominated products (series b).

C5-Bromination of unprotected pyrimidine nucleosides with DBH in MeOH

Since DMF has to be removed from the crude reaction mixture before purification of the brominated products, I used a low-boiling polar solvent such as MeOH as a replacement for DMF. To my surprise, treatment of uridine 45d with DBH (0.55 equiv.) in MeOH at room temperature for 1 h yielded 5-bromouridine 46d in 70% yield (crystallization) (Scheme 4; Table 4, entry 13). Analogously, cytidine 47a was also brominated using DBH in MeOH generating 5-bromocytidine 47b (Figure 17; Table 4, entry 14) after only 1 h in 68% yield (column chromatography). Therefore, it can be concluded that DBH/MeOH system offers a convenient access to the unprotected 5-bromopyrimidine nucleosides.

3.1.2 Bromination at C8 position of purine nucleosides with DBH

Next, I planned the extension of the DBH and DBH/TMSOTf combination toward the synthesis of 8-bromo purine nucleosides. Thus, treatment of adenosine 50a with DBH (1.75 equiv.) in DMF at room temperature gave 8-bromoadenosine 50b (48% yield) after 5 h at ambient temperature (Figure 18, Table 5, entry 1). Analogous treatment of 2'-
deoxyadenosine 51a with DBH (1.5 equiv.) afforded 8-bromo-2'-deoxyadenosine 51b in 68% yield in 3.5 h (entry 2).

![Chemical structures](image)

Figure 18. Selected purine nucleoside precursors (series a) and their brominated products (series b).

The 2',3',5'-tri-O-acetylguanosine 52a was converted to the 8-bromo derivative 52b upon treatment with 0.55 equiv. of DBH in DMF at room temperature for 2.5 h (entry 3). Replacement of DMF with CH₃CN decreased the rate of bromination yielding 52b after 4 h at room temperature (entry 4). On the other hand, treatment of guanosine with 0.75 equiv. of DBH in DMF at ambient temperature produced 8-bromoguanosine in 48% yield after recrystallization from water (entry 5). Use of TMSOTf did not improve the yield of 8-bromoguanosine 53b, though less equiv. of DBH was required for complete conversion (entry 6). Treatment of inosine or acetyl protected inosine with DBH or DBH/TMSOTf in DMF failed to afford 8-bromoinosine, which was in accordance with the reported failed bromination attempts of inosine with NBS in DMF.123
Table 5. Bromination of selected purine nucleosides at ambient temperature (see Figure 11 for structures)a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Solvent</th>
<th>DBH (equiv.)</th>
<th>TMSOTf (equiv.)</th>
<th>Time (h)</th>
<th>Yieldb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50a</td>
<td>50b</td>
<td>DMF</td>
<td>1.75</td>
<td>-</td>
<td>5</td>
<td>48c,d</td>
</tr>
<tr>
<td>2</td>
<td>51a</td>
<td>51b</td>
<td>DMF</td>
<td>1.50</td>
<td>-</td>
<td>3.5</td>
<td>68c,d</td>
</tr>
<tr>
<td>3</td>
<td>52a</td>
<td>52b</td>
<td>DMF</td>
<td>0.55</td>
<td>-</td>
<td>2.5</td>
<td>83c</td>
</tr>
<tr>
<td>4</td>
<td>52a</td>
<td>52b</td>
<td>CH\textsubscript{3}CN</td>
<td>0.55</td>
<td>-</td>
<td>4</td>
<td>98e</td>
</tr>
<tr>
<td>5</td>
<td>53a</td>
<td>53b</td>
<td>DMF</td>
<td>0.75f</td>
<td>-</td>
<td>2.5</td>
<td>51g</td>
</tr>
<tr>
<td>6</td>
<td>53a</td>
<td>53b</td>
<td>DMF</td>
<td>0.60</td>
<td>0.55</td>
<td>0.5</td>
<td>48g</td>
</tr>
<tr>
<td>7</td>
<td>50a</td>
<td>50b</td>
<td>MeOH</td>
<td>1.75</td>
<td>-</td>
<td>16</td>
<td>47c,j</td>
</tr>
<tr>
<td>8</td>
<td>51a</td>
<td>51b</td>
<td>MeOH</td>
<td>1.50</td>
<td>-</td>
<td>3.5</td>
<td>70f</td>
</tr>
<tr>
<td>9</td>
<td>53a</td>
<td>53b</td>
<td>MeOH</td>
<td>0.55</td>
<td>-</td>
<td>1</td>
<td>50g</td>
</tr>
<tr>
<td>10</td>
<td>54a</td>
<td>54b</td>
<td>MeOH</td>
<td>0.55</td>
<td>-</td>
<td>0.5</td>
<td>72i</td>
</tr>
</tbody>
</table>

aBromination was performed on 0.5-1 mmol scale. b Isolated yield. c After column chromatography. d Reaction showed formation of the product in approximately 80\% yield (TLC). e Isolated yield after aqueous work-up. f Reaction with 0.55 equiv. of DBH was completed in 24 h. g After crystallization from water. Bromination was quantitative as judged by TLC. i After filtration from reaction. j Reaction showed formation of the product in approximately 70\% yield (TLC).

In conclusion, DBH and/or DBH/TMSOTf also effected bromination of purine nucleosides at the C8-position, although reactions usually required higher equivalency of DBH, longer reaction times, and produced the corresponding brominated products in lower yields when compared to the pyrimidine analogues.

\textit{C8-Bromination of unprotected purine nucleosides with DBH in MeOH}
Next, I designed the extension of the DBH/MeOH system toward the synthesis of 8-bromo purine nucleosides. Thus, treatment of adenosine 50a with DBH (1.75 equiv.) in MeOH at room temperature gave 8-bromoadenosine 50b (47% yield) after 16 h at ambient temperature (Figure 18, Table 5, entry 7). Analogous treatment of 2'-deoxyadenosine 51a with DBH (1.5 equiv.) showed only ~70% conversion to 8-bromo-2'-deoxyadenosine 51b (entry 8, TLC scale reaction). Interestingly, treatment of guanosine 53a with DBH (0.55 equiv.) in MeOH at room temperature yielded 8-bromoguanosine 53b in 50% yield after recrystallization of the crude reaction mixture from water (entry 9). In contrast, treatment of 2'-deoxyguanosine 54a with DBH in MeOH at room temperature for 30 minutes led to the solidification of product 54b from the reaction. The resultant solid was collected by vacuum filtration and was >95% pure on 1H-NMR (entry 10). In conclusion, DBH/MeOH system works very efficiently with guanine nucleosides and moderately efficient with adenine nucleosides.

3.1.3. Bromination at C8 position of 7-deazapurine nucleosides with NBS and DBH

Encouraged by my findings of bromination of purine nucleosides at C8 position with DBH, I further explored possibility of bromination of 7-deazapurine antibiotics (19b-c) with DBH as well as with NBS (Scheme 5). Previously, 8-bromotoyocamycin (55) was prepared either from coupling 8-bromo-7-deazapurine derivative to the ribose sugar derivative124 or by treating 19c with Br2/H2O125. I achieved the synthesis of compound 55 by two procedures, both proceeding by electrophilic aromatic substitution. One involved electrophilic aromatic substitution using N-bromosuccinimide (NBS) in anhydrous dimethylformaldehyde (DMF). The second route employed substitution using
1,3-dibromo-5,5-dimethylhydantoin (DBH/DBDMH) in MeOH. Thus, treatment of 19c with NBS in DMF at ambient temperature for 2.5 h yielded 55 in 45% after column chromatography. Reaction took 4 h to complete when DMF was replaced with MeOH to give 55 in 64% after recrystallization. However, bromination of 19c using DBH in MeOH proceeded efficiently in 30 min by which time product solidified out of solution, was collected by vacuum filtration and the mother liquor was recrystallized to give 55 in 85% overall yield. The DBH/MeOH method was the most efficient of the three for synthesizing 55 in terms of yield, reaction time, product isolation.

Scheme 5. Synthesis of 8-bromo-7-deazanucleosides. Reagents and conditions: d) NBS (1.1-1.5 eq), DMF, rt, 1-2.5 h; e) DBH (0.75-1.1 eq), MeOH, rt, 30-45 min.

Over the years, the synthesis of 8-bromosangivamycin 56 has mainly been achieved by conversion of 55 to 56 using concentrated ammonium hydroxide and 50% hydrogen peroxide solution. Owing to the successful preparation of 55, we envisioned the synthesis of 56 using NBS/DMF and DBH/MeOH systems. Thus, treatment of sangivamycin (19b) with NBS in DMF at ambient temperature for 1.5 h gave 8-bromosangivamycin (56) in 63% yield after column chromatography. Even though the reaction proceeded faster in DBH/MeOH system (30 min) the yield was low (40%), which can be attributed to the presence of some unidentified byproducts. Fortunately, there is literature precedence for convenient synthesis of 56 from 55. Thus, treatment
of 55 with NH₄OH/50%H₂O₂ system gave 56 in 86% yield after vacuum filtration from the reaction mixture. In summary, an efficient bromination methodology for the synthesis of 8-bromotoyocamycin and 8-bromosangivamycin was developed using NBS/DMF and DBH/MeOH systems.

3.1.4. Plausible mechanism of bromination of nucleobases with DBH

Bromination of nucleosides using DBH is expected to proceed via aromatic electrophilic bromination pathway with bromonium ion (Br⁺) as the bromine source from DBH.

Plausible mechanism for C-5 bromination of pyrimidines by DBH

Carbocation intermediate (type A) is generated upon reaction of pyrimidine base 57 with DBH (Scheme 6). The intermediate A is highly unlikely to exist in resonance with the intermediate B, because of the presence of electropositive carbonyl group adjacent to the N1 centered cation. Abstraction of the proton from C5 by the anion C regenerates the aromaticity, thus providing the 5-bromopyrimidine product 58.

Scheme 6. Plausible mechanism of C-5 bromination of pyrimidine nucleosides by DBH.

Plausible mechanism for C-8 bromination of purines by DBH
I hypothesize that the N7-C8 double bond of purine 59 abstracts a bromonium ion (Br⁺) from DBH to give nitrogen centered cation A, which is stabilized by three resonance structures B-D (Scheme 7). Then aromaticity is regenerated by abstraction of proton at C8 position in A’, probably by hydantoin intermediate E, to give the 8-bromopurine product 60.

Scheme 7. Plausible mechanism of C-8 bromination of purine nucleosides by DBH.

Plausible mechanism for TMSOTf activation of DBH.\(^{126}\)

Upon reaction with TMSOTf (61), DBH generates a silylenol intermediate A along with a reactive bromonium triflate (TfOBr) intermediate B. Intermediate B acts as the actual bromonium ion (Br⁺) source for the bromination of the pyrimidine/purine substrate 62 to generate the corresponding brominated product 63 along with triflic acid (TfOH, C) (Scheme 8). Triflic acid C is reacts with the silylenol intermediate A to give another silylenol intermediate D and one more equivalent of TfOBr (E). Second equivalent of substrate 62 gets brominated with E to release TfOH (F), which then reacts with the silylenol intermediate D to give 5,5-dimethylhydantoin (DMH, G) and TMSOTf.
Scheme 8. Plausible mechanism of TMSOTf enhanced DBH bromination.

3.2. Attempted synthesis of 2'-deoxy-2',2''-difluoropyrimidine nucleosides

Because of the ease of preparation of 2'-S-aryl-2'-deoxy-2'-thiouridine (64, Figure 19) and 2'-deoxy-2'-α-fluorosulfone derivative (65), I explored the possibility of introduction of mono and/or difluoro unit into the C2' position using oxidative desulfurization-(di)fluorination and reductive desulfonylation-fluorination methods. The oxidative fluorination processes were envisioned to proceed via (i) desulfurization-difluorination of the uridine-2'-thioethers (substrate 64, X = H) or (ii) desulfurization-fluorination of uridine α-fluorothioethers (substrate 64, X = F) by using halonium ion (Br\(^+\), I\(^+\)) reagents as oxidants and a nucleophilic fluorine source (F\(^-\)) for quenching the intermediary C2'-carbocation. Whereas, the reductive fluorination processes were proposed to proceed via (i) abstraction of the C2'-proton (from substrate 65, X = H) using a base and quenching the intermediary C2'-carbanion with electrophiles such as F\(^+\), H\(^+\), CH\(_3\)\(^+\), etc.; or (ii) cleavage of the sulfonyl moiety (from substrate 65, X = H or F) with single electron transfer reagents and quenching the resultant C2'-carbanion with electrophiles such as F\(^+\), H\(^+\), CH\(_3\)\(^+\), etc.
3.2.1. Oxidative desulfurization-fluorination approaches

The oxidative fluorination approach is modeled on Haufe’s desulfurization-difluorination of aryl-alkyl thioethers using DBH and Olah’s reagent (Py.9HF) for the synthesis of gem-difluoroalkanes (Scheme 9).42,43

Scheme 9. General scheme for Haufe’s desulfurization-difluorination of aryl-alkyl thioethers.

3.2.1.1. Model desulfurization-fluorination studies

To apply Haufe’s desulfurization-difluorination methodology to nucleoside substrates, it is necessary to test the general applicability of the method on model compounds first. As the C2'-position, where the thioether functionality is present, is in α-position to an aminal carbon, substrates with an aminal or electron withdrawing group on the α-position should be used in model studies. Another reason for conducting model reactions on such substrates which would mimic C2' of ribose unit in the pyrimidine nucleoside substrates is because all previous desulfurization-difluorination protocols were successful only for the compounds where the sulfenyl/phenylthio group is present on the
terminal and primary carbon. Therefore, I developed a desulfurization-difluorination protocol of α-thioesters, where in the sulfenyl group is present in the middle of the chain on a secondary carbon.

Initially, open chain aryl-alkyl thioethers (of type 72-75, Scheme 10) with an ester group on the α-position (prepared conveniently from commercially available ethyl 2-bromoalkanoate 71a or 71b) were tested for desulfurization-difluorination protocol. Thus, treatment of ethyl 2-(phenylthio)octanoate 72 with DBH (3 eq.) and Olah’s reagent (6 eq.) in CH₂Cl₂ at ambient temperature for 2 h gave ethyl 2,2-difluoroocetanoate 77 in 80% yield after only aqueous workup (Table 6, entry 1). However, analogous treatment of 72 with DBH/Py.9HF for 4 h gave 77 in 90% yield after aqueous workup (entry 2). To study the effect of temperature, phenylthioether 72 was treated with DBH (3 eq.) and Olah’s reagent (6 eq.) in CH₂Cl₂ at 35 °C and the difluoro product 77 was obtained in 85% yield after only 1 h (entry 3). But 77 was obtained in 95% yield after stirring the reaction for 2 h at 35 °C (entry 4).

![Scheme 10. Desulfurization-difluorination of α-thioesters.](image)

To test the influence of the substituent on the para position of aromatic ring of the thioether substrates, 4-chlorophenyl thioether (73-74) and 4-methoxyphenyl thioether (75) were selected. Thus, treatment of ethyl 2-((4-chlorophenyl)thio)hexanoate 73 with
DBH (3 eq.) and Olah’s reagent (6 eq.) in CH₂Cl₂ at ambient temperature for 1 h gave ethyl 2,2-difluorohexanoate 76 in 80% yield after only aqueous workup (Table 6, entry 5). However, difluoro ester 76 was obtained in 90% yield when the reaction was stirred for 2 h (entry 6). In addition, treatment of 4-chlorophenyl thioether 73 with DBH (3 eq.) and Olah’s reagent (6 eq.) in CH₂Cl₂ at 35 °C generated the difluoro product 76 in 95% yield after only 1 h (entry 7). Interestingly, no geminal bromo-fluoro by product was observed in crude NMR and GC-MS. When less equivalents of DBH (3 equiv. vs 2 equiv.) and Olah’s reagent (6 equiv. vs 4 equiv.) were used, decreased yield of the difluoro product 76 (80%) was observed (entry 8). Thus, 3 equiv. of DBH and 6 equiv. of Olah’s reagent were found to be optimal for the desulfurization-difluorination reactions.

DBH vs NBS vs NIS

Treatment of ethyl 2-((4-chlorophenyl)thio)octanoate 74 with N-bromosuccinimide (NBS; 3 eq.) and Olah’s reagent (6 eq.) in CH₂Cl₂ at 35 °C for 2 h followed by aqueous workup showed complex ¹H-NMR spectrum and the difluoro octanoate 77 was only found to be 25% according to the ¹⁹F-NMR of the crude. There was no increase in % of difluoro product 77 even after stirring for 4 h at 35 °C (entry 9). Analogous treatment of 74 with N-iodosuccinimide (NIS; 3 eq.) and Olah’s reagent (6 eq.) in CH₂Cl₂ at 35 °C for 24 h gave very complex ¹H-NMR and ¹⁹F-NMR, with the difluoroproduct 77 was found to be 5% (entry 10). Thus, DBH was proven to be more effective than other halogen oxidants such as NBS or NIS, as observed by Haufe, et al.⁴³

Table 6. Desulfurization-difluorination studies of α-thioester derivatives with DBH/Py.9HF⁴⁰
<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>X</th>
<th>Oxidant (eq)</th>
<th>Py.9HF (eq)</th>
<th>Temp. (°C)</th>
<th>Time (h)</th>
<th>Yield<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72</td>
<td>H</td>
<td>DBH (3)</td>
<td>6</td>
<td>25</td>
<td>2</td>
<td>80%</td>
</tr>
<tr>
<td>2</td>
<td>72</td>
<td>H</td>
<td>DBH (3)</td>
<td>6</td>
<td>25</td>
<td>4</td>
<td>90%</td>
</tr>
<tr>
<td>3</td>
<td>72</td>
<td>H</td>
<td>DBH (3)</td>
<td>6</td>
<td>35</td>
<td>1</td>
<td>85%</td>
</tr>
<tr>
<td>4</td>
<td>72</td>
<td>H</td>
<td>DBH (3)</td>
<td>6</td>
<td>35</td>
<td>2</td>
<td>95%</td>
</tr>
<tr>
<td>5</td>
<td>73</td>
<td>Cl</td>
<td>DBH (3)</td>
<td>6</td>
<td>25</td>
<td>1</td>
<td>85%</td>
</tr>
<tr>
<td>6</td>
<td>73</td>
<td>Cl</td>
<td>DBH (3)</td>
<td>6</td>
<td>25</td>
<td>2</td>
<td>90%</td>
</tr>
<tr>
<td>7</td>
<td>73</td>
<td>Cl</td>
<td>DBH (3)</td>
<td>6</td>
<td>35</td>
<td>1</td>
<td>95%</td>
</tr>
<tr>
<td>8</td>
<td>73</td>
<td>Cl</td>
<td>DBH (2)</td>
<td>4</td>
<td>35</td>
<td>1</td>
<td>80%</td>
</tr>
<tr>
<td>9</td>
<td>74</td>
<td>Cl</td>
<td>NBS (3)</td>
<td>6</td>
<td>35</td>
<td>4</td>
<td>25%</td>
</tr>
<tr>
<td>10</td>
<td>74</td>
<td>Cl</td>
<td>NIS (3)</td>
<td>6</td>
<td>35</td>
<td>24</td>
<td>5%</td>
</tr>
<tr>
<td>11</td>
<td>75</td>
<td>OCH<sub>3</sub></td>
<td>DBH (3)</td>
<td>6</td>
<td>35</td>
<td>16</td>
<td>70%</td>
</tr>
</tbody>
</table>

^a Reactions were typically carried out in 0.5 mmol scale in CH₂Cl₂

^b Yields were determined based on conversion of substrate to product as determined by ¹H, ¹³C, ¹⁹F NMR and/or GC-MS.

Continuing with my optimization studies, I then treated ethyl 2-((4-methoxyphenyl)thio)hexanoate 75 under the established conditions of DBH/Py.9HF (3equiv./6equiv.) in CH₂Cl₂ at 35 °C. However, the reaction was very sluggish in nature and gave ethyl 2,2-difluorohexanoate 76 in 70% NMR purity after 16 h of stirring (entry 11). Thus, it was concluded that 4-chlorophenyl thioethers reacted faster than the corresponding phenyl and 4-methoxyphenyl thioethers, as noted by Haufe, et al.⁴³

The variations in reactivity with change in the para substituent of the aromatic group of the thioether can be explained by the plausible mechanism proposed by Haufe, et al., for the desulfurization-difluorination reactions.⁴³
Scheme 11. Proposed mechanism for the oxidative desulfurization-difluorination of alkyl-aryl thioethers by DBH/Py.9HF

The electron-donating groups (such as OMe) on the phenyl ring are thought to stabilize the cationic charge on the resonance stabilized carbenium-sulfonium ion intermediate (type C, Scheme 11) and thus promote the first fluorination step; while electron-withdrawing substituents (such as Cl) are thought to ease the elimination of arylsulfenyl bromide (from type E) in the last step and therefore promote the second fluorination step. The proposed mechanism was supported by the observation that 4-chlorophenyl thioether took half the time than the regular phenyl thioether (Table 6, entries 1-4 vs 5-7); whereas 4-methoxyphenyl thioether reaction never went to completion under analogous reaction conditions (entry 11).

Ester vs aldehyde vs ketone vs alkane

Next, I attempted to extend the desulfurization-difluorination of 2° alkyl-aryl thioethers to substrates with other functional groups on the α-position of the thioether moiety. Thus, the 2-((4-chlorophenyl)thio)-3-phenylpropanal (78) and 2-((4-
chlorophenyl)thio)-1-phenylpropan-1-one (79), which have a carbonyl functional group on the α-carbon similar to an ester; and α-thioalkane (80), which does not have a carbonyl group on the α-carbon; were prepared from their corresponding α-bromo counterparts (Figure 20).

Figure 20. α-Thioaldehyde, α-thioketone and α-thioalkane substrates for attempted desulfurization-(di)fluorination reactions.

However, treatment of α-thioaldehyde 78 with DBH (3 equiv.) and Py.9HF (6 equiv.) in CH₂Cl₂ at 35 °C for 1 h, followed by aqueous workup showed complex ¹H-NMR spectrum and no signals in the ¹⁹F-NMR. And similar results were obtained when α-thioketone 79 and α-thioalkane 80 were treated with DBH/Py.9HF under analogous reaction conditions. No fluorination was observed with either of the three substrates even after using excess amounts of DBH and Py.9HF, at higher temperatures and for prolonged reaction times. Thus it was implied that my protocol for the desulfurization-difluorination of secondary/internal thioethers works for compounds with only ester functional groups on the α-carbon.

As a result of functional group similarities between esters and lactones, I then tried to extend the application of the desulfurization-defluorination methodology towards the synthesis of gem-difluorinated lactone derivatives. Thus, treatment of 2-phenylthio-5-pentanolide 81 with DBH (4 equiv.) and Py.9HF (8 equiv.) in CH₂Cl₂ at 35 °C for 2 h, followed by aqueous workup gave yellow oil, which showed complex ¹H-NMR
(Scheme 12). The 19F-NMR of the crude material showed triplets in the range of -100 ppm ($J = 15.8$ Hz), in agreement with the literature 19F-NMR peaks for gem-difluorolactones, thus indicating the presence of the gem-difluorinated product 82. Increase in duration of the reaction gave even more complex 19F-NMR spectrum. Therefore, considering the volatile and unstable nature of the difluorolactones, I chose to pursue less volatile 2,3-dideoxy-2-thioribonolactone precursors of type 83.

![Scheme 12. Attempted synthesis of α,α-difluoro-δ-valerolactone 82.](image)

Thus, treatment of (S)-(+)2-phenylthio-4-benzyloxymethyl-4-butanolide 83 with DBH (4 equiv.) and Py.9HF (8 equiv.) in CH$_2$Cl$_2$ at 35 °C for 16 h, followed by aqueous workup showed complex TLC and multiple products on 1H-NMR (Scheme 13). The 19F-NMR of the crude material showed multiplets in the region of -140 ppm and -150 ppm. And HRMS showed m/z corresponding to α-fluorosulfide 84 and α-fluorosulfoxide 85. This indicates that monofluorination occurred, albeit in very low yield.

![Scheme 13. Attempted synthesis of α,α-difluoro-γ-butyrolactone 86.](image)
3.2.1.2. Oxidative desulfurization-fluorination approaches with uridine derivatives

Although my attempts in oxidative desulfurization-difluorination of 2,3-dideoxy-2-(phenylthio)-2-S-ribonolactone precursor (83) were partially encouraging, I next attempted analogous fluorination on 2'S-aryl-2'-thiouridine analogues 89/90 and 2'S-aryl-2'-deoxy-2'-fluoro-2'-thiouridine analogue 93, since the substrates were readily available for us (Scheme 14). The precursors 2'S-(4-chlorophenyl)-2'-thiouridine 87 and 2'S-(4-methoxyphenyl)-2'-thiouridine 88 were synthesized in three steps from uridine following the well-established procedure of preparing 2,2'-anhydroarabinouridine from uridine followed by ring opening with thiolates. The precursor 2'S-(4-chlorophenyl)-2'-thiouridine 87 was prepared by a slight modification of the published procedure. The 4-chlorothiophenol reagent was stirred with PPh$_3$ in DMF for 30 min at room temperature before refluxing with 2,2'-anhydroarabinouridine, to reduce all the possible disulfide to the free thiol. Subsequent protections of 3',5'-hydroxyl groups and/or N3 with either acetyl or benzyl protection groups gave the desired 2'S-aryl-2'-thiouridine precursors 89/90. The second class of substrates required for desulfurization-fluorination reactions is α-fluoro thioether derivatives 93, which can be synthesized from thioether 90 by oxidation to the corresponding sulfoxides and subsequent fluorination of sulfoxides 92 with DAST/SbCl$_3$, as reported. In addition, sulfone precursors for reductive desulfonylation-fluorination reactions were also readily prepared, following literature protocols. Thus, oxidation of the 2'S-aryl-2'-thiouridine precursors 89/90 with meta-chloroperoxybenzoic acid (mCPBA) at ambient temperature gave the corresponding 2'-deoxy-2'-arylsulfonyluridine derivatives 91/92. Analogously, 2'-deoxy-2'-fluoro-2'-(4-methoxyphenyl)sulfonyluridine derivative 95 was obtained by treatment of 2'-deoxy-2'-
fluoro-2'-((4-methoxyphenyl)sulfonyl)uridine derivative 94 with mCPBA at ambient temperature.

Treatment of 3',5'-di-O-acetyl-2'-S-(4-chlorophenyl)-2'-thiouridine 89a with DBH/Py.9HF at -78 °C, under Argon atmosphere for 2 h showed three new spots on TLC (Scheme 15). Aqueous workup followed by column chromatography yielded three different products in 41%, 18% and 30% respectively. The first product was established to be 5-bromo-3',5'-di-O-acetyl-2'-S-(4-chlorophenyl)-2'-thiouridine (96a, 41%). Signature peak (d or dd) for H5 at 5.67 ppm in 1H-NMR was missing and the corresponding doublet for H6 (7.17 ppm) was collapsed to a singlet (6.98 ppm), implying a C5-brominated product, which probably was caused by DBH. The remaining two products were C5-brominated sulfoxide diastereoisomers [97 (R/S-S)]. Doublet of doublets for H2' was found at 3.92 ppm for the faster moving sulfoxide and at 3.72 for
the slower moving isomer. In comparison, peak for H2' for the C5-brominated product 96 was at 3.47 ppm, and for the substrate 89a was at 3.78 ppm.

Fluorination attempts of 89a employing Py.9HF/NBS also gave the corresponding 5-brominated derivative 96a as major product (conditions not shown in scheme), while no desired fluorination was observed (19F-NMR; data not shown). Based on these findings, a novel and efficient protocol for C5-bromination of pyrimidine nucleosides and C8-bromination of purine nucleosides with DBH and/or Lewis acids has been developed.137 Analogous treatment of 89a with the recently developed NIS/DAST system138,139 at rt as well as at 35 ºC gave the corresponding 5-iodinated analogue 96b in 73% and 60% isolated yields respectively, with no indication of the fluorinated products.

Scheme 15. Oxidative desulfurization-difluorination of 2'-S-aryl-2'-thiouridine analogue 89a. Conditions A: DBH (1.1 eq), Py.9HF (excess), CH2Cl2, -78 ºC, 2 h; Conditions B: NIS (3 eq), DAST (6 eq), CH2Cl2, 0 ºC (6 h), then rt (32 h); Conditions C: NIS (3 eq), DAST (6 eq), CH2Cl2, 35 ºC, 24 h.

Treatment of 89a with DBH (3 eq.)/Py.9HF (6 eq.)/CH2Cl2/35 ºC/24 h gave a complex reaction mixture showing formation of the 5-bromo-2'-α-fluorosulfoxide 99a (<10% according to 1H, 19F NMR of the crude; data not shown; Figure 21). Changing the acetyl protection group for a benzyl group did not improve the outcome of the reaction. Treatment of the fully benzylated 89b with DBH (5 eq.)/Py.9HF (10 eq.)/CH2Cl2/35 ºC/24 h gave a complex reaction mixture showing formation of the 5-bromo-2'-α-fluorosulfoxide 99b (<10% according to 1H, 19F NMR of the crude; data not shown; Figure 21).
°C/overnight gave a complex mixture indicating the formation of 5-bromo-2′-α-fluorosulfide 98 or 5-bromo-2′-α-fluorosulfoxide 99b (\(^{1}H, ^{19}F\)-NMR of the crude).

![Structures](image)

Figure 21. Products for attempted fluorination of 2′-S-(4-chlorophenyl)-2′-thiouridine derivatives 89a and 89b

Similarly, treatment of fully benzylated 2′-S-(4-methoxyphenyl)-2′-thiouridine 90b with NIS (2.1 eq.)/Py.9HF (3 eq.) gave the corresponding 5-iodocounterpart (100, 29%) and the α-fluorothioether (94b, 12%) (Scheme 16). Analogous treatment of 90b with the recently developed NIS/DAST system\(^{138,139}\) yielded the α-fluorothioether 94b in 44% isolated yield when 2.1 equiv. of NIS and 6 equiv. of DAST were used. Interestingly, the 5-ido derivative 100 was not observed with NIS/DAST system. However, both the reactions failed to generate the desired geminal difluoro uridine product. On the other hand, treatment of 90b with DBH (3 eq.)/Py.9HF (6 eq.)/35 °C generated a complex reaction mixture Thus, it is noteworthy to conclude that NIS/DAST system provided clean conversion of sulfide 90b to the mono-fluorinated analogue 94b in respectable yield.

![Reaction Scheme](image)
Scheme 16. Attempted oxidative desulfurization-fluorination of 2'-S-(4-methoxyphenyl)-2'-thiouridine analogue 90b. Conditions A: NIS (2.1 eq), Py.9HF (3 eq); Conditions B: NIS (2.1 eq), DAST (6 eq).

Next, the α-fluorothioether 94b, was also directly explored as substrate for the second fluorination step leading to the expected gem-difluorouridine derivative. Unfortunately, treatment of 94b with DBH/Py.9HF at -78 °C gave the corresponding 5-brominated derivative as major product (101, 50%), with no indication of the geminal difluoro product (Scheme 17). The introduction of the desired second fluorine atom was unsuccessful even when excess reagents, higher temperatures, and longer reaction times were employed.

Scheme 17. Attempted oxidative desulfurization-fluorination of 2'-fluoro-2'-S-(4-methoxyphenyl)-2'-thiouridine analogue 94b with DBH/Py.9HF.

3.2.2. Reductive desulfonylation-fluorination approaches

Since the oxidative desulfurization-difluorination approaches on 2'-arylthiouridine derivatives were overshadowed by the formation of 5-halogenated byproducts and were not very promising for the introduction of the geminal difluoro unit, I turned my attention to reductive fluorination approaches of 2'-arylsulfonyluridine substrates. Reductive desulfonylation-(di)fluorination protocols are to the best of my knowledge, unknown processes, while chemical and electrochemical-induced reductive desulfonylation reactions have been known for years.140-150 Chemical and electrochemical redox
strategies have rarely been reported in nucleoside series, except some reductive
dehalogenation or desulfonylation protocols en route to 2',3'-dideoxy-2',3'-didehydro
nucleosides with anti-HIV and anti-HBV properties.151-160

This part of the dissertation was completed in collaboration with Dr. Maurice
Medebielle of Université Claude Bernard Lyon 1, France; Dr. Gamal Giuglio and Dr.
Julie Broggi of Aix-Marseille Université, France.

3.2.2.1. Cyclic voltammetry studies of 2'-arylsulfonyl uridine derivatives

Initially, our collaborators performed cyclic voltammetry studies with various 2'-
deoxy-2'-S-(arylsulfonyl)-2'-thiouridine and 2'-deoxy-2'-fluoro-2'-S-(arylsulfonyl)-2'-
thiouridine substrates to find out the reduction potential at which the sulfone moiety
could be cleaved. Sulfone derivatives \textbf{92a} and \textbf{92b} (see Scheme 14 for structures), were
found to be reduced in two irreversible reduction steps in DMF containing 0.1 M \textit{n}-
Bu\textsubscript{4}NPF\textsubscript{6} on a glassy carbon electrode, at almost identical reduction potentials [- 2.73 V
and - 2.95 V for \textbf{92a}; - 2.73 V and - 2.92 V for \textbf{92b} (peak potentials at 0.2 V/s, Figure
22). For both substrates, the first irreversible reduction step (E\textsubscript{pc1}) corresponded to the
cleavage of the C2'-S bond with the expulsion of the \textit{p}-methoxybenzenesulfinate,161 that
can be irreversibly oxidized at + 0.02 V (E\textsubscript{pa2}). The irreversibility of the first reduction
step (E\textsubscript{pc1}) is an indication that the first electron transfer is followed by a chemical
reaction producing a new product that is in turn reduced at a more negative potential
corresponding to the second reduction step (E\textsubscript{pc2}). Additional irreversible oxidation steps,
only observed after scanning first to reduction potentials and then switching to anodic
values, located at + 0.57 and + 0.81 V (\textbf{92a}, E\textsubscript{pa2} and E\textsubscript{pa4}) and + 0.51 V (\textbf{92b}, E\textsubscript{pa3}) (peak
potentials at 0.2 V/s) were also noticed.
Figure 22. Cyclic voltammetry of α-sulfones 92a (C = 2.25 mM, blue curve) and 92b (C = 2.75 mM, pink curve); in DMF + n-Bu4NPF6 0.1M; v = 0.2 V/s.

Cyclic voltammetry of 2'-α-fluorosulfone precursors 95a-b (see Scheme 14 for structures) was also investigated in DMF in order to estimate their reduction potentials. Both substrates are reduced irreversibly at potentials close to -2.67 V (vs Ag/Ag⁺) meaning that the reduction takes place at relatively high reduction potential not far from uracil moiety reduction (Figure 23). For both substrates an irreversible oxidation step is located at + 0.025 V only observed when scanning in the cathodic direction. None of the nucleosides are oxidized up to + 1.5 V.
The data obtained by cyclic voltammetry in DMF indicated that the cleavage of the C2'-S bond, although possible will require (i) quite negative potential under electrochemical activation and (ii) strong chemical reducing agents. Also glycosidic bond cleavage may operate as well at such negative potentials as it is apparently the case for substrates 92a-b. However, from cyclic voltammetry data, it is not obvious to conclude what the possible reduction products resulting after the expulsion of the p-methoxybenzenesulfinate are, at least on the time scale of the cyclic voltammetry. Tentative isolation and characterization of the reductive products, either with the use of chemical reducing agents or using electrochemical activation, was therefore necessary.
3.2.2.2. Reductive desulfonylation-fluorination studies of 2'-deoxy-2'-arylsulfonyl uridine and 2'-deoxy-2'-fluoro-2'-arylsulfonyl uridine substrates

During preparation of sulfone substrates for the reductive fluorination approaches, I observed an interesting result. Purification of 3',5'-di-O-acetyl-2'-deoxy-2'-'[(4-chlorophenyl)sulfonyl]uridine (91a) on silica gel column resulted in the overall elimination of acetic acid to generate 2',3'-didehydro-2',3'-dideoxysulfone 102 as a major product, which has same R$_f$ value as starting material and thus inseparable (1.5:1 ratio of 102:91a; 1H-NMR) (Scheme 18). Structure of the product was confirmed by 1H-NMR (doublet at 7.01 ppm with coupling constant of 1.9 Hz for H3') and also by comparing spectral data with similar 2'-phenylselenonyl derivatives prepared by Chattopadhyaya, et al. Generation of the elimination product 102 was indicative of the increased acidity of C2'-H in C2'-sulfones 91a.

![Scheme 18. Stability studies of sulfones 91a-b on silica gel chromatography or with treatment of base.](image)

To avoid elimination of the acetate group from C3', a stable benzyl protection group was employed (pKa of AcOH = 5 vs pKa of BnOH = 15). As expected, N3-benzyl-3',5'-di-O-benzyl-2'-deoxy-2'-'[(4-chlorophenyl)sulfonyl]uridine (91b) with benzyl protecting group (poor leaving group) installed on 3',5' and N3 positions was stable
during silica gel column purification. Since the C2'-H in C2'-sulfones 91a-b is quite acidic, I envisioned abstraction of C2'-proton with base followed by entrapment of the resultant of C2'-carbanion with fluoronium ion (F⁺) source. However, treatment of sulfone 91b with KH and Selectfluor in THF/DMF (-78 °C) led to the elimination of 3-N-benzyluracil 103 (63%) via the glycosidic bond cleavage (Scheme 18). I also isolated 3,5-di-O-benzyl-1,2-dideoxy-1,2-didehydro-2-[(4-chlorophenyl)sulfonyl]ribose (104; 71%) from the reaction mixture, whose structure was established using spectroscopic data. The singlet from the olefinic proton H1 at 7.4 ppm was diagnostic for the vinyl sulfone sugar 104. It was also found that treatment of sulfone 91b with base only, without Selectfluor, also affected glycosidic bond cleavage to give 103 and 104, consistent with base/Selectfluor system.

Since the base/F⁺ system proved to be too harsh for the sulfone substrates, I imagined an alternative reduction pathway implying the selective cleavage of the sulfone moiety using organic electron donors. Organic electron donors (OED) are powerful reducing agents able to selectively cleave C-X (e.g., X = halogen) bonds by stepwise transfer of one or two electron(s) under mild reaction conditions.163-170 Previous literature studies report the efficient reduction of aryl iodides and bromides to aryl anions, as well as the reductive cleavage of phenylalkylsulfones in excellent yields.171 With redox potentials spanning from - 0.62 V to - 1.24 V vs SCE in DMF (~ - 0.93 V to - 1.55 V vs Ag/Ag⁺ 0.01 M) (Figure 24), OED could allow us to reductively cleave the aryl-alkyl sulfone in the 2'-sulfone precursors 92a-b and 2'-α-fluorosulfone precursors 95a-b.172 Indeed, in view of the high reduction potential of the arylsulfone moiety compared to OED, transferring one electron would theoretically appear difficult. Nevertheless, as
pointed out by Murphy et al., effective redox potentials of organic reducers in solution are much higher than their thermodynamic redox potential determined by electrochemical methods. It is explained by the formation of intimate charge-transfer complexes and ion pairing that eases the electron transfer. Additional π-π stacking between the SED and nucleoside may help to form intimate complex and facilitate the reduction. Hopefully, the generated carbanion intermediate could then be used in electrophile trapping reactions.

Figure 24. Structures of organic electron donors used for the reductive desulfonylation.

Thus, treatment of sulfone 92a was treated with tetrakis(dimethylamino)ethylene (TDAE) in DMF (-78 °C to rt) for 1.25 h followed by aqueous workup and silica gel column chromatography gave furan derivative 105, the enol type (open chain sugar) product 106, and the 3'-acetoxy elimination product 107 as major products (Scheme 19). The anticipated reduction of sulfone moiety was never observed, indicating that the TDAE initially acted as a base and then probably as a reducing agent. It is noteworthy to mention that when 92a was treated with 4-dimethylamino pyridine (DMAP) in DMF at room temperature, almost quantitative formation of 105 was produced, a result supporting the basic pathway (not shown in scheme; data not given).
Analogous treatment of 92a with one equivalent of the more powerful Murphy’s Super Electron Donor (N,N,N’,N’-Tetramethyl-7,8-dihydro-6H-dipyrido[1,2-a;2’,1’-c][1,4]diazepine-2,12-diamine; SED) in DMF at ambient temperature for 15 min yielded furan derivative 105 (95%). The nucleoside base uracil 105a was also identified (but not isolated) by 1H-NMR in the aqueous phase along with other impurities.

Scheme 19. Reduction studies of acetyl protected sulfone substrates 91a with TDAE and Murphy’s SED.

Since the acetyl protection group in 92a is base labile and is prone to elimination from the intermediate C2’-carbanion, I decided to use benzylated sulfone substrates. However, treatment of N3-benzyl-3’,5’-di-O-benzyl-2’-deoxy-2’-[(4-chlorophenyl)sulfonyl]uridine (92b) with Murphy’s reagent in DMF for 15 min at ambient temperature resulted in a similar, rapid glycosidic bond cleavage producing 3-N-benzyluracil 103 (69%) and 3,5-di-O-benzyl-1,2-dideoxy-1,2-didehydro-2’-[4-methoxyphenyl)sulfonyl]ribose (108; 70%) respectively (Scheme 20). This result is in accordance with the result obtained when 92b was treated with base (Scheme 18) and indicated that SED (in stoichiometric amount) was probably acting exclusively as base
and not as reducing agent. Also, analogous treatment of 92b with SED for 30 min at room temperature generated uracil derivative 103 (in 86%), furan derivative 109 as a mixture with vinyl sulfone 108.

Scheme 20. Reduction studies of benzyl protected sulfone substrate 91b with Murphy’s SED.

Since the 2'-sulfone substrates were too labile under the desired reaction conditions, the corresponding α-fluorosulfone substrates (95a-b, see Scheme 14 for structures) were chosen for the further reductive-desulfonylation reactions. Initially, stability of the acetyl protected 2'-(4-methoxyphenylsulfonyl)-2'-deoxy-2'-fluorouridine 95a towards tetrakis(dimethylamino)ethylene (TDAE) was evaluated. Thus, treatment of 95a (2'R/S, ~1:4.5) with 2 equiv. or 4 equiv. of TDAE in DMF at -20 °C for 1 h or at room temperature for 3 h resulted in recovery of unchanged starting material 95a along with 3'-deacetylated byproduct. Longer reaction time (12 h) and higher temperature (60 °C) produced only a mixture of mono- and di-deacetylated byproducts but no further degradation or glycosidic bond cleavage were observed. Replacement of DMF with MeCN gave similar results. Addition of TDAE at 0 °C or above did not cause the reduction of the sulfonyl moiety, indicating that TDAE should be added at low temperatures. Also, replacement of TDAE with other reducing agents such as samarium iodide did not affect the reduction of sulfonyl unit.
On the other hand, treatment of α-fluorosulfone derivative 95a with 1 equiv. of Murphy’s Super Electron Donor (SED) in DMF at rt or 120 °C, overnight gave the 3'-deacetylated product (110) along with unchanged SM (Scheme 21). Similar results were obtained with increased equiv. of SED (3 eq.) at rt. However, previously known fluorovinyl compound 111173 was obtained in 46% yield when 95a was treated with 3 eq. of SED (DMF, 120 °C, overnight) after acidic workup (10% HCl). The structure of 111 was established by \(^{19}\text{F}-\text{NMR} \) (δ -133.8 ppm, t, \(J = 4.6 \text{ Hz} \)) and LC-MS [ESI+ m/z 271 (MH+)]. This result indicated that reductive cleavage of sulfone took place with excess SED at high temperature. Noticeably, when 95a was treated with 4-dimethylamino pyridine (DMAP) in DMF at room temperature, was recovered intact indicating that base-induced pathway is not operating with such α-fluorosulfone.

Scheme 21. Stability studies of acetyl protected α-fluorosulfone 95a with Murphy’s SED.

To avoid the base-promoted elimination of the 3'-acetyl protection group, benzyl protected α-fluorosulfone derivative 95b was employed to study the reduction of sulfone with SED. However, treatment of \(N3\)-benzyl,3',5'-di-O-benzyl protected sulfone 95b under analogous reaction conditions (3 eq. SED, DMF, 120 °C, 3 h) produced a complex
reaction mixture (Scheme 22). Careful silica gel column chromatography allowed for separation of two major products, which are found to be glycosidic bond cleavage products furan 112 and 3-N-benzyluracil 103. Trace amounts of sulfone cleavage product 113 was also isolated from the column. Intriguingly, in the furan derivative 112 sulfone moiety was intact and elimination of fluorine was observed. Formation of 112 could have been happened from either the reduction of glycosidic bond followed by base induced fluoride elimination or vice versa.

Scheme 22. Stability studies of benzyl protected α-fluorosulfones 95b with Murphy’s SED

Analogous treatment of 95b with 3 equiv. of SED in DMF at room temperature gave only trace amounts of 112 and 103 along with unchanged SM. Addition of degazed water at 80°C to the crude, in order to favour the reduction product 113 (to enhance H-abstraction), did not change the outcome of the reaction. The elimination product 112 and 3-N-benzyluracil 103 were obtained in 80% and 60% isolated yields respectively.

Next, in order to prepare gem-difluorouridine analogues, I attempted to insert a second fluorine atom at C2'-position of 2'-arylsulfonyl-2'-deoxy-2'-fluorouridine derivative 95a using reductive-desulfonylation/fluorination approach. If successful this method could be expanded toward the synthesis of other 2'-alkyl-2'-deoxy-2'-fluoro uridine nucleosides. Especially an intriguing target in that class of nucleosides would be
2'-C-methyl-2'-deoxy-2'-fluorouridine because of the potent anti-HCV activity possessed by the corresponding cytidine analogue (PSI 6130).5

Scheme 23. Attempted synthesis of 2'-2''-difluorouridine by reductive desulfonylation-fluorination of 2'-arylsulfonyl-2'-deoxy-2'-fluorouridine 95a with TDAE/Selectfluor

Since 95a was barely reactive towards TDAE at low temperatures with no indication of the generation of putative C2' anion, I tried a combination of TDAE and UV light activation to enhance the electron transfer. Thus, treatment of 95a with 5 equiv. of TDAE at -60 °C and Selectfluor under uv light irradiation produced a mixture of 2',3'-dideoxy-2',3'-didehydro-2'-fluorouridine 111 and 1-(2-deoxy-2-fluoro-β,D-arabinofuranosyl)uracil 114 in addition to the acetyl deprotected byproducts (Scheme 23). Interestingly, no significant by-products resulting from the glycoside bond cleavage was observed. It is noteworthy that when the TDAE was added at 0 °C or room temperature, neither 111 nor 114 were formed, which means the TDAE did not act as a reductant when added at higher temperatures. Furthermore, no formation of the target 2'-deoxy-2',2'-difluorouridine derivative was observed, while the reduction of the employed electrophilic fluorine reagents was detected.
Scheme 24. Reductive-desulfonylation/methylation of 2'-arylsulfonyl-2'-deoxy-2'-fluorouridine 95a with TDAE/MeI

Since fluoronium ion (F+) is the most difficult cation to work with, I chose to test our hypothesis using CH$_3$$^+$$. However, treatment of 95a with TDAE/MeI under analogous reaction conditions yielded acetyl deprotected, N3-methylated analogue 115 as the major product (Scheme 24).

3.3. One electron oxidation of gemcitabine and analogues

Our laboratory has a long history of studying the mechanism of ribonucleotide reductase (RNR) enzyme via chemical modeling studies.174,175 In collaboration with Prof. Stubbe of MIT, we have also been involved in studying mechanism-based inhibitors of RNR by 2'-azido-2'-deoxynucleostides176,177 and probing the mechanism of RNR catalyzed reaction with labeled natural substrates.178 Recently, in collaboration with Dr. Sevilla’s group from Oakland University, we began investigating the generation of radicals upon 1e$^-$ oxidation of various nucleoside substrates.179

Building on this interest, I wanted to explore the possibility of formation of sugar-based radicals in the one-electron (1e$^-$) oxidation of 2'-fluorocytidine analogues such as 2'-fluoro-2'-deoxycytidine (FdC, 38), 2'-deoxy-2',2''-difluorocytidine (dFdC, gemcitabine, 1), and 2'-deoxy-2'-fluoro-2'-C-methylecytidine (MeFdC, PSI 6130, 39) (Figure 25). Each of the three substrates has different stereo and electronic properties which should interact...
with the resultant radical differently. Comparing to 2'-fluoro-2'-deoxycytidine, gemcitabine has an extra fluorine atom, which causes H3' to be more acidic because of its negative inductive effect (-I). Thus I was also hoping that we might capture and analyze the elusive C3' radical, postulated by Stubbe, et al.31 as a critical intermediate in the reduction of RNA monomer to DNA monomer. The presence of a positive inductive effect (+I) causing methyl group makes PSI 6130 a versatile candidate and it would be interesting to study the influence of different substituents at 2'-position (H vs F vs CH₃) on radical generation. Electron spin resonance (ESR) spectroscopy was employed to study the results generated during 1e⁻ oxidation of the selected substrates.

![Chemical Structures](image.png)

Figure 25. Selected substrates for 1e⁻ oxidation studies

3.3.1. Detection of C2' and C3' sugar radicals

The ESR spectrum after γ-irradiation of 2'-deoxy-2'-fluorouridine 38 (7.5 M LiCl/D₂O sample of 2'-dC (2 mg/ml) at pH ca. 10) showed a central anisotropic doublet (ca. 16 G) assigned to α proton at C5 in the 2'-F-dC pi-cation radical (C⁺) 116 and is in keeping with the coupling reported for the C5-H alpha proton coupling in the dC cation radical in single crystals (Scheme 25).180
Scheme 25. One electron oxidation of 2'-deoxy-2'-fluorocytidine

One-electron oxidation of gemcitabine I results in the formation of metastable pi-cation radical 1a, which is unstable even at ca. 155 K (Scheme 26). The metastable C•⁺ 1a quickly deprotonates at C3’ in the sugar moiety producing C3’• 117 via a proton-coupled electron-transfer (PCET) mechanism. The presence of 2ⁿᵈ fluorine atom at 2' position may have increased the acidity of C3'H. Since the presence of one additional fluorine led to such a drastic behavior, I was very interested to study one electron oxidation of 2'-deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130; 39), which is very active against HCV.¹⁸¹ PSI 6130 has a methyl group (+I) instead of a fluorine atom (-I).

Scheme 26. One electron oxidation of gemcitabine

The anti-HCV analogue PSI-6130 (39) also generated C3’-radical 39a via pi-cation radical 118, upon γ-irradiation. But C3’-radical in PSI-6130 was unstable and immediately converted to C2’-radical 119 via loss of hydrogen fluoride (Scheme 27). All the results were in accordance with theoretical model studies and ESR spectroscopy.¹⁸²
This is the first non-enzymatic example of C3'-radical studies on gemcitabine and PSI-6130 and support the mechanism of inhibition of ribonucleotide reductase by these compounds.

Scheme 27. One electron oxidation of PSI-6130

3.4. Synthesis and biological activity of 6-N-benzyl-7-deazapurine nucleoside derivatives

3.4.1. Synthesis of 6-N-benzyl-7-deazapurine nucleosides

I wanted to prepare 6-N-benzylated 7-deazaadenosine analogues (122a-d) using the Dimroth rearrangement, which is widely studied on various adenine nucleosides and other heterocycles.\(^{115,183}\) Initial alkylation takes place at N1 when adenine nucleosides are treated with alkyl/aryl halides to form an N6-centered cationic intermediate (120a; Scheme 28). Treatment of the N1-alkylated intermediate 120a with base leads to ring-opening, C-C bond rotation, and subsequent ring-closing to give the N6-alkylated adenosine product 121. Interesting thing to note in the Dimroth rearrangement sequence is that N1 of substrate becomes N6 in the product, which was established based on isotope labeling studies.\(^{184,185}\)
Scheme 28. General mechanism of Dimroth rearrangement on Adenosine184,185

Thus, treatment of tubercidin (19a) with benzyl bromide in DMF (48 h at 40 °C) showed a baseline spot on TLC, which suggests ionic intermediate(s) (Scheme 29). Evaporation of solvent; treatment of crude with acetone and ether; and vacuum filtration gave a hygroscopic white precipitate. The ionic intermediate was immediately dissolved in methanol and refluxed with dimethylamine (2 M solution in THF) (20 h at 65 °C). TLC showed conversion of majority of the base line spot to a less polar product. Aqueous workup followed by column chromatography gave 4-\(\text{N}\)-benzyltubericin 122a (67%). Structure of the product was established by NMR and HRMS. For comparison, I synthesized the previously known 6-\(\text{N}\)-benzyladenosine (121)115 from adenosine (120) by following same reaction conditions (BnBr/DMF-Me\(\text{2}\)NH/MeOH). I noticed that the TLC during the course of both the reactions was very similar. Therefore it is reasonable to assume that initial alkylation occurred at N3 (same as ring nitrogen N1 in adenosine) in
tubercidin, and treatment of the 3-N-benzyl intermediate with Me₂NH/THF in MeOH resulted in Dimroth-type rearrangement to give 4-N-benzyltubercidin (122a).

Scheme 29. Synthesis of 4-N-benzylated tubercidin and sangivamycin by Dimroth rearrangement approach.

It is well-established that the 6-N-(4-nitrobenzyl) derivatives of adenosine and other adenine nucleosides act as potent nucleoside transport inhibitors. To evaluate the nucleoside transport inhibition properties in a related system, I endeavored to synthesize 4-N-(4-nitrobenzyl) derivatives of the 7-deaza antibiotics. Thus, following the protocol for the synthesis of 122a, reaction of tubercidin 19a with 4-nitrobenzyl bromide (24 h at 80 °C) followed by treatment of the corresponding N-3 alkylated cationic intermediate with Me₂NH/MeOH produced 4-N-(4-nitrobenzyl)tubercidin (122b, 56%, Scheme 29). An analogous base line spot was observed when sangivamycin (19b) was treated with 4-nitrobenzyl bromide (48 h at 40 °C). Isolation of this ionic intermediate immediately followed by treatment with Me₂NH/MeOH yielded 4-N-(4-nitrobenzyl)sangivamycin (122c, 45%). Structures of products 122b-c were established by NMR and elemental analysis.

Since tubercidin and sangivamycin underwent Dimroth-type rearrangement when treated with BnBr followed by Me₂NH, I envisioned the synthesis of 4-N-(4-
nitrobenzyl)toyocamycin (122d) via similar synthetic pathway. However, upon treatment of toyocamycin (19c) with 4-nitrobenzyl bromide (63 h at 40 °C), a major less polar spot than substrate was observed on TLC, as opposed to a more polar spot in case of tubercidin and sangivamycin (Scheme 30). Isolation of the new spot by column chromatography and careful spectroscopic evaluation showed the compound as 4-N-(4-nitrobenzyl)toyocamycin (122d; 46%). Since there was no N3-benzylated cationic intermediate, there was no need for Me₂NH/MeOH treatment. Therefore, a direct alkylation of the exocyclic amine (N4) of toyocamycin was proposed for the formation of 122d.

Scheme 30. Synthesis of 4-N-(4-nitrobenzyl)toyocamycin by direct alkylation.

The direct alkylation of the exocyclic amino group of toyocamycin has not been previously noted. However, direct alkylation on the exocyclic amino group of adenine and guanine with quinone methides is known. The exocyclic amine nitrogen N4 may have become more nucleophilic than the endocyclic nitrogen N3, as a result of the electron withdrawing pull of the cyano group at C5. Another possibility could be that the cylindrical cyano group might exist in synperiplanar orientation with the exocyclic amine group, thereby diminishing the lone-pair donation on N4 toward N3 of the amidine, which is part of the planar heterocyclic system.
Alternatively, the preparation of 6-N-(4-nitrobenzyl)tubercidin derivative (122b) was envisioned based on synthesis of 6-fluorotubercidin analogue by diazotization-fluorodediazoniation120,188,189 followed by S\textsubscript{N}Ar displacement of 6-fluoro group with 4-nitrobenzylamine.120,190 Thus, using standard protocol, tubercidin (19a) was treated with acetic anhydride in pyridine to give 2',3',5'-tri-O-acetyltubercidin (123, 86%; Scheme 31). The acetylated tubercidin (123) was then treated with sodium nitrite (NaNO\textsubscript{2}) in freshly prepared \textasciitilde55\% HF-pyridine at -10 °C191,192 for 15 min to yield the protected 4-fluorotubercidin 124 (82%), probably via diazotive-fluorodeamination. The mechanism of this reaction is expected to be similar to ‘Balz-Schiemann’ type reaction for the preparation of arylfluorides from arylamines using NaNO\textsubscript{2} and 70\% HF-pyridine.191 NaNO\textsubscript{2} in the presence of acid (H+) generates nitrosonium ion (NO+) in situ and aryl-NH\textsubscript{2} attacks the resultant NO+ to form diazonium ion 123a subsequently. Loss of N\textsubscript{2} followed by quenching of intermediate arylcation 123b with fluoride ion (F−) gives the product arylfluoride 124. I observed that the concentration of HF was crucial in the preparation of 124. When commercial 70\% HF-pyridine reagent was used, the reaction did not yield the corresponding 4-fluoro product 124. This observation indicated that pH of the reaction, which in turn depends on the percent of HF used, was critical for such diazotive-fluorodeamination reactions.192
Scheme 31. Synthesis of 2',3',5'-tri-O-acetyl-4-fluorotubercidin (124) by diazotive-fluorodeamination.

Treatment of 4-fluorotubercidin derivative 124 with 4-nitrobenzylamine hydrochloride in presence of trimethylamine (Et₃N) in MeOH gave 2',3',5'-tri-O-acetyl-4-N-(4-nitrobenzyl)tubercidin (125, 47%; Scheme 32). Trimethylamine converts 4-nitrobenzylamine hydrochloride to 4-nitrobenzylamine in situ, and the free amine subsequently displaces the fluoride ion, probably, by aromatic nucleophilic substitution (SNAr). Acetyl deprotection of compound 125 using methanolic amonia (NH₃/MeOH) at ambient temperature gave 122b (85%; overall 32% yield). Out of the two methods for the preparation of 122b, Dimroth alkylation pathway (56% yield) was better in terms of number of steps and overall yield.
Scheme 32. Synthesis of 4-N-(4-nitrobenzyl)tubercidin (122b) from 2',3',5'-tri-O-acetyl-4-fluorotubercidin (124).

3.4.2. Biological activity of 6-N-benzyl-7-deazapurine nucleoside derivatives

Nucleoside transport inhibition activities were measured in Dr. James D. Young’s laboratory of University of Alberta. While antiviral and anti-proliferation activities were studied in Dr. Jan Balzarini’s laboratory of Rega Institute for Medical Research.

3.4.2.1. Nucleoside transport inhibition activity

Inhibition of the initial rate of 3H-uridine (20 µM) uptake by recombinant hENT1 produced in the *Xenopus* oocyte heterologous expression system was determined as described previously. The 4-N-(4-nitrobenzyl)tubercidin (122b) and 4-N-(4-nitrobenzyl)sangivamycin (122c) fully inhibited labelled uridine uptake, whereas 4-N-benzyltubercidin (122a) and 4-N-(4-nitrobenzyl)toyocamycin (122d) analogues exhibited weak inhibition (<45%). Dose-response evaluations indicated that sangivamycin analogue 122c (IC$_{50}$ = 123 ± 31 nM) was a better inhibitor of uridine transport by hENT1 than the tubercidin analogue 122b (IC$_{50}$ > 1000 nM). However, the sangivamycin analogue 122c was a weaker inhibitor of hENT1-mediated transport than 6-N-(4-nitrobenzyl)adenosine, NBMPR, and other derivatives119 containing a nitrogen atom at the 7-position in the adenine ring.
3.4.2.2. Antiviral activity

Table 7. Antiviral activity in human embryonic lung (HEL) cell cultures-part 1

<table>
<thead>
<tr>
<th>Compd</th>
<th>EC₅₀ (µM)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HSV-1 (KOS)</td>
</tr>
<tr>
<td>122a</td>
<td>>100</td>
</tr>
<tr>
<td>122b</td>
<td>>100</td>
</tr>
<tr>
<td>122c</td>
<td>>100</td>
</tr>
<tr>
<td>122d</td>
<td>>100</td>
</tr>
</tbody>
</table>

*Effective concentration required to reduce virus plaque formation by 50%. Virus input was 100 plaque forming units (PFU).

The 4-N-benzyl-7-deazapurine derivatives (122a-d) weakly inhibited Herpes Simplex Virus (HSV; 1 & 2) and Vesicular stomatitis virus (EC₅₀: >100 µM) (Table 7). But Vaccinia virus was reasonably inhibited by 4-N-(4-nitrobenzyl)tubercidin (122b) and 4-N-(4-nitrobenzyl)sangivamycin (122c) (EC₅₀: 34 µM) and to a weak extent by 4-N-benzyltubercidin (122a) and 4-N-(4-nitrobenzyl)toyocmycin (122d) (EC₅₀: >100 µM).

Cytomegalovirus (CMV) and Varicella Zoster Virus (VZV) were inhibited at ~20 µM concentrations by 4-N-benzyltubercidin (122a), 4-N-(4-nitrobenzyl)sangivamycin (122c) and 4-N-(4-nitrobenzyl)sangivamycin (122d) analogues (Table 8). But 4-N-(4-nitrobenzyl)tubercidin (122b) was not very potent (EC₅₀: >100 µM).
Table 8. Antiviral activity human embryonic lung (HEL) cell cultures-part 2

<table>
<thead>
<tr>
<th>Compd</th>
<th>EC50 (µM)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CMV (AD - 169 strain)</td>
</tr>
<tr>
<td>122a</td>
<td>>20</td>
</tr>
<tr>
<td>122b</td>
<td>>100</td>
</tr>
<tr>
<td>122c</td>
<td>>20</td>
</tr>
<tr>
<td>122d</td>
<td>>20</td>
</tr>
</tbody>
</table>

Effective concentration required to reduce virus plaque formation by 50%.
Virus input was 100 plaque forming units (PFU).

3.4.2.3. Inhibition of Cell Proliferation

Inhibition of the proliferation of murine leukemia (L1210) cells and human T-lymphocyte (CEM), cervix carcinoma (HeLa), prostate cancer (PC-3), and kidney carcinoma (Caki-1) cells by the 7-deazaadenine nucleoside analogues (122a-d) was evaluated (Table 9). The 4-N-benzyltubercidin (122a) showed marked inhibition of the proliferation of PC-3 cells (IC50: 0.92 µM) and HeLa cells (IC50: 7.4 µM) but no significant activity was found with its nitrobenzyl analogue 122b (IC50: >50 µM). The 4-N-(4-nitrobenzyl)sangivamycin (122c) and 4-N-(4-nitrobenzyl)toyocamycin (122d) analogues inhibited proliferation of L1210, HeLa, and PC-3 cells at ~0.9–9.4 µM with the sangivamycin analogue 122c showing more potent effects (0.92–3.4 µM). It is intriguing that cytostatic activity of the 6-N-benzyl-7-deazapurine analogues was highly dependent on the nature of the tumor cell lines. Proliferation of HeLa and PC-3 tumor cells was highly inhibited by 122a, 122c, and 122d whereas proliferation of L1210 cells
was sensitive only to 122c and 122d. The CEM and Caki-1 cells were weakly sensitive to the antiproliferative effects of any of the 6-N-benzyl-7-deazapurine compounds 122a–122d.

Table 9. Inhibitory effects on the proliferation of cells in culture

<table>
<thead>
<tr>
<th>Compd</th>
<th>IC50 (µM)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L1210</td>
</tr>
<tr>
<td>122a</td>
<td>172 ± 47</td>
</tr>
<tr>
<td>122b</td>
<td>125 ± 28</td>
</tr>
<tr>
<td>122c</td>
<td>0.92 ± 0.04</td>
</tr>
<tr>
<td>122d</td>
<td>5.5 ± 1.5</td>
</tr>
</tbody>
</table>

* Half-maximal inhibitory concentration (IC50); data represent the mean SD of at least n=2–3 independent experiments; Cell lines: murine leukemia (L1210); human CD4+ T-lymphocytes (CEM); human cervix carcinoma (HeLa); human prostate adenocarcinoma (PC-3); human kidney carcinoma (Caki-1).

3.5. C7- and C8-modified-7-deazapurine nucleoside derivatives

Building upon my interest in working with 7-deazaadenosine nucleosides, I envisioned the synthesis of various 7-substituted or 8-substituted 7-deazaadenosine analogues, which might have fluorescent properties.

3.5.1. Strain promoted click reactions of 8-azido-7-deazanucleosides with cyclooctynes

Initially, I imagined the conversion of 8-halo-7-deazapurines to the corresponding 8-azido-7-deazapurines, which could serve as substrates for Strain-promoted Azide-Alkyne Cycloaddition reactions (SPAAC, Cu-free click chemistry) with
cyclooctynes.193,194 I expect that the resulting triazolyl products might have fluorescent properties due to increased conjugation in the 7-deazapurine base part. The Cu-free click chemistry is a rapidly growing field, with various applications for \textit{in vivo} imaging emerging continuously over the past few years.193,195-199

Thus, 8-Bromotubercidin (126) was prepared by treatment of tubercidin 19a with N-bromosuccinimide in presence of potassium acetate (KOAc) in DMF at ambient temperature (30 min), as reported in literature.200 I envisioned the preparation of 8-azido-7-deazaadenosine derivatives (127-129, Scheme 33) by nucleophilic aromatic substitution of 8-bromo-7-deazaadenosine derivatives (55, 56 and 126) with sodium azide. However, Attempts to synthesize 8-azidotubercidin via nucleophilic aromatic substitution of 126 with sodium azide were unsuccessful, even after using harsh conditions (NaN\textsubscript{3} (1-5 eq), DMF, rt-153 °C, N\textsubscript{2}, 24 h; NaN\textsubscript{3} (3 eq), TsOH (3 eq), EtOH, reflux, 24h). Lack of reaction is possibly a consequence of the low electron deficiency of the pyrrole ring in tubercidin 19a when compared to that of other 7-deazanucleosides 19b-c. To explain in other words, C8-bromination probably proceeds via electrophilic aromatic substitution, whereas C8-azidation is expected to proceed via nucleophilic aromatic substitution. I envisioned the presence of electron withdrawing groups in the pyrrole ring on 8-bromo-7-deaza nucleosides will enhance the electron deficiency, there by promoting nucleophilic displacement of bromide with azide. So I chose to pursue 8-bromotoyocamycin and 8-bromosangivamycin substrates, both of which have an electron withdrawing substituent on the 7-position of the pyrrole ring.
Scheme 33. Synthesis of 8-bromo-7-deazaadenosine and 8-azidotoyocamycin derivatives.

Treatment of 8-bromosangivamycin 56 with NaN₃ in DMF at 70 ºC for 16 hrs gave a slightly more polar product, which was thought to be 8-azidosangivamycin. UV spectra of the reactions always showed at least 12 nm bathochromic shift. However, ions corresponding to neither product (128) nor substrate (56) were detected in the high-resolution mass spectroscopy (HRMS). Instead, peaks at m/z 258 and 317 were observed, which were unable to be identified with a list of possible products. Similar results were obtained when DMSO or MeOH were used as the reaction solvents.

Next, I synthesized 8-azidotoyocamycin 129 by treating 8-bromotoyocamycin 55 with NaN₃ in DMF at room temperature for 16 h. This transformation was light and, possibly, heat sensitive requiring the reaction, purification, and characterization to be carried out in the dark with limited heating to give 8-azidotoyocamycin (129; 46%). The light sensitivity of the product also limited us in recording the analytical data for the compound. Moreover, this azidation (55 to 129) was unsuccessful in MeOH or water, indicating that polar aprotic solvents are probably the best solvents for these types of aromatic nucleophilic substitution reactions.
Scheme 34. Click reaction between 8-azidotoyocamycin and cyclooctynes 130 and 131. Reagents and conditions: g) Cyclooctyne 130 or 131 (1 eq), ACN:H2O (3:1), rt, 4 h.

Having 8-azidotoyocamycin (129) in hand, my next goal was to see if the SPAAC reactions would take place between 129 and cyclooctynes. Thus, treatment of 129 with symmetrically fused cyclopropyl cyclooctyne 130 in an aqueous solution of acetonitrile (ACN) at ambient temperature (4 h) gave the corresponding triazolyl product 132 (59%, Scheme 34). Analogous reaction of 129 with a strain modulated dibenzylcyclooctyne 131 produced triazole 133 (47%). These preliminary results indicated that the SPAAC reactions were taking place as expected. With the extended conjugation in the deazapurine part, I expect the triazole products to have fluorescence properties and that could lead to various interesting biological applications.

3.5.1. Attempted synthesis of 8-alkynyl-7-deazanucleosides via Sonagashira reaction

Since the attempted synthesis of 8-azido analogues of tubercidin and sangivamycin were unsuccessful, I envisioned the synthesis of 8-vinylazido derivatives (136) from the corresponding 8-alkynyl-7-deazapurine derivatives (135), which in trun
could be prepared in two steps via Sonagashira coupling of 8-halo-7-deazapurines (55, 56 and 126) with trimethylsilylacetylene (Scheme 35). The vinylazides 136 could be used as substrates for strain-promoted click reactions to give the corresponding triazolyl products (137). Also, the crucial 8-alkynyl derivative 135 could also be converted to the corresponding halovinyl sulfone and β-keto sulfones (not shown in scheme). This part of the dissertation is envisioned based on recent literature relating to transformations of alkynes to the corresponding (i) halovinyl sulfones,

\[^{201-203} \] (ii) β-keto sulfones,

\[^{204} \] and (iii) vinylazides.

\[^{205} \]

Scheme 35. Proposed scheme for the synthesis and subsequent transformations of 8-alkynyl-7-deazapurine nucleoside analogues 135.

Initially, treatment of 8-bromotubercidin (126) with trimethylsilylacetylene (TMSA) in the presence of trimethylamine (Et₃N) and catalytic amounts of bis(triphenylphosphine)palladium dichloride [(PPh₃)₂PdCl₂] and copper iodide (CuI)
(anhydrous DMF, 110 °C, sealed flask) showed unchanged starting material as major product (Scheme 35; Table 10, entry 1). Doubling the amounts of CuI and Et$_3$N did not change the outcome of the reaction (entry 2).

Table 10. Reaction conditions for the attempted Sonagashira cross-coupling reactions on 8-bromo tubercidin and toyocamycina

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>(PPh$_3$)$_2$PdCl$_2$ (mol %)</th>
<th>CuI (mol %)</th>
<th>Et$_3$N</th>
<th>TMSA</th>
<th>Temp.</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>126</td>
<td>3%</td>
<td>9%</td>
<td>Excess</td>
<td>3 eq.</td>
<td>110 °C</td>
<td>48 h</td>
</tr>
<tr>
<td>2</td>
<td>126</td>
<td>3%</td>
<td>15%</td>
<td>Excess</td>
<td>6 eq.</td>
<td>110 °C</td>
<td>48 h</td>
</tr>
<tr>
<td>3</td>
<td>126</td>
<td>10%</td>
<td>20%</td>
<td>4 eq.</td>
<td>3 eq.</td>
<td>50 °C</td>
<td>16 h</td>
</tr>
<tr>
<td>4</td>
<td>126</td>
<td>15%</td>
<td>30%</td>
<td>11 eq.</td>
<td>10 eq.</td>
<td>50 °C</td>
<td>5 h</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>1%</td>
<td>2%</td>
<td>7 eq.</td>
<td>1.2 eq.</td>
<td>80 °C</td>
<td>48 h</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>10%</td>
<td>20%</td>
<td>5 eq.</td>
<td>3 eq.</td>
<td>50 °C</td>
<td>24 h</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>20%</td>
<td>10%</td>
<td>5 eq.</td>
<td>3 eq.</td>
<td>50 °C</td>
<td>24 h</td>
</tr>
<tr>
<td>8</td>
<td>55</td>
<td>15%</td>
<td>30%</td>
<td>14 eq.</td>
<td>10 eq.</td>
<td>50 °C</td>
<td>22 h</td>
</tr>
</tbody>
</table>

aReactions were typically performed on 0.1 mmol scale in anhydrous DMF. Reaction progress was monitored by TLC.

Treatment of 126 with 0.1 equiv. of Pd and 0.2 equiv. Cu catalysts under analogous reaction conditions showed a minor less polar spot on TLC (entry 3). Encouraged by the observation, I treated 8-bromotubercidin 126 with 0.15 equiv. of Pd catalyst, 0.3 equiv. of Cu catalyst, 11 equiv. of Et$_3$N, and 10 equiv. of TMSA in anhydrous DMF for 5 hrs at 50 °C. TLC of the crude reaction mixture was complex, but there was a major less polar spot (~50% in comparison with unchanged substrate) (entry 4). 1H-NMR of the isolated material showed ~55:45 ratio of substrate to product (126:134a). The mixture of products was then treated with tetrabutylammonium fluoride (TBAF) and the major product was isolated by column chromatography. But 1H-NMR of
the isolated spot showed absence of the characteristic acetylenic proton peak and was
very similar to the 1H-NMR of 8-bromotubercidin 126, and no signals for the 8-alkynyl
product 134a were observed. Thus, it can be concluded that Sonagashira cross-coupling
of 8-bromotubercidin with trimethylsilylacetylene is a low-yielding reaction.

Because of the ease of preparation and availability of precursors, I used 8-
halotoyocamycin derivatives for initial Sonagashira reactions before proceeding to 8-
halosonagashira substrates. However, analogous treatment of 8-bromotoyocamycin (55)
with trimethylsilylacetylene [(PPh$_3$)$_2$PdCl$_2$/CuI/ET$_3$N/DMF/40 °C) also gave unchanged
starting material as major product, even after varying the reaction conditions (Scheme 35;
Table 10, entries 5-8).

To simplify the purification process, I decided to use protected 8-halo-7-
deazapurine derivatives as substrates. Thus, 2',3',5'-tri-O-acetyltoyocamycin (138) was
prepared in 97% isolated yield by treating toyocamycin (19c) with Ac$_2$O/Py (Scheme 36).
Treatment of 2',3',5'-tri-O-acetyltoyocamycin (138) with DBH (1.1 eq., CH$_2$Cl$_2$, 18 h)
gave the corresponding 8-bromo-2',3',5'-tri-O-acetyltoyocamycin (139) in 79% isolated
yield. However, treatment of 139 (107 mg) with 0.02 equiv. of Pd catalyst, 0.1 equiv. of
Cu catalyst, 0.1 equiv. of Et$_3$N, and 4 equiv. of TMSA in anhydrous DMF for 19 h at 40
°C gave a complex reaction mixture. Silica gel column chromatography gave three major
fractions. The NMR analysis showed the first two products to be unchanged starting
material 139 (27 mg, 25%), and debrominated product 138 (7 mg, 8%). The third fraction
(4 mg) was more polar than the substrate on TLC, was blue on TLC plate under 365 nm
lamp. But 1H-NMR of this material did not have characteristic product peaks and
structure of this blue spot could not be determined.
Scheme 36. Attempted synthesis of 8-alkynyltoyocamycin derivative 140 via sonagashira coupling.

As iodo is a better substrate than bromo in Sonagashira coupling, I envisioned the use of 8-iodo-7-deazapurine analogues as substrates. Thus, toyocamycin 19c was converted to the corresponding tri-O-(tert-butyldimethylsilyl) protected counterpart 141 using standard procedures (TBDMSCl/Imidazole/DMF/35 °C; 58%) (Scheme 37). The reaction was sluggish and required longer hours of stirring and more equivalents of reagents than usual. Treatment of silylated toyocamycin 141 with Lithium diisopropylamide (LDA, 5 equiv.) and iodine (I₂, 1.5 equiv.) in dry THF [-78 °C (2 h) to ambient (48 h)] gave the corresponding 8-iodotoyocamycin analogue 142 in 16% isolated yield. Unchanged substrate 141 was also isolated form the column (58%). However, treatment of 8-iodo analogue 142 with trimethylsilylacetylene, (PPh₃)₂PdCl₂ (10% mol), CuI (20% mol), Et₃N (excess), TMSA (4 equiv.) in DMF at 40 °C for 48 h gave unchanged starting material 142 as major product even after for 2 days. Strangely, no trace of deiodinated product 141 or acetylenic product 143 was observed on TLC.
Scheme 37. Attempted synthesis of 8-alkynyltoyocamycin derivative 143 via sonagashira coupling.

Considering the cost of 7-deazapurine substrates, I stopped proceeding further in this direction.

3.5.2. Iodine catalyzed direct C-H activation of 7-deazapurine nucleosides

Since I was unable to synthesize the 8-azido or the corresponding vinylazide analogues of tubercidin and sangivamycin, I explored other possibilities for incorporation of an aromatic moiety (e.g. triazolyl) based on direct on C-H activation.206 Incidentally, a recent research paper by Dr. Yotphan, \textit{et al.} described iodine-catalyzed direct activation of indoles with azoles mediated by \textit{tert}-butylhydroperoxide (TBHP) (Scheme 38).207

\begin{equation}
\begin{array}{c}
\text{R}_3 \text{N} \begin{array}{c}
\text{N} \\
\text{N} \\
\text{N} \\
\text{N}
\end{array} \\
\text{H}
\end{array} + \begin{array}{c}
\text{R} \\text{N} \\
\text{N} \\
\text{N} \\
\text{N}
\end{array} \begin{array}{c}
\text{N} \\
\text{a=b} \\
\text{R}
\end{array} \\
\text{A, B, C = C, N}
\end{array} \xrightarrow{\text{I}_2 \text{ (cat.)}} \text{aq. TBHP} \xrightarrow{\text{CH}_3\text{CN, rt}} \begin{array}{c}
\text{R}_3 \text{N} \begin{array}{c}
\text{N} \\
\text{N} \\
\text{N} \\
\text{N}
\end{array} \\
\text{N} \begin{array}{c}
\text{a=b} \\
\text{R}
\end{array}
\end{array}
\end{equation}

Scheme 38. Iodine catalyzed oxidative cross-coupling of Indoles and Azoles.207

Because tubercidin 19a is structurally similar to indole, I imagined oxidative cross-coupling of tubercidin with triazoles to generate the corresponding C7 and/or C8 triazolyl substituted analogues. Thus, initial treatment of tubercidin 19a with benzotriazole (2 equiv.), I\textsubscript{2} (0.2 equiv.), and TBHP (5-6 M solution in decane, 1 equiv.) in
anhydrous DMF at ambient temperature after 7 h showed unchanged tubercidin as the major product on TLC (Scheme 39). No product formation was observed even after stirring the reaction mixture at 40 °C for 7 hrs. Additional I$_2$ (0.2 equiv.), and TBHP (1 equiv.) were added and the reaction mixture was stirred at 40 °C for 48 h, by which time the TLC showed ~15% conversion to a more polar product. Analogous treatment of tubercidin 19a with benzotriazole (2 equiv.), I$_2$ (0.4 equiv.), and TBHP (2 equiv.) in anhydrous DMF at 35 °C for 72 h also showed ~10% conversion to a less polar product. Additional TBHP (1 equiv.) was added and the reaction mixture was stirred at 35 °C for 24 h (total: 96 h), by which time the TLC showed ~30% conversion to a more polar product. The new spot was isolated by silica gel chromatography in 18% yield and was single product on 1H, 13C NMR. Comparison of 1H-NMR data with substrate revealed the following: (i) singlet for H2 was still present (shifted to 8.22 ppm from 8.05 ppm); (ii) Doublet for H8 (7.35 ppm) collapsed to a singlet (7.04 ppm); and (ii) doublet for H7 (at 7.6 ppm) is absent. This confirms the structure of the product to be 7-(benzotriazolyl)tubercidin 144.

Scheme 39. Iodine catalyzed oxidative cross-coupling of tubercidin and benzotriazole.

Fluorescence analysis of the triazolyl compound 144 showed emission at 420 nm with the best quantum yield being ~0.002 units (in MeOH). The fluorescence is stronger in basic pH between 7 and 12 and at pH ~2, it is non-fluorescent. The average lifetime is
about 3.8 ns with two well-defined lifetimes of 1 ns (10%) and 4.1 ns (90%). However, the compound seems to be highly sensitive to UV light, since increase in fluorescence upon irradiation with 280 nm light was observed.

Conversely, treatment of acetyl-protected tubercidin (123) with I$_2$ (0.2 eq.), TBHP (1eq.), in DMF at room temperature for 12 h gave a mixture of three products (Scheme 40). TLC of the reaction mixture showed ~30% conversion to a less polar spot. Isolation of the new spot by column chromatography followed by 1H-NMR analysis showed the spot as a mixture of three different products (19% yield, 60:25:15 mixture). It is suspected that the mixture of products are 7-substituted analogue 145, 8-substituted counterpart 146 and probably 7,8-dibenzotriazolyltubercidin (not shown in scheme).

\[ext{Scheme 40. Iodine catalyzed oxidative cross-coupling of acetylated tubercidin and benzotriazole.} \]

In addition, treatment of sangivamycin (19b) with benzotriazole (2 eq.), I$_2$ (0.4 eq.), TBHP (2 eq.), in anhydrous DMF at 120 °C for 24 h showed unchanged starting material on TLC (Scheme 41). On the other hand, treatment of toyocamycin (19c) with benzotriazole (2 eq.), I$_2$ (0.4 eq.), TBHP (2eq.), in anhydrous DMF at 80 °C for 48 hrs resulted in 30% conversion to new spot on TLC. The isolated spot was not the expected product 147c and exact structure could not be established by spectroscopic data. These
results reiterate the literature reports that indoles with electron deficient pyrrole rings react sluggishly with azoles.207

\begin{center}
\includegraphics[width=\textwidth]{scheme41.png}
\end{center}

\textbf{Scheme 41.} Attempted synthesis of iodine catalyzed oxidative cross-coupling of sangivamycin or toyocamycin and benzotriazole.

\section*{4. EXPERIMENTAL SECTION}

The 1H (400 MHz), 13C (100.6 MHz), and 19F (376 MHz) NMR spectra were recorded at ambient temperature in solutions of CDCl$_3$ or DMSO-d_6. Reaction progress was monitored by TLC on Merck Kieselgel 60-F$_{254}$ sheets with product detection by 254-nm light. Products were purified by column chromatography using Merck Kieselgel 60 (230-400 mesh) or by automated flash chromatography using a CombiFlash system. UV spectra were recorded with a Varian Cary 100 Bio UV-visible spectrophotometer. Reagent grade chemicals were used and solvents were dried by reflux and distillation from CaH$_2$ under N$_2$ unless otherwise specified, and an atmosphere of N$_2$ was used for reactions. Purity of the synthesized compounds was determined to be \geq95\% by elemental analysis (C, H, N) and/or HPLC on Phenomenex Gemini RP-C18 column with CH$_3$CN/H$_2$O solvent system as mobile phase. Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN. Mass spectra (MS) were obtained with atmospheric pressure chemical ionization (APCI) technique or electro-spray ionization
(ESI) techniques. High-resolution mass spectra were obtained in ESI-TOF mode unless otherwise noted.

Chemical shifts (δ) are reported in parts per million (ppm) referenced to the residual solvent peak, and coupling constants (J) are given in Hertz (Hz). Multiplicity is reported using standard abbreviations: singlet (s); doublet (d); triplet (t); multiplet (m); broad (br); inverted commas indicate observed multiplicity. UV spectra were recorded with a Varian Cary 100 Bio UV-visible spectrophotometer.

Some of the data were reprinted with permission from the following papers:

Cytostatic activity assays
All assays were performed in 96-well microtiter plates. To each well of 200 µL were added \((5-7.5) \times 10^4\) tumor cells and a given amount of the test compound. The cells were allowed to proliferate for 48 h (murine leukemia L1210), 72 h (human lymphocytic CEM), 96 h (human cervix carcinoma HeLa), 144 h (human prostate cancer PC-3), or 168 h (human kidney Caki-1) at 37 °C in a humidified CO₂-controlled atmosphere. At the end of the incubation period, the cells were counted in a Coulter counter. The IC₅₀ (50% inhibitory concentration) was defined as the concentration of the compound that inhibited cell proliferation by 50%.

General procedure for the bromination of protected nucleosides. DBH and/or TMSOTf were added to a stirred solution of substrate in CH₂Cl₂. The resulting brownish-orange solution was stirred at room temperature for time given in the corresponding table (Tables 3, 4, and 5; Section 3.1.) or until TLC showed absence of starting material and formation of less polar product. The reaction mixture was diluted with CHCl₃ and was washed with saturated NaHCO₃/H₂O and brine. The organic layer was dried (MgSO₄) and concentrated *in vacuo* to yield the corresponding brominated product as a colorless foam with purity over 98% (¹H NMR).

General procedure for the bromination of unprotected nucleosides.

Procedure A. DBH was added to a stirred solution of substrate in DMF. The resulting pale-yellow solution was stirred at room temperature for time given in the corresponding table (Tables 3, 4, and 5; Section 3.1.) or until TLC showed absence of starting material and formation of less polar product. Volatiles were evaporated and the residue was co-evaporated with MeCN. The resulting pale solid was crystallized or purified by column chromatography to give the corresponding brominated product as colorless crystals.
Procedure B. DBH was added to a stirred suspension/solution of substrate in MeOH. The resulting pale solution was stirred at room temperature for time given in the corresponding table (Tables 3, 4, and 5; Section 3.1.) or until TLC showed absence of starting material and formation of less polar product. Products were isolated by (a) filtration, if the products precipitated from the reaction mixture; (b) if no was precipitate observed, then volatiles were evaporated and the residue was crystallized or column chromatographed to give the corresponding brominated product as colorless crystals. The isolated brominated products were usually >98% pure by 1H-NMR.

5-Bromo-2',3',5'-tri-O-acetyluridine (46a)64 UV (MeOH) λ_{max} 275 nm, λ_{min} 240 nm; 1H NMR (CDCl$_3$) δ 9.75 (br s, 1H, NH), 7.82 (s, 1H, H6), 6.06 (d, $J = 4.7$ Hz, 1H, H1'), 5.34-5.29 (m, 2H, H2', H3'), 4.38-4.30 (m, 3H, H4', H5', H5''), 2.18 (s, 3H, Ac), 2.10 (s, 3H, Ac), 2.08 (s, 3H, Ac).

5-Bromo-1-(2,3,5-tri-O-acetyl-β-D-arabinofuranosyl)uracil (46b).208 UV (MeOH) λ_{max} 276 nm, λ_{min} 239 nm; 1H NMR (CDCl$_3$) δ 9.33 (br s, 1H, NH), 7.77 (s, 1H, H6), 6.22 (d, $J = 4.1$ Hz, 1H, H1'), 5.35 (dd, $J = 3.7$, 4.1 Hz, 1H, H2'), 5.04 ("q", $J = 1.9$ Hz, 1H, H3'), 4.38 (dd, $J = 5.8$, 12.1 Hz, 1H, H5'), 4.32 (dd, $J = 3.9$, 12.1 Hz, 1H, H5''), 4.16-4.12 (m, 1H, H4'), 2.09 (s, 3H, Ac), 2.07 (s, 3H, Ac), 1.98 (s, 3H, Ac); 13C NMR (CDCl$_3$): δ 170.5, 169.6, 168.6 (3 x Ac), 158.6 (C4), 149.2 (C2), 139.8 (C6), 96.3 (C5'), 84.4 (C1'), 80.7 (C4'), 76.1 (C3'), 74.4 (C2'), 62.5 (C5'), 20.8, 20.6, 20.4 (3 x Ac); MS (ESI) m/z 447 (100, [\text{79Br}], MH$^+$), 449 (98, [\text{81Br}], MH$^+$).

**5-Bromo-3',5'-di-O-acetyl-2'-deoxy-uridine (46c)64 UV (MeOH) λ_{max} 277 nm, λ_{min} 241 nm; 1H NMR (CDCl$_3$) δ 9.59 (br s, 1H, NH), 7.89 (s, 1H, H6), 6.29 ("dd", $J = 5.8$, 8.0 Hz, 1H, H1'), 5.24-5.21 (m, 1H, H3'), 4.40 (dd, $J = 3.1$, 12.2 Hz, 1H, H5'), 4.34-4.28 (m,
2H, H4', H5"), 2.54 (ddd, J = 2.3, 5.8, 14.3 Hz, 1H, H2"'), 2.23-2.15 (m, 1H, H2"'), 2.17 (s, 3H, Ac), 2.11 (s, 3H, Ac).

5-Bromouridine (46d). UV (MeOH) λ_{max} 279 nm, λ_{min} 241 nm; ¹H NMR (DMSO-_{d6}) δ 11.81 (br s, 1H, NH), 8.48 (s, 1H, H6), 5.73 (d, J = 4.5 Hz, 1H, H1'), 5.42 (d, J = 5.3 Hz, 1H, 2'OH), 5.27 (t, J = 4.7 Hz, 1H, 5'OH), 5.07 (d, J = 5.4 Hz, 1H, 3'OH), 4.04 (q, J = 4.9 Hz, 1H, H2''), 3.98 (q, J = 5.0 Hz, 1H, H3'), 3.88-3.85 (m, 1H, H4'), 3.71-3.66 (m, 1H, H5').

5-Bromo-1-(β-D-arabinofuranosyl)uracil (46e). UV (MeOH) λ_{max} 280 nm, λ_{min} 242 nm; ¹H NMR (DMSO-_{d6}) δ 11.82 (br s, 1H, NH), 8.07 (s, 1H, H6), 5.96 (d, J = 4.6 Hz, 1H, H1'), 5.63 (d, J = 5.3 Hz, 1H, 2'OH), 5.48 (d, J = 4.5 Hz, 1H, 3'OH), 5.17 (t, J = 5.4 Hz, 1H, 5'OH), 4.03 ("q", J = 4.5 Hz, 1H, H2''), 3.91 (q, J = 4.2 Hz, 1H, H3'), 3.74 ("q", J = 4.5 Hz, 1H, H4'), 3.66-3.55 (m, 1H, H5', H5'').

5-Bromo-2'-deoxyuridine (46f). UV (MeOH) λ_{max} 279 nm, λ_{min} 241 nm; ¹H NMR (DMSO-_{d6}) δ 11.79 (br s, 1H, NH), 8.39 (s, 1H, H6), 6.10 (t, J = 6.5 Hz, 1H, H1'), 5.25 (d, J = 4.3 Hz, 1H, 3'OH), 5.17 (t, J = 4.8 Hz, 1H, 5'OH), 4.26-4.22 (m, 1H, H3'), 3.79 (q, J = 3.2 Hz, 1H, H4'), 3.66-3.54 (m, 2H, H5', H5''), 2.18-2.08 (m, 2H, H2', H2'').

5-Bromocytidine (47b). UV (MeOH) λ_{max} 289 nm, λ_{min} 265 nm; ¹H NMR (DMSO-_{d6}) δ 8.39 (s, 1H, H6), 7.83 (br s, 1H, NH), 6.99 (br s, 1H, NH), 5.71 (d, J = 3.2 Hz, 1H, H1'), 5.37 (d, J = 5.0 Hz, 1H, 2'OH), 5.23 (t, J = 4.8 Hz, 1H, 5'OH), 5.00 (d, J = 5.4 Hz, 1H, 3'OH), 3.98-3.92 (m, 1H, H2''), 3.85-3.83 (m, 1H, H3'), 3.70 (ddd, J = 2.7, 4.8, 12.1 Hz, 1H, H5'), 3.56 (ddd, J = 2.5, 4.9, 12.1 Hz, 1H, H5'').

4-N-Benzoyl-5-bromocytidine (48b). mp 193-195 °C; UV (MeOH) λ_{max} 252, 335 nm (ε 8900, 13 900), λ_{min} 228, 292 nm (ε 7300, 4200); ¹H NMR (DMSO-_{d6}) δ 12.81 (br s, 1H,
NH), 8.79 (s, 1H, H6), 8.10-8.24 (br s, 2H, Bz), 7.62 (t, J = 7.3 Hz, 1H, Bz), 7.53 (t, J = 7.6 Hz, 2H, Bz), 5.70 (d, J = 3.6 Hz, 1H, H1'), 5.57 (d, J = 3.9 Hz, 1H, 2'OH), 5.41 (t, J = 4.6 Hz , 1H, 5'OH), 5.10 (d, J = 5.9 Hz, 1H, 3'OH), 4.07-4.13 (m, 1H, H2'), 4.04 ("q", J = 5.9 Hz, 1H, H3'), 3.90-3.96 (m, 1H, H4'), 3.74-3.82 (m, 1H, H5'), 3.63 (ddd, J = 2.1, 4.4, 12.2 Hz, 1H, H5''); 13C NMR (DMSO-d6) δ 177.8 (Bz), 154.5 (C2), 147.2 (C4), 142.1 (C6), 136.1 (Bz), 132.8, 129.4, 128.4, 95.0 (C5), 89.7 (C1'), 84.5 (C4'), 74.2 (C2'), 68.6 (C3'), 59.5 (C5'); MS (ESI) m/z 426 (100, [79Br], MH⁺), 428 (98, [81Br], MH⁺). Anal. Calcd for C16H16BrN3O6 • 0.5 MeOH (442.24): C, 44.81; H, 4.10; N, 9.50. Found: C, 44.62; H, 3.71; N, 9.13.

5'-O-(Tert-butyldimethylsilyl)-2',3'-O-isopropylideneuridine (49b)210. UV (MeOH) λmax 276 nm, λmin 241 nm; 1H NMR (CDCl3) δ 9.23 (br s, 1H, NH), 7.91 (s, 1H, H6), 5.91 (d, J = 3.1 Hz, 1H, H1'), 4.73 (dd, J = 2.3, 6.2 Hz, 1H, H2'), 4.68 (dd, J = 3.1, 6.1 Hz, 1H, H3'), 4.39 ("q", J = 2.4 Hz, 1H, H4'), 3.93 (dd, J = 2.1, 11.7 Hz, 1H, H5'), 3.80 (dd, J = 2.8, 11.7 Hz, 1H, H5''), 1.58 (s, 3H, CH3), 1.35 (s, 3H, CH3), 0.90 (s, 9H, 3 x CH3), 0.11 (s, 6H, 2 x CH3).

8-Bromoadenosine (50b)211. UV (MeOH) λmax 264 nm, λmin 232 nm; 1H NMR (DMSO-d6) δ 8.12 (s, 1H, H2), 7.58 (br s, 2H, NH2), 5.83 (d, J = 6.8 Hz, 1H, H1'), 5.52 (dd, J = 3.9, 8.6 Hz, 1H, 5'OH), 5.48 (d, J = 6.3 Hz, 1H, 2'OH), 5.25 (d, J = 4.4 Hz, 1H, 3'OH), 5.09 (q, J = 6.1 Hz, 1H, H2'), 4.20-4.17 (m, 1H, H3'), 3.99-3.96 (m, 1H, H4'), 3.68 (dt, J = 3.9, 12.1 Hz, 1H, H5'), 3.55-3.49 (m, 1H, H5'').

8-Bromo-2'-deoxyadenosine (51b)54. 1H NMR (DMSO-d6) δ 8.11 (s, 1H, H2), 7.51 (br s, 2H, NH2), 6.29 ("dd", J = 6.7, 7.9 Hz, 1H, H1'), 5.34 (d, J = 4.2 Hz, 1H, 3'OH), 5.29 ("dd", J = 4.4, 7.7 Hz, 1H, 5'OH), 4.50-4.46 (m, 1H, H3'), 3.90-3.87 (m, 1H, H4'), 3.65
(‘dd’, J = 4.5, 11.9 Hz, 1H, H5’), 3.51-3.45 (m, 1H, H5”), 3.28-3.21 (m, 1H, H2’), 2.19 (ddd, J = 2.7, 6.5, 13.2 Hz, 1H, H2”).

8-Bromo-2',3',5'-tri-O-acetylguanosine (52b).\(^{212}\) UV (MeOH) \(\lambda_{\text{max}}\) 263 nm, \(\lambda_{\text{min}}\) 220 nm; \(^1\)H NMR (DMSO-\(d_6\)) \(\delta\) 10.95 (br s, 1H, NH), 6.63 (br s, 2H, NH\(_2\)), 6.01 (“dd”, J = 4.5, 6.3 Hz, 1H, H1’), 5.88 (“d”, J = 4.4 Hz, 1H, H2’), 5.65 (t, J = 6.3 Hz , 1H, H3’), 4.42 (dd, J = 3.7, 11.9 Hz, 1H, H5’), 4.34-4.30 (m, 1H, H4’), 4.21 (dd, J = 6.3, 11.9 Hz, 1H, H5”), 2.11 (s, 3H, Ac), 2.07 (s, 3H, Ac), 1.99 (s, 3H, Ac).

8-Bromoguanosine (53b).\(^{213}\) UV (MeOH) \(\lambda_{\text{max}}\) 261 nm, \(\lambda_{\text{min}}\) 223 nm; \(^1\)H NMR (DMSO-\(d_6\)) \(\delta\) 10.87 (br s, 1H, NH), 6.51 (br s, 2H, NH\(_2\)), 5.68 (“d”, J = 6.3 Hz, 1H, H1’), 5.44 (“d”, J = 6.2 Hz, 1H, H2’), 5.09 (d, J = 5.0 Hz , 1H, 2’OH), 5.01 (q, J = 6.0 Hz, 1H, 5’OH), 4.95 (t, J = 5.9 Hz, 1H, 3’OH), 4.15-4.12 (m, 1H, H3’), 3.87-3.84 (m, 1H, H4’), 3.68-3.62 (m, 1H, H5’), 3.54-3.48 (m, 1H, H5”).

8-Bromo-2'-deoxyguanosine (54b).\(^{214,215}\) UV (MeOH) \(\lambda_{\text{max}}\) 261 nm, \(\lambda_{\text{min}}\) 221 nm; \(^1\)H NMR (DMSO-\(d_6\)) \(\delta\) 10.80 (br s, 1H, NH), 6.49 (br s, 2H, NH\(_2\)), 6.15 (“t”, J = 7.3 Hz, 1H, H1’), 5.25 (d, J = 4.3 Hz, 1H, 3’OH), 4.86 (t, J = 5.9 Hz, 1H, 5’OH), 4.41-4.37 (m, 1H, H3’), 3.81-3.78 (m, 1H, H4’), 3.65-3.59 (m, 1H, H5’), 3.52-3.46 (m, 1H, H5”), 3.19-3.12 (m, 1H, H2’), 2.13-2.07 (m, 1H, H2”).

8-bromotoyocamycin (55).

Method A. NBS (195.8 mg, 1.1 mmol) was added to a stirred solution of 19c (291.3 mg, 1 mmol) in anhydrous DMF (8 mL) in a flame dried flask and the resulting pale-yellow solution was stirred at room temperature for 2.5 h, by which time TLC showed >90% conversion to a less polar product. Volatiles were removed from the clear, brown solution using high vacuum rotary evaporator on a hot water bath (<80 °C). The resulting brown
gummy solid was purified using column chromatography (10%, MeOH/EtOAc) and recrystallized from MeOH to give 55 as a colorless solid (166.6 mg, 45%): mp: 200-202 ºC; UV (MeOH): \(\lambda_{\text{max}} \) 286 nm (\(\varepsilon \) 15 000), \(\lambda_{\min} \) 250 nm (\(\varepsilon \) 2200); \(^1\)H NMR (DMSO-\(d_6 \)): \(\delta \) 8.20 (s, 1H, H2), 7.09 (br s, 2H, NH\(_2\)), 5.94 (d, \(J = 6.6 \) Hz, 1H, H1\)'), 5.46 (d, \(J = 6.2 \) Hz, 1H, 2'-OH), 5.30-5.33 ("q", \(J = 4.1 \) Hz, 1H, 5'-OH), 5.25 (d, \(J = 4.8 \) Hz, 1H, 3'-OH), 5.08 (q, \(J = 6.0 \) Hz, 1H, H2'), 4.21 (m, 1H, H3'), 3.96 (q, \(J =3.8 \) Hz, 1H, H4'), 3.69 (dt, \(J =4.20, 12.0 \) Hz, 1H, H5'), 3.50-3.57 (m, 1H, H5''); \(^{13}\)C NMR: \(\delta \) = 156.1, 153.2, 149.9, 121.7, 114.1 (CN), 102.1, 91.0 (C1'), 87.4, 86.5 (C4'), 71.1 (C2'), 70.6 (C3'), 62.0 (C5').

R\(_f\) (EtOAc:2PrOH:H\(_2\)O, 4:1:2) 0.69 (R\(_f\) 19c 0.68); HRMS (ESI): \(m/z \) [M+H]\(^+\) calcd for C\(_{12}\)H\(_{13}\)BrN\(_5\)O\(_4\)^+: 370.0145 and 372.0125; found 370.0093 and 371.9937.

Method B. DBH (552 mg, 1.93 mmol) was added to a suspension of 19c (750 mg, 2.57 mmol) in MeOH (120 mL) in a flame dried flask and the resulting yellow suspension was stirred at room temperature for 5 min, by which time the solution became >80% clear. After 15 min TLC showed >95% conversion to a less polar product and product began to solidify out of the solution. After 30 min the colorless solid was collected using vacuum filtration (710 mg). Volatiles in the mother liquor were removed using rotary evaporator and the resulting colorless solid was recrystallized from MeOH (104 mg) to give 55 (814 mg, 85%): characterization data were in agreement with those reported in method 1.

8-bromosangivamycin (56).

Method A. NBS (267.1 mg, 1.5 mmol) was added to a stirred solution of 19b (309.2 mg, 1 mmol) in anhydrous DMF (8 mL) in a flame dried flask and the resulting pale-yellow solution was stirred at room temperature for 1 h, by which time TLC showed >90% conversion to a less polar product. Volatiles were removed from the clear, brown solution
using high vacuum rotary evaporator on a hot water bath (<80 °C). The resulting brown gummy oil was column chromatographed (15%, MeOH/EtOAc) to give 56 as an off-white solid (244.5 mg, 63%): mp: 174-175 °C; UV (MeOH): λ_{max} 286 nm (ε 14 100), λ_{min} 256 nm (ε 5500); 1H NMR (DMSO-d_6): δ 8.09 (s, 1H, H2), 8.00 (br s, 1H, NH2), 7.76 (br s, 1H, NH2), 5.99 (d, J = 6.6 Hz, 1H, H1'), 5.55 (dd, J = 4.0 Hz, 1H, 5'-OH), 5.37 (d, J = 6.3 Hz, 1H, 2'-OH), 5.18 (d, J = 4.6 Hz, 1H, 3'-OH), 5.13 (q, J = 6.1 Hz, 1H, H2'), 4.20 ("q", J = 4.2 Hz, 1H, H3'), 3.95 (q, J = 3.5 Hz, 1H, H4'), 3.68 (dt, J = 3.4, 12.0 Hz, 1H, H5'), 3.49-3.55 (m, 1H, H5''); 13C NMR: δ = 165.8 (C=O), 157.1, 152.2, 149.6, 112.5, 112.2, 90.5 (C1'), 86.2 (C4'), 71.1 (C2'), 70.8 (C3'), 62.23 (C5'); Rf (EtOAc:iPrOH:H2O, 4:1:2) 0.45 (Rf 19b 0.35); HRMS (ESI): m/z [M+H]$^+$ calcd for C$_{12}$H$_{15}$BrN$_5$O$_5$: 388.0251 and 390.0231; found 388.0265 and 390.0229.

Method B. DBH (101.6 mg, 1.1 mmol) was added to a clear, colorless solution of 19b (100 mg, 0.0323 mmol) in MeOH (25 mL) in a flame dried flask and the resulting yellow solution was stirred at room temperature for 30 min, by which time TLC showed >90% conversion to a less polar product. Volatiles were removed from the clear, yellow solution using rotary evaporator. The resulting off-white solid was purified using column chromatography (10%, MeOH/EtOAc) to give 56 as a colorless solid (49.2 mg, 39%): characterization data were in agreement with those reported in method 1.

Ethyl 2-(phenylthio)octanoate (72). Thiophenol (260 μL, 280 mg, 2.54 mmol) was added to a stirred solution of NaH (60%, dispersion in paraffin liquid; 100.4 mg, 4.18 mmol) in anhydrous DMF (4 mL) at 0 °C. The resulting suspension was stirred at 0 °C for 30 minutes and at ambient temperature for 30 minutes, by which time bubbles (H$_2$ gas) ceased. The reaction flask was chilled again and Ethyl 2-bromo octanoate 71b (540 μL,
630 mg, 2.51 mmol) was added at 0 °C. The resultant clear, colorless solution was stirred at 0 °C for 20 min and at ambient temperature for 2 hours, by which time TLC showed exclusive conversion to a slightly more polar spot. Volatiles were evaporated and co-evaporated with toluene (1 x) (vacuum pump) and the resulting pale gum was partitioned between CHCl₃ (20 mL) and NH₄Cl/H₂O (20 mL). The aqueous layer was extracted with CHCl₃ (2 x 5 mL) and the combined organic phase was washed with NaHCO₃/H₂O (25 mL), brine (25 mL), and dried (MgSO₄). Volatiles were evaporated in vacuo and the residue was column chromatographed (10% EtOAc in hexanes) to give 72 (633 mg, 90%) as a pale oil: ¹H NMR (CDCl₃) δ 7.49-7.46 (m, 2H, Ph), 7.35-7.25 (m, 3H, Ph), 4.16-4.09 (m, 2H, CH₂), 3.66 (dd, J = 6.6, 8.4 Hz, 1H, H2), 1.96-1.87 (m, 1H, H3), 1.82-1.73 (m, 1H, H3'), 1.51-1.37 (m, 2H, H4, H4'), 1.36-1.26 (m, 6H, H5, H5', H6, H6', H7, H7'), 1.19 (t, J = 7.1 Hz, 3H, CH₃), 0.91 ('t', J = 7.1 Hz, 3H, CH₃); ¹³C NMR (CDCl₃) δ 172.4, 133.8, 132.7, 128.9, 127.7, 126.9, 61.0, 50.9, 31.7, 31.5, 28.8, 27.2, 22.5, 14.1, 14.0.

Ethyl 2-((4-chlorophenyl)thio)hexanoate (73). Treatment of ethyl 2-bromohexanoate 71a (500 μL, 610.5 mg, 2.74 mmol) with 4-chlorothiophenol/NaH/DMF as described for the preparation of 72 gave 73 (763.6 mg, 97%): ¹H NMR (CDCl₃) δ 7.41-7.37 (m, 2H, Ph), 7.30-7.26 (m, 2H, Ph), 4.17-4.09 (m, 2H, CH₂), 3.61 (dd, J = 6.6, 8.4 Hz, 1H, H2), 1.94-1.84 (m, 1H, H3), 1.81-1.69 (m, 1H, H3'), 1.51-1.27 (m, 4H, H4, H4', H5, H5'), 1.19 (t, J = 7.1 Hz, 3H, CH₃), 0.91 ('t', J = 7.1 Hz, 3H, CH₃); ¹³C NMR (CDCl₃) δ 172.1, 134.11, 134.10, 132.1, 129.0, 61.1, 51.0, 31.3, 29.4, 22.2, 14.1, 13.8.

Ethyl 2-((4-chlorophenyl)thio)octanoate (74). Treatment of ethyl 2-bromoocctanoate 71b (540 μL, 630 mg, 2.51 mmol) with 4-chlorothiophenol/NaH/DMF as described for
the preparation of 72 gave 74 as a colorless oil (664 mg, 84%): 1H NMR (CDCl$_3$) δ 7.39-7.37 (m, 2H, Ph), 7.27-7.24 (m, 2H, Ph), 4.15-4.07 (m, 2H, CH$_2$), 3.60 (dd, $J =$ 6.7, 8.3 Hz, 1H, H2), 1.92-1.81 (m, 1H, H3), 1.77-1.68 (m, 1H, H3'), 1.48-1.35 (m, 2H, H4, H4'), 1.33-1.27 (m, 6H, H5, H5', H6, H6', H7, H7'), 1.18 (t, $J =$ 7.1 Hz, 3H, CH$_3$), 0.87 (“t”, $J =$ 6.8 Hz, 3H, H8, H8', H8''); 13C NMR (CDCl$_3$) δ 172.0, 134.1, 134.0, 132.2, 129.0, 61.0, 51.0, 31.6, 31.5, 28.8, 27.2, 22.5, 14.1, 14.0.

Ethyl 2-((4-methoxyphenyl)thio)hexanoate (75). Treatment of ethyl 2-bromohexanoate 71a (500 μL, 610.5 mg, 2.74 mmol) with 4-methoxythiophenol/NaH/DMF as described for the preparation of 72 gave 75218 as a colorless oil (739.3 mg, 96%): 1H NMR (CDCl$_3$) δ 7.36-7.31 (m, 2H, Ph), 6.78-6.74 (m, 2H, Ph), 4.02 (“q”, $J =$ 7.2 Hz, 2H, CH$_2$), 3.41 (dd, $J =$ 6.6, 8.5 Hz, 1H, H2), 1.82-1.75 (m, 1H, H3), 1.68-1.59 (m, 1H, H3'), 1.42-1.32 (m, 1H, H4), 1.30-1.21 (m, 3H, H4', H5, H5'), 1.10 (t, $J =$ 7.1 Hz, 3H, CH$_3$), 0.82 (t, $J =$ 7.1 Hz, 3H, CH$_3$); 13C NMR (CDCl$_3$) δ 172.2, 160.1, 136.2, 123.4, 114.4, 60.7, 55.2, 51.6, 31.1, 29.3, 22.3, 14.1, 13.8.

Typical procedure for preparation of ethyl difluoroalkanoate (76 and 77). DBH was added to a stirred solution of ester 72 or 73 (0.5 mmol) and Py.9HF (3 mmol) in CH$_2$Cl$_2$ (2 mL) at ambient temperature. The resulting brown solution was stirred at ambient temperature or at 35 °C for the respective times as shown in Table 1. The reaction flask was cooled to room temperature, quenched by addition of ice-cold water, diluted with CH$_2$Cl$_2$, and neutralized with drop-wise addition of conc. NH$_4$OH. Organic layer was separated and aqueous layer was back extracted (2 x CH$_2$Cl$_2$). Combined organic layer was washed with 1N HCl, brine, dried (MgSO$_4$) and concentrated in vacuo to give crude difluorinated product as a brown oil, with data as reported.219 76219 had: 1H NMR
(CDCl₃) δ 4.25 (q, 3J_H,H = 7.2 Hz, 2H, CH₂), 2.09-1.88 (m, 2H, H3, H3'), 1.42-1.30 (m, 4H, H4, H4', H5, H5'), 1.28 (t, 3J_H,H = 7.1 Hz, 3H, CH₃), 0.85 (t, 3J_H,H = 7.2 Hz, 3H, H6, H6', H6''); ¹³C NMR (CDCl₃) δ 164.4 (t, 2J_F,C = 33.2 Hz, C1), 116.4 (t, 1J_F,C = 249.8 Hz, C2), 63.0 (CH₂), 34.5 (t, 2J_F,C = 23.2 Hz, C3), 23.5 (t, 3J_F,C = 4.3 Hz, C4), 22.2 (C5), 13.9 (CH₃), 13.7 (C6); ¹⁹F NMR (CDCl₃) δ -105.92 ppm (t, 3J_F-H = 16.8 Hz); GC-MS (t_R = 7.5 min) 151 (1.1), 124 (11.3), 116 (18.2), 87 (44.9), 67 (20.9), 55 (3.6);

77²¹⁹ had: ¹H NMR (CDCl₃) δ 4.25 (q, 3J_H,H = 7.2 Hz, 2H, CH₂), 2.03-1.91 (m, 2H), 1.45-1.18 (m, 11H), 0.81 (“t”, 3J_H,H = 6.8 Hz, 3H, H6, H6', H6''); ¹³C NMR (CDCl₃) δ 164.5 (t, 2J_F,C = 33.0 Hz, C1), 116.4 (t, 1J_F,C = 249.7 Hz, C2), 62.7 (CH₂), 34.5 (t, 2J_F,C = 23.2 Hz, C3), 31.4, 28.7, 22.4, 21.4 (t, 3J_F,C = 4.3 Hz, C4), 13.9; ¹⁹F NMR (CDCl₃) δ -105.89 ppm (t, 3J_F-H = 17.0 Hz).

5-O-Benzyl-2,3-dideoxy-2-fluoro-2-(phenylsulfanyl)ribose (84) and 5-O-Benzyl-2,3-dideoxy-2-fluoro-2-(phenylsulfinyl)ribose (85). 83 (31 mg, 0.1 mmol) was treated with Py.9HF (185 µL, 0.8 mmol) and DBH (114 mg , 0.4 mmol) in anhydrous CH₂Cl₂ (3 mL) according to general desulfurization-difluorination procedure gave 40 mg of yellow oil after aqueous workup: ¹⁹F-NMR (CDCl₃) δ -150.86 (“t”, 1F, J = 26.4 Hz), -149.33 (dd, 0.4F, J = 20.3, 27.3 Hz), -139.24 to -138.93 (m, 0.6 F); HRMS (ESI) m/z 355.2857 [M+Na]^+, calcd for C₁₈H₁₇FNaO₃S⁺ 355.0775; m/z 371.2611 [M+Na]^+, calcd for C₁₈H₁₇FNaO₄S⁺ 371.0724.

2'-S-(4-Chlorophenyl)-2'-thiouridine (87). Slight modification of published procedure.¹³³ PPh₃ (464.3 mg, 1.77 mmol) was added to a stirred solution of 4-chlorothiophenol (1.28 g, 8.84 mmol) in anhydrous DMF (10 mL) and the resulting solution was stirred at ambient temperature for 30 minutes. 2,2'-anhydro-1-β-D-
arabinofuranosyluracil220 (1 g, 4.42 mmol) was added to the reaction mixture and the resulting solution was refluxed (153 °C) for 18 h. Volatiles were evaporated, co-evaporated with toluene (2 x). The resultant brown gum was triturated with hexanes (3 x) and the liquid was pipetted out. The remaining brownish gummy solid was triturated with ether and the resultant pale green solid was vacuum filtered, washed with minimal amount of ice-cold methanol to give 2’-S-(4-Chlorophenyl)-2’-thiouridine (87; 1.1 g, 67 %) as a colorless solid: \(^1\)H NMR (DMSO-\textit{d}_6) \(\delta 11.14 \text{ (br s, 1H, NH)}, 7.61 \text{ (d, } J = 8.1 \text{ Hz, 1H, H6)}, 7.35 \text{ (d, } J = 8.5 \text{ Hz, 2H, Ph}), 7.28 \text{ (d, } J = 8.5 \text{ Hz, 2H, Ph}), 6.33 \text{ (d, } J = 9.0 \text{ Hz, 1H, H1’}), 5.91 \text{ (d, } J = 5.6 \text{ Hz, 1H, 3’OH}), 5.50 \text{ (d, } J = 8.1 \text{ Hz, 1H, H5}), 5.11 \text{ (t, } J = 5.0 \text{ Hz, 1H, 5’OH}), 4.34 \text{ (t, } J = 5.2 \text{ Hz, 1H, H3’}), 3.94-3.92 \text{ (m, 1H, H4’}), 3.89 \text{ (dd, } J = 5.3, 9.0 \text{ Hz, 1H, H2’}), 3.59 \text{ (“t”, } J = 4.4 \text{ Hz, 2H, H5’, H5”)}; \(^{13}\)C NMR (DMSO-\textit{d}_6) \(\delta 162.5 \text{ (C4), 150.4 (C2), 139.8 (C6), 133.1 (Ph), 132.3 (Ph), 132.0 (Ph), 128.8 (Ph), 102.3 (C5), 87.8 (C1’), 86.7 (C4’), 72.1 (C3’), 61.4 (C5’), 54.5 (C2’)).

3’,5’-di-\textit{O}-Acetyl-2’-S-(4-chlorophenyl)-2’-thiouridine (89a). DMAP (18.3 mg, 0.15 mmol) was added to a stirred suspension of 87 (1.1 g, 2.97 mmol) in Ac\textsubscript{2}O (842 \(\mu\)L, 909 mg, 8.91 mmol) and the resulting suspension was stirred at ambient temperature overnight (15 h). MeOH was added, the reaction mixture was stirred at ambient temperature for 30 min, and volatiles were evaporated (vacuum pump, <25 °C). MeOH was added and evaporated, and the resulting gum was partitioned between CHCl\textsubscript{3} (50 mL) and H\textsubscript{2}O (50 mL). The aqueous layer was extracted with CHCl\textsubscript{3}, and the combined organic phase was washed with NaHCO\textsubscript{3}/H\textsubscript{2}O, 1N HCl, brine, and dried (MgSO\textsubscript{4}). Volatiles were evaporated \textit{in vacuo} and the residue was dried on vacuum pump to give 3’,5’-di-\textit{O}-Acetyl-2’-S-(4-chlorophenyl)-2’-thiouridine (89a; 1.34 g, 99%) as a colorless
foam, with sufficient purity to proceed to next step: \(^1\text{H NMR (CDCl}_3 \) \(\delta 10.12 \) (br s, 1H, NH), 7.27 (d, \(J = 8.3 \text{ Hz, 2H, Ph} \)), 7.22 (d, \(J = 8.2 \text{ Hz, 1H, H6} \)), 7.14 (d, \(J = 8.4 \text{ Hz, 2H, Ph} \)), 6.14 (d, \(J = 8.5 \text{ Hz, 1H, H1'} \)), 5.63 (d, \(J = 8.2 \text{ Hz, 1H, H5} \)), 5.38 (“d”, \(J = 6.0 \text{ Hz, 1H, H3'} \)), 4.30-4.19 (m, 3H, \(H4', H5', H5'' \)), 3.81 (“dd”, \(J = 6.3, 8.2 \text{ Hz, 1H, H2'} \)), 2.07 (s, 3H, CH3), 2.00 (s, 3H, CH3); \(^{13}\text{C NMR (CDCl}_3 \) \(\delta 170.3, 169.9 \) (2 x C=O), 163.2 (C4), 150.4 (C2), 139.2 (C6), 134.6 (Ph), 134.2 (Ph), 130.6 (Ph), 129.4 (Ph), 103.4 (C5), 89.0 (C1'), 81.0 (C4'), 73.7 (C3'), 63.5 (C5'), 53.5 (C2'), 20.7, 20.6 (2 x s, 2 x CH3).

N3-Benzyl-3',5'-di-O-benzyl-2'-S-(4-chlorophenyl)-2'-thiouridine (89b). NaH (60%, dispersion in paraffin liquid; 216 mg, 9 mmol) was added to a stirred solution of 87 (556.2 mg, 1.5 mmol) in anhydrous DMF (6 mL) at 0 °C. The resulting suspension was stirred at 0 °C for 30 minutes and at ambient temperature for 30 minutes, by which time bubbles (H2 gas) ceased. The reaction flask was chilled again and benzyl bromide (0.93 mL, 1.3 g, 7.8 mmol) was added at 0 °C. Bubbles were observed for a few minutes once the ice-bath was removed and the resultant pale solution was stirred at ambient temperature for 4 hours, by which time TLC showed a major (90%) less polar spot. Volatiles were evaporated and co-evaporated with toluene (1 x) (vacuum pump) and the resulting syrup was partitioned between CHCl3 (20 mL) and NH4Cl/H2O (20 mL). The aqueous layer was extracted with CHCl3 (2 x 5 mL) and the combined organic phase was washed with NaHCO3/H2O (25 mL), brine (25 mL), and dried (MgSO4). Volatiles were evaporated *in vacuo* and the residue was column chromatographed (20% EtOAc in hexanes) to give 89b (827 mg, 86%) as a colorless foam: \(^1\text{H NMR (CDCl}_3 \) \(\delta 7.53-7.51 \) (m, 2H, Ph), 7.43-7.27 (m, 14H, Ph, H6), 7.15-7.11 (m, 2H, Ph), 6.93-6.90 (m, 2H, Ph), 6.47 (d, \(J = 8.3 \text{ Hz, 1H, H1'} \)), 5.33 (d, \(J = 8.1 \text{ Hz, 1H, H5} \)), 5.05-4.97 (m, 2H, benzylic),
4.71-4.64 (m, 2H, benzylic), 4.56 (“d”, $J = 11.0$ Hz, 1H, benzylic), 4.50 (“d”, $J = 11.0$ Hz, 1H, benzylic), 4.33-4.30 (m, 2H, H3', H4'), 3.81-3.77 (m, 2H, H2', H5'), 3.60 (dd, $J = 1.7$, 10.4 Hz, 1H, H5'); 13C NMR (CDCl$_3$) δ 162.0, 150.9, 137.4, 137.2, 137.1, 136.8, 133.9, 133.8, 131.7, 129.5, 129.1, 128.8, 128.6, 128.4, 128.1, 128.0, 127.8, 127.7, 102.3 (C5), 90.2 (C1'), 82.3 (C4'), 80.3 (C3'), 73.9 (CH$_2$), 72.4 (CH$_2$), 70.6 (C5'), 55.7 (C2'), 44.1 (CH$_2$).

N3-Benzyl-3',5'-di-O-benzyl-2'-S-(4-methoxyphenyl)-2'-thiouridine (90b). Treatment of 88134 (1.47 g, 4.0 mmol) with NaH (576 mg, 24 mmol) and BnBr (2.5 mL, 3.6 g, 20.8 mmol) as described for 87 \rightarrow 89b gave 90b as a colorless foam (2.2 g, 86%): 1H NMR (CDCl$_3$) δ 7.58 (“d”, $J = 6.9$ Hz, 2H, Ph), 7.40-7.23 (m, 13H, Ph), 7.14-7.11 (m, 3H, Ph, H6), 6.56 (d, $J = 8.8$ Hz, 1H, H1'), 6.33 (d, $J = 8.7$ Hz, 2H, Ph), 5.11 (d, $J = 8.1$ Hz, 1H, H5), 5.04 (“d”, $J = 13.5$ Hz, 1H, benzylic), 4.95 (“d”, $J = 13.5$ Hz, 1H, benzylic), 4.64 (s, 2H, benzylic), 4.49 (“d”, $J = 11.0$ Hz, 1H, benzylic), 4.39 (“d”, $J = 11.0$ Hz, 1H, benzylic), 4.29 (d, $J = 5.3$ Hz, 1H, H4'), 4.25 (br s, H3'), 3.70-3.65 (m, 2H, H2', H5'), 3.60 (s, 3H, OCH$_3$), 3.54-3.51 (“m”, 1H, H5'); 13C NMR (CDCl$_3$) δ 170.8, 162.0, 159.8, 151.1, 137.4, 136.9, 135.3, 129.8, 128.6, 128.5, 128.3, 128.2, 127.9, 127.8, 127.7, 123.3, 114.6, 102.0 (C5), 90.4 (C1'), 82.0 (C3'), 80.9 (C4'), 73.8 (CH$_2$), 72.2 (CH$_2$), 70.8 (C5'), 56.3 (C2'), 55.4 (OCH$_3$), 44.1 (CH$_2$).

N3-Benzyl-3',5'-di-O-benzyl-2'-deoxy-2'-[(4-methoxyphenyl)sulfinyl]uridine [93 (R/S-S)]. MCPBA (750.7 mg of 70% reagent, 4.35 mmol) in CH$_2$Cl$_2$ (70 mL) was added drop-wise to a stirred solution of 90b (2.2 g, 3.45 mmol) in CH$_2$Cl$_2$ (35 mL) at -50 °C, and the temperature was allowed to rise to -30 °C in ~20 minutes. TLC showed > 80% conversion to a more polar product. The solution was poured into NaHCO$_3$/H$_2$O (10 mL).
The aqueous layer was extracted with CHCl₃ (2 x 5 mL) and the combined organic phase was washed with H₂O (20 mL), brine (25 mL), and dried (MgSO₄). Volatiles were evaporated in vacuo and the residue was column chromatographed (25% EtOAc in hexanes) to give 93 (2'R/S-2', ~1:1) (1.8 g, 80%) as a colorless foam: ¹H NMR (CDCl₃) δ 7.51-7.28 (m, 17.5H, Ph, H6), 7.10 (d, J = 7.8 Hz, 0.5H, H6), 7.03 (d, J = 8.0 Hz, 0.5H, H1'), 6.83 (d, J = 8.0 Hz, 0.5H, H1'), 6.49 (d, J = 9.6 Hz, 1H, Ph), 6.44 (d, J = 8.1 Hz, 1H, Ph), 5.36 (d, J = 7.7 Hz, 0.5H, H5), 5.04 (d, J = 8.1 Hz, 0.5H, H5), 4.96-4.26 (m, 8H, benzylidene, H2', H3'), 3.86-3.43 (m, 6H, CH₃, H4', H5', H5''); ¹³C NMR (CDCl₃) for major isomer (extracted data): δ 162.9, 161.6, 150.6, 137.11, 137.10, 137.0, 136.5, 132.5, 129.8, 128.8, 128.6, 128.44, 128.38, 128.2, 127.9, 127.2, 114.6, 102.5 (C5), 82.9 (C1'), 82.1 (C4'), 80.9 (C3'), 74.0 (CH₂), 73.4 (CH₂), 72.7 (C5'), 70.9 (C2'), 55.6 (OCH₃), 44.1 (CH₂).

3',5'-di-O-Acetyl-2'-deoxy-2'-(4-chlorophenyl)sulfonyl]uridine (91a). MCPBA (70% reagent, 250 mg, 1.45 mmol) was added to a stirred solution of 89a (227.4 mg, 0.5 mmol) in CH₂Cl₂ (15 mL) and the resultant colorless solution was stirred at ambient temperature for 12h. TLC showed complete conversion to a more polar product. The reaction mixture was poured into NaHCO₃/H₂O (10 mL). The aqueous layer was extracted with CHCl₃ (2 x 5 mL) and the combined organic phase was washed with H₂O (20 mL), brine (25 mL), and dried (MgSO₄). Volatiles were evaporated in vacuo to give 91a (241 mg, 99%) as a colorless foam. Data for the crude sample: ¹H NMR (CDCl₃) δ 9.51 (br s, 1H, NH), 7.86 (d, J = 8.6 Hz, 2H, Ph), 7.55 (d, J = 8.6 Hz, 2H, Ph), 7.17 (d, J = 8.2 Hz, 1H, H6), 6.15 (d, J = 6.2 Hz, 1H, H1'), 5.72-5.66 (m, 2H, H5, H3'), 4.6 (t, J = 6.7 Hz, 1H, H2'), 4.42 (q, J = 4.6 Hz, 1H, H4'), 4.36 (dd, J = 3.7, 12.5 Hz, 1H, H5'), 4.25 (dd, J = 4.9, 12.2 Hz, 1H,
N3-Benzyl-3',5'-di-O-benzyl-2'-deoxy-2'-[(4-chlorophenyl)sulfonyl]uridine (91b).

MCPBA (250.2 mg of 70% reagent, 1.45 mmol) in CH$_2$C$_2$ (6 mL) was added drop-wise to a stirred solution of 89b (320.6 mg, 0.50 mmol) in CH$_2$C$_2$ (4 mL) and the resulting clear solution was stirred at ambient temperature overnight. Saturated NaHCO$_3$/H$_2$O (10 mL) was added, stirring was continued for 10 min, and the organic layer was separated. The aqueous layer was extracted with CHCl$_3$ (2 x 5 mL) and the combined organic phase was washed with H$_2$O (20 mL), brine (25 mL), and dried (MgSO$_4$). Volatiles were evaporated in vacuo and the residue was column chromatographed (20% EtOAc in hexanes) to give 91b (269.3 mg, 80%) as a colorless foam: 1H NMR (CDCl$_3$) δ 7.59-7.56 (m, 2H, Ph), 7.55-7.51 (m, 2H, Ph), 7.48-7.28 (m, 14H, Ph, H6), 6.98-6.94 (m, 2H, Ph), 6.66 (d, J = 8.6 Hz, 1H, H1'), 5.37 (d, J = 8.2 Hz, 1H, H5), 5.08 ("d", J = 13.7 Hz, 1H, benzylic), 5.02 ("d", J = 13.7 Hz, 1H, benzyl), 4.68 ("d", J = 11.5 Hz, 1H, benzylic), 4.63 (dd, J = 1.8, 5.4 Hz, 1H, H3'), 4.58 ("d", J = 11.5 Hz, 1H, benzylic), 4.53 ("d", J = 10.9 Hz, 1H, benzylic), 4.45 ("d", J = 11.0 Hz, 1H, benzyl), 4.24 ("d", J = 1.9 Hz, 1H, H4'), 4.09 (dd, J = 5.4, 8.6 Hz, 1H, H2'), 3.70 (dd, J = 2.3, 10.6 Hz, 1H, H5'), 3.46 (dd, J = 2.0, 10.6 Hz, 1H, H5")); 13C NMR (CDCl$_3$) δ 161.8, 150.7, 140.7, 137.4, 137.1 (C6), 136.8, 136.6, 136.4, 130.2, 129.5, 129.1, 128.8, 128.6, 128.5, 128.3, 128.23, 128.16, 127.8, 103.0 (C5), 84.8 (C1'), 82.5 (C4'), 79.7 (C3'), 74.0 (CH$_2$), 73.1 (CH$_2$), 70.1 (C5'), 68.9 (C2'), 44.3 (CH$_2$).

N3-Benzyl-3',5'-di-O-benzyl-2'-deoxy-2'-[(4-methoxyphenyl)sulfonyl]uridine (92b).
Treatment of 90b (32 mg, 0.05 mmol) with MCPBA (26 mg of 70% reagent, 0.15 mmol) in CH₂Cl₂ (3 mL) as described for 89b → 91b gave 92b (27 mg, 81%) as a colorless foam: ¹H NMR (CDCl₃) δ 7.61-7.60 (m, 2H, Ph), 7.51-7.48 (m, 2H, Ph), 7.43-7.25 (m, 13H, Ph), 7.10 (d, J = 8.2 Hz, 1H, H6), 6.75 (d, J = 9.0 Hz, 1H, H1'), 6.39-6.35 (m, 2H, Ph), 5.16 (d, J = 8.1 Hz, 1H, H5), 5.07 (“d”, J = 13.5 Hz, 1H, benzylic), 4.99 (“d”, J = 13.5 Hz, 1H, benzylic), 4.80 (“d”, J = 11.7 Hz, 1H, benzylic), 4.65-4.62 (m, 2H, benzylic, H3’), 4.50 (“d”, J = 10.8 Hz, 1H, benzylic), 4.39 (“d”, J = 10.8 Hz, 1H, benzylic), 4.22 (“d”, J = 1.6 Hz, 1H, H4’), 4.05 (dd, J = 5.2, 9.0 Hz, 1H, H2’), 3.67-3.63 (m, 4H, OCH₃, H5’), 3.45 (dd, J = 2.0, 10.5 Hz, 1H, H5’); ¹³C NMR (CDCl₃) δ 171.1, 163.9, 161.9, 150.7, 137.2 (C6), 137.0, 136.9, 136.6, 130.6, 130.4, 129.8, 128.8, 128.5, 128.4, 128.2, 128.1, 127.9, 114.2, 102.7 (C5), 85.0 (C1’), 82.6 (C4’), 80.0 (C3’), 73.9 (CH₂), 73.1 (CH₂), 70.4 (C5’), 68.4 (C2’), 55.8 (OCH₃), 44.3 (CH₂).

N³-Benzyl-3',5'-di-O-benzyl-2'-fluoro-2'-S-(4-methoxyphenyl)-2'-thiouridine (94b).

DAST (0.15 mL, 183 mg, 1.14 mmol) was added to a mixture of 93 (2’-R/S-S, ~1:1) (326.4 mg, 0.5 mmol) and SbCl₃ (23 mg, 0.1 mmol) in CH₂Cl₂ (10 mL), and the resulting pale solution was stirred at ambient temperature overnight (13 h). Cold saturated NaHCO₃/H₂O (10 mL) was added carefully, stirring was continued for 30 min, the organic layer was separated. The aqueous layer was extracted with CHCl₃ (2 x 5 mL) and the combined organic phase was washed with H₂O (20 mL), brine (25 mL), dried (MgSO₄) and evaporated in vacuo to give yellow oil. Gradient flash chromatography (0 → 30% EtOAc in hexanes) gave 94b as a mixture of diastereomers (2’-R/S-S, ~4:1) (pale yellow foam 186.6 mg, 57%): ¹H NMR (CDCl₃) δ 7.55-7.26 (m, 18H, Ph, H6), 6.84 (“d”, J = 8.7 Hz, 2H, Ph), 6.51 (d, J = 14.7 Hz, 0.8H, H1’), 6.40 (br s, 0.2H, H1’), 5.68 (d, J =
8.1 Hz, 0.8H, H5), 5.41 (d, $J = 8.2$ Hz, 0.2H, H5), 5.14-5.01 (m, 1H, benzylic), 4.93-4.87 (m, 1H, benzylic), 4.68-4.43 (m, 4H, benzylic), 4.23-4.18 (m, 2H, H3', H4'), 3.91-3.79 (m, 4H, CH3, H5'), 3.72-3.60 (m, 1H, H5''); 19F NMR (CDCl3) δ -132.53 ppm (br s, 0.8F), -131.16 ppm (br s, 0.2F).

13C NMR (CDCl3) for major isomer (extracted data): δ 162.3, 161.0, 150.2, 138.8, 137.6, 137.1, 136.6, 135.1, 135.0, 129.0, 128.59, 128.57, 128.4, 128.3, 128.1, 127.80, 127.6, 118.84, 118.82, 114.8, 109.1 (d, $^{1}J_{C2'-F} = 237.1$ Hz, C2'), 102.0, 90.5 (d, $^{2}J_{C1'-F} = 47.9$ Hz, C1'), 80.1 (C4'), 79.6 (d, $^{2}J_{C3'-F} = 18.1$ Hz, C3'), 73.5 (CH2), 73.1 (CH2), 67.5 (C5'), 55.4 (CH3), 44.1 (CH2).

N3-Benzyl-3',5'-di-O-benzyl-2'-deoxy-2'-fluoro-2'-(4-methoxyphenyl)sulfonyl]uridine (95b). MCPBA (241.6 mg of 70% reagent, 1.4 mmol) in CH2Cl2 (5 mL) was added drop-wise to a stirred solution of 94 (327.4 mg, 0.50 mmol) in CH2Cl2 (3 mL) and the resulting clear solution was stirred at ambient temperature overnight. Saturated NaHCO3/H2O (10 mL) was added, stirring was continued for 10 min, and the organic layer was separated. The aqueous layer was extracted with CHCl3 (2 x 5 mL) and the combined organic phase was washed with H2O (20 mL), brine (25 mL), and dried (MgSO4). Volatiles were evaporated *in vacuo* and the residue was column chromatographed (20% EtOAc in hexanes) to give 95b as a mixture of diastereomers (2'-R/S-S, ~ 3:1) (colorless foam, 298.7 mg, 87%): 1H NMR (CDCl3) δ 7.90 (d, $J = 8.4$ Hz, 0.5H, Ph), 7.78 (d, $J = 8.3$ Hz, 1.5H, Ph), 7.54 (d, $J = 7.9$ Hz, 1H, H6), 7.55-7.12 (m, 15H, Ph), 6.95 (“d”, $J = 8.9$ Hz, 1.5H, Ph), 6.89 (“d”, $J = 8.5$ Hz, 0.5H, Ph), 6.70 (br s, 0.25H, H1'), 6.30 (d, $J = 18.6$ Hz, 0.75H, H1'), 5.73 (d, $J = 8.1$ Hz, 0.75H, H5), 5.27 (br s, 0.25H, H5), 5.06 (d, $J = 13.7$ Hz, 0.75H, benzylic), 5.00 (“d”, $J = 13.7$ Hz, 0.25H,
benzylic), 4.92-4.80 (m, 2H, benzylic, H3'), 4.58 (d, J = 11.6 Hz, 1H, benzylic), 4.49-4.27 (m, 3H, benzylic), 4.11-4.06 (m, 1H, H4'), 3.90 (s, 2.25H, CH3), 3.86 (s, 0.75H, CH3), 3.81-3.87 (m, 0.25H, H5'), 3.75 (dd, J = 2.3, 11.2 Hz, 0.75H, H5'), 3.54 (“dd”, J = 3.7, 11.1 Hz, 1H, H5'”); 19F NMR (CDCl3) δ –158.89 ppm (“t”, J = 16.3 Hz, 0.75F), –156.50 ppm (d, J = 19.5 Hz, 0.25F).

13C NMR (CDCl3) for major isomer: δ 165.0, 150.2, 139.3 (C6), 137.3, 136.8, 136.2, 131.38, 131.37, 129.1, 128.9, 128.6, 128.51, 128.50, 128.44, 128.36, 128.3, 128.1, 127.8, 127.7, 126.5, 114.5, 108.3 (d, $^{1}J_{C_{2'}-F} = 237.0$ Hz, C2'), 101.8 (C5), 87.8 (d, $^{2}J_{C_{1'}-F} = 38.1$ Hz, C1'), 79.5 (C4'), 75.5 (d, $^{2}J_{C_{3'}-F} = 15.2$ Hz, C3'), 73.8 (CH2), 73.5 (CH2), 67.1 (C5'), 55.9 (CH3), 44.1 (CH2).

5-Bromo-3',5'-di-O-acetyl-2'-S-(4-chlorophenyl)-2'-thiouridine (96a) and 5-Bromo-3',5'-di-O-acetyl-2'-deoxy-2'-(4-chlorophenyl)sulfinyl|uridine [97 (R/S-S)]. Py.9HF (352 μL, 1.53 mmol) was added to a chilled solution of DBH (20.8 mg, 0.073 mmol) in dry CH2Cl2 (1 mL) at -78 °C. The resulting pale solution was stirred at -78 °C for 10 minutes and a solution of substrate 89a (30mg, 0.066 mmol) in dry CH2Cl2 (2 mL) was added via syringe. The resultant orange solution was stirred at -78 °C for 2h and was brought to -30 °C over 45 minutes. The reaction mixture was diluted with CH2Cl2 (5 mL), washed with NaHCO3/H2O (5 mL), H2O (5 mL), brine (5 mL), dried (MgSO4). Volatiles were evaporated in vacuo and the yellow residue was column chromatographed (30% → 60% EtOAc in hexanes) to give 96a (14.4 mg, 41%) as a colorless oil. Also isolated were 97 (6.5 mg, 18%, faster moving isomer) as a colorless oil and 97 (10.9 mg, 30%, slower moving isomer) as a colorless oil.
96a had: 1H NMR (CDCl$_3$) δ 8.48 (br s, 1H, NH), 7.09-7.06 (m, 2H, Ph), 7.02-6.99 (m, 2H, Ph), 6.98 (s, 1H, H6), 5.94 (d, $J = 8.1$ Hz, 1H, H1'), 5.12 (dd, $J = 2.6$, 5.9 Hz, 1H, H3'), 4.12 (dd, $J = 4.0$, 12.9 Hz, 1H, H5'), 4.06-4.02 (m, 2H, H4', H5''), 3.47 (dd, $J = 5.9$, 8.0 Hz, 1H, H2'), 1.89-1.891 (“m”, 6H, 2 x CH$_3$); 13C NMR (CDCl$_3$) δ 170.03 (C=O), 169.98 (C=O), 158.3, 149.5, 138.2 (C6), 135.2, 134.3 (Ph), 130.4, 129.7 (Ph), 98.0 (C5), 89.3 (C1'), 81.3 (C4'), 73.6 (C3'), 63.5 (C5'), 54.5 (C2'), 20.9 (CH$_3$), 20.6 (CH$_3$).

97 (faster moving isomer) had: 1H NMR (CDCl$_3$) δ 8.38 (br s, 1H, NH), 7.56-7.50 (m, 4H, Ph), 7.10 (s, 1H, H6), 5.89 (d, $J = 4.0$ Hz, 1H, H1'), 5.51 (t, $J = 8.2$ Hz, 1H, H3'), 4.45 (dd, $J = 2.8$, 12.3 Hz, 1H, H5'), 4.40-4.36 (m, 1H, H4'), 4.23 (dd, $J = 4.8$, 12.3 Hz, 1H, H5''), 3.92 (dd, $J = 4.2$, 8.2 Hz, 1H, H2'), 2.29 (s, 3H, CH$_3$), 2.12 (s, 3H, CH$_3$); 13C NMR (CDCl$_3$) δ 170.6 (C=O), 170.4 (C=O), 157.9, 148.1, 140.6 (C6), 138.5, 138.4, 130.1 (Ph), 125.5 (Ph), 97.3 (C5), 85.3 (C1'), 80.3 (C4'), 72.1 (C3'), 67.3 (C2'), 62.1 (C5'), 20.8 (CH$_3$), 20.6 (CH$_3$).

97 (slower moving isomer) had: 1H NMR (CDCl$_3$) δ 8.55 (br s, 1H, NH), 7.59-7.56 (m, 2H, Ph), 7.42-7.39 (m, 2H, Ph), 7.15 (s, 1H, H6), 6.13 (d, $J = 8.4$ Hz, 1H, H1'), 5.51 (dd, $J = 2.6$, 6.2 Hz, 1H, H3'), 4.30 (dd, $J = 3.2$, 12.1 Hz, 1H, H5'), 4.25 (q, $J = 2.9$ Hz, 1H, H4'), 4.17 (dd, $J = 2.9$, 12.1 Hz, 1H, H5''), 3.72 (dd, $J = 6.2$, 8.3 Hz, 1H, H2'), 2.13 (s, 3H, CH$_3$), 2.11 (s, 3H, CH$_3$); 13C NMR (CDCl$_3$) δ 169.8 (C=O), 169.7 (C=O), 157.5, 148.7, 139.8 (C6), 139.0, 137.6, 130.1 (Ph), 127.1 (Ph), 98.2 (C5), 83.1 (C1'), 81.6 (C4'), 73.4 (C3'), 69.8 (C2'), 63.4 (C5'), 21.0 (CH$_3$), 20.6 (CH$_3$).

3',5'-di-O-Acetyl-5-iodo-2'-S-(4-chlorophenyl)-2'-thiouridine (96b). NIS (68 mg, 0.42 mmol) was added to a stirred solution of 89a (46 mg, 0.1 mmol) and DAST (80 μL, 0.6 mmol) in anhydrous CH$_2$Cl$_2$ (2 mL) at 0 °C and the resulting purple solution was stirred
at 0 °C for 6 h and at ambient temperature for 32 h (total reaction time: 36 h). The reaction was quenched by addition of sat. Na$_2$S$_2$O$_3$ (5 mL), diluted with CH$_2$Cl$_2$ (5 mL). Organic layer was separated and aqueous layer was back extracted (2 x CH$_2$Cl$_2$). Combined organic layer was washed with NaHCO$_3$/H$_2$O (10 mL), brine (10 mL), dried (MgSO$_4$), and filtered. Volatiles were evaporated in vacuo and the brown residue was column chromatographed (25% → 50% EtOAc in hexanes) to give 96b (42.5 mg, 73%) as a colorless oil.

Analogous treatment of 89a (46 mg, 0.1 mmol) with NIS (68 mg, 0.42 mmol) and DAST (80 μL, 0.6 mmol) at 35 °C for 24 h gave 96b (35 mg, 60%) as a pale-yellow oil. 1H NMR (CDCl$_3$) δ 9.07 (br s, 1H, NH), 7.60 (s, 1H, H6), 7.39-7.35 (m, 2H, Ph), 7.31-7.28 (m, 2H, Ph), 6.23 (d, J = 8.4 Hz, 1H, H1'), 5.43 (dd, J = 2.2, 5.8 Hz, 1H, H3'), 4.44-4.31 (m, 3H, H4', H5', H5''), 3.77 (dd, J = 5.9, 8.3 Hz, 1H, H2'), 2.21 (s, 3H, CH$_3$), 2.19 (s, 3H, CH$_3$); 13C NMR (CDCl$_3$) δ 171.3, 170.0 (2 x C=O), 159.2 (C4), 149.8 (C2), 143.3 (C6), 135.2 (Ph), 134.3 (Ph), 130.4 (Ph), 129.8 (Ph), 89.0 (C1'), 81.3 (C4'), 73.7 (C3'), 69.7 (C5), 63.6 (C5'), 54.5 (C2'), 21.1, 20.7 (2 x s, 2 x CH$_3$).

3-N-benzyl-3',5'-di-O-benzyl-5-bromo-2'-deoxy-2'-fluoro-2'-S-(4-chlorophenyl)-2'-thiouridine (98). 89b (255 mg, 0.4 mmol) was treated with Py.9HF (920 μL, 4 mmol) and DBH (572 mg, 2 mmol) in anhydrous CH$_2$Cl$_2$ (10 mL) according to general desulfurization-difluorination procedure gave 405 mg of yellow oil after aqueous workup. Column chromatography (10% → 70% EtOAc in hexanes) gave a major fraction of 118 mg as a pale-yellow oil: 19F-NMR (CDCl$_3$) δ -127.53 to -127.24 (m, 1F), -130.84 to -130.62 (m, 1F).
3-N-benzyl-3',5'-di-O-benzyl-5-iodo-2'-S-(4-methoxyphenyl)-2'-thiouridine (100) and 3-N-benzyl-3',5'-di-O-benzyl-2'-fluoro-2'-S-(4-methoxyphenyl)-2'-thiouridine (94b). NIS (95 mg, 0.42 mmol) was added to a stirred solution of 18 (128 mg, 0.2 mmol) and Py.9HF (138 μL, 0.6 mmol) in anhydrous CH₂Cl₂ (3 mL) at -78 °C in a polypropylene vessel and the resulting brown solution was brought to ~5 °C overnight (16 h). Stirring was continued at ambient temperature for 7 h (total reaction time: 23 h). The reaction was quenched by addition of ice-cold water (10 mL), diluted with CH₂Cl₂ (5 mL), neutralized with drop-wise addition of conc. NH₄OH. Organic layer was separated and aqueous layer was back extracted (2 x CH₂Cl₂). Combined organic layer was washed with 1N HCl (10 mL), brine (10 mL), dried (MgSO₄), and filtered. Volatiles were evaporated in vacuo and the brown residue was column chromatographed (5% → 20% EtOAc in hexanes) to give 100 (44 mg, 29%) as a colorless oil and 94b (16 mg, 12%) as a pale-yellow oil (2'-R/S-S, ~ 1:1).

Analogous treatment of 18 (128 mg, 0.2 mmol) with NIS (95 mg, 0.42 mmol) and DAST (160 μL, 1.2 mmol) followed by aqueous workup (sat. Na₂S₂O₃, sat. NaHCO₃, brine, MgSO₄) and column chromatography gave 94b (58 mg, 44%) as a pale-yellow oil (2'-R/S-S, ~ 1:1).

100 had: ¹H NMR (CDCl₃) δ 7.66-7.63 (m, 2H, Ph), 7.56 (s, 1H, H6), 7.44-7.31 (m, 13H, Ph), 7.12-7.10 (m, 2H, Ph), 6.51 (d, J = 8.9 Hz, 1H, H1'), 6.33-6.30 (m, 2H, Ph), 5.15 (“d”, J = 13.4 Hz, 1H, benzylic), 5.02 (“d”, J = 13.3 Hz, 1H, benzylic), 4.68-4.52 (m, 4H, benzylic), 4.33-4.25 (m, 2H, H4', H3'), 3.76-3.67 (m, 2H, H2', H5'), 3.66 (s, 3H, OCH₃), 3.51 (dd, J = 2.0, 10.5 Hz, 1H, H5’’); ¹³C NMR (CDCl₃) δ 159.8, 159.1, 150.8, 142.2 (C6), 137.22, 137.16, 136.2, 135.2, 130.4, 128.8, 128.6, 128.4, 128.2, 128.1, 128.06,
127.8, 127.7, 123.0, 114.7, 90.2 (C1'), 82.1 (C3'), 80.7 (C4'), 73.8 (CH2), 72.3 (CH2), 70.5 (C5), 68.9 (C5'), 56.4 (C2'), 55.5 (OCH3), 46.0 (CH2).

3-N-benzyl-3',5'-di-O-benzyl-5-bromo-2'-fluoro-2'-S-(4-methoxyphenyl)-2'-thiouridine (101). Treatment of 94b (131 mg, 0.2 mmol) with DBH (172 mg, 0.6 mmol) and Py.9HF (280 μL, 1.2 mmol) at -78 °C according to the procedure described for 89a → 96a/97 followed by column chromatography (15% EtOAc in hexanes) gave 101 as a mixture of diastereomers (2'-R/S-S, ~ 65:35) (pale-yellow oil, 82 mg, 56%): 1H NMR (CDCl3) δ 7.84 (s, 1H, H6), 7.81 (d, J = 2.1 Hz, 0.2H, Ph), 7.66 (d, J = 2.2 Hz, 0.8H, Ph), 7.49-7.23 (m, 17H, Ph), 6.78 (d, J = 8.7 Hz, 0.8H, Ph), 6.75 (d, J = 8.7 Hz, 0.2H, Ph), 6.44 (d, J = 13.9 Hz, 0.8H, H1'), 6.27 (br s, 0.2H, H1'), 5.09 ("d", J = 13.6 Hz, 1H, benzylic), 4.92-4.80 (m, 1H, benzylic), 4.73-4.65 (m, 1H, benzylic), 4.62-4.41 (m, 3H, benzylic), 4.18-4.09 (m, 2H, H3', H4'), 3.92 (s, 0.6H, CH3), 3.91 (s, 2.4H, CH3), 3.82-3.72 (m, 1H, H5'), 3.61-3.53 (m, 1H, H5''); 19F NMR (CDCl3) δ –133.52 ppm (br s, 0.8F), –131.57 ppm (br s, 0.2F).

13C NMR (CDCl3) for major isomer (extracted data): δ 158.4, 157.2, 149.4, 138.1, 137.79, 137.76, 137.3, 136.8, 135.9, 134.1, 134.0, 129.3, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 120.24, 120.23, 112.2, 112.0, 108.7 (d, J_{C2'-F} = 239.1 Hz, C2'), 96.9, 90.4 (d, J_{C1'-F} = 47.3 Hz, C1'), 80.3 (C4'), 79.7 (d, J_{C3'-F} = 17.7 Hz, C3'), 73.5 (CH2), 73.1 (CH2), 67.0 (C5'), 56.4 (CH3), 45.7 (CH2).

5'-O-Acetyl-2',3'-dideoxy-2',3'-didehydro-2'-(4-chlorophenyl)sulfonyl|uridine (or)
1-[5'-O-Acetyl-2',3'-dideoxy-2'-(4-chlorophenyl)sulfonyl-β-D-glycero-pent-2'-eno|furanosyl|uracil (102). mCPBA (70% reagent, 250 mg, 1.45 mmol) was added to a stirred solution of 89a (227.4 mg, 0.5 mmol) in CH2Cl2 (15 mL) and the resultant

105
colorless solution was stirred at ambient temperature for 12h. TLC showed complete conversion to a more polar product. The reaction mixture was poured into NaHCO₃/H₂O (10 mL). The aqueous layer was extracted with CHCl₃ (2 x 5 mL) and the combined organic phase was washed with H₂O (20 mL), brine (25 mL), and dried (MgSO₄). Volatiles were evaporated in vacuo to give 91a (241 mg, 99%) as a colorless foam. Purification of this material on silica gel chromatography (50% EtOAc in hexanes) gave 102 contaminated with 40% of 91a (184 mg, 1.5:1 ratio of 102:91a). ¹H NMR (CDCl₃) δ 10.04 (s, 0.6H, NH), 9.99 (s, 0.4H, NH), 7.89-7.85 (m, 0.8H, Ph), 7.84-7.81 (m, 1.2H, Ph), 7.57-7.53 (m, 2H, Ph), 7.36 (d, J = 8.1 Hz, 0.6H, H6), 7.28-7.27 (m, 1.4H, H3', H5), 7.19 (d, J = 8.2 Hz, 0.4H, H6), 7.01 (“d”, J = 1.9 Hz, 0.6H, H3'), 6.21 (d, J = 6.4 Hz, 0.4H, H1'), 5.72-5.66 (m, 1.4H, H3', H5), 5.15-5.11 (m, 0.6H, H4'), 4.64 (t, J = 6.8 Hz, 0.4H, H2'), 4.46-4.22 (m, 2.4H, H4', H5', H5''), 2.09 (s, 1.8H, CH₃), 2.08 (s, 1.2H, CH₃), 2.07 (s, 1.2H, CH₃).

3-N-Benzyl uracil (103) and 3,5-di-O-benzyl-1,2-dideoxy-1,2-didehydro-2-[(4-chlorophenyl)sulfonyl]ribose (104). A stirred solution of 91b (30 mg, 0.045 mmol) and selectfluor (24 mg, 0.067 mmol) in dry DMF (2 mL) was added to a chilled suspension of KH (30 wt% dispersion in mineral oil; 2.5 mg, 0.0613 mmol) in dry THF (5 mL) at -78 °C. TLC after 30 minutes showed complete consumption of starting material and two new spots. The reaction mixture was slowly warmed to 0 °C. Crude reaction mixture was partitioned between CHCl₃ (5 mL) and ice-cold NH₄Cl/H₂O (5 mL). The aqueous layer was extracted with CHCl₃ (2 x 2 mL) and the combined organic phase was washed with NaHCO₃/H₂O (10 mL), brine (10 mL), and dried (MgSO₄). Volatiles were evaporated in vacuo to give 91a (241 mg, 99%) as a colorless foam. Purification of this material on silica gel chromatography (50% EtOAc in hexanes) gave 102 contaminated with 40% of 91a (184 mg, 1.5:1 ratio of 102:91a). ¹H NMR (CDCl₃) δ 10.04 (s, 0.6H, NH), 9.99 (s, 0.4H, NH), 7.89-7.85 (m, 0.8H, Ph), 7.84-7.81 (m, 1.2H, Ph), 7.57-7.53 (m, 2H, Ph), 7.36 (d, J = 8.1 Hz, 0.6H, H6), 7.28-7.27 (m, 1.4H, H3', H5), 7.19 (d, J = 8.2 Hz, 0.4H, H6), 7.01 (“d”, J = 1.9 Hz, 0.6H, H3'), 6.21 (d, J = 6.4 Hz, 0.4H, H1'), 5.72-5.66 (m, 1.4H, H3', H5), 5.15-5.11 (m, 0.6H, H4'), 4.64 (t, J = 6.8 Hz, 0.4H, H2'), 4.46-4.22 (m, 2.4H, H4', H5', H5''), 2.09 (s, 1.8H, CH₃), 2.08 (s, 1.2H, CH₃), 2.07 (s, 1.2H, CH₃).
and the residue was column chromatographed (5% → 50% EtOAc in hexanes) to give 103 (5.7 mg, 63%) as colorless oil and 104 (14.9 mg, 71%) as a colorless foam.

Analogously, treatment of substrate (30 mg, 0.045 mmol) in dry THF (2 mL) with a chilled suspension of KH (30 wt% dispersion in mineral oil; 2.5 mg, 0.0613 mmol) in dry THF (5 mL) at 0 °C for 15 minutes followed by aqueous workup and column chromatography also gave 103 and 104 in similar yields.

103 had: \(^{221}\) \(^{1}H\) NMR (CDCl\(_3\)) \(\delta 9.48\) (1H, br s, NH), 7.45-7.42 (m, 2H, Ph), 7.34–7.24 (m, 3H, Ph), 6.50 (dd, \(J = 3.7, 7.5\) Hz, 1H, H6), 5.79 (d, \(J = 7.7\) Hz, 1H, H5), 5.10 (s, 2H, CH\(_2\)).

104 had: \(^{1}H\) NMR (CDCl\(_3\)) \(\delta 7.71\) (d, \(J = 8.6\) Hz, 2H, Ph), 7.38 (s, 1H, H1), 7.31-7.13 (m, 10H, Ph), 6.99-6.97 (“m”, 2H, Ph), 4.81 (d, \(J = 2.9\) Hz, 1H, H3), 4.73-4.70 (m, 1H, H4), 4.45-4.39 (m, 2H, CH\(_2\)), 4.37-4.30 (m, 2H, CH\(_2\)), 3.42 (dd, \(J = 5.4, 10.3\) Hz, 1H, H5), 3.34 (dd, \(J = 5.7, 10.3\) Hz, 1H, H5'); \(^{13}C\) NMR (CDCl\(_3\)) \(\delta 160.7\) (C1), 140.6 (Ph), 139.4 (Ph), 137.2 (Ph), 137.0 (Ph), 129.2 (Ph), 128.9 (Ph), 128.6 (Ph), 128.4 (Ph), 128.1 (Ph), 128.0 (Ph), 127.9 (Ph), 127.8 (Ph), 118.8 (C2), 90.5 (C4), 80.6 (C3), 73.7 (CH\(_2\)), 71.0 (CH\(_2\)), 68.7 (C5). HRMS (ESI) \(m/z\) 493.0846 [M+Na]\(^+\), calcd for C\(_{23}\)H\(_{23}\)ClNaO\(_5\)S\(^+\) 493.0847.

[4-[(4-Methoxyphenyl)sulfonyl]furan-2-yl]methyl acetate (105), (106) and 5'-O-Acetyl-2',3'-dideoxy-2',3'-didehydro-2'-[(4-methoxyphenyl)sulfonyl]uridine (107). TDAE (0.24 mL, 1.04 mmol) was added to a stirred solution of 91a (100 mg, 2.07 mmol) in DMF (2 mL) at -78 °C and the reaction mixture was brought to ambient temperature over 1h 15 minutes and a 10% HCl solution (2 mL) was added. The crude was extracted with EtOAc (3 x) and the combined organic phase was dried (Na\(_2\)SO\(_4\)). Volatiles were
evaporated in vacuo and the residue was column chromatographed (Petroleum ether (PE) 100% → EtOAc/PE 2/1 → 100% EtOAc) to give 105 (34.5 mg, 54%), 106 (21 mg, 24%), and 107 (35 mg, 40%) as colorless oils.

105 had: 1H NMR (CDCl$_3$) δ 7.93 (d, $J = 0.8$ Hz, 1H, H1), 7.85-7.89 (m, 2H, Ph), 6.96-7.00 (m, 2H, Ph), 6.56 (s, 1H, H3), 4.97 (s, 2H, H5, H5'), 3.85 (s, 3H, OCH$_3$), 2.05 (s, 3H, Ac); 13C NMR (CDCl$_3$) δ 170.3 (C=O), 163.8 (Ph), 152.4 (C4), 145.7 (C1), 132.9 (C2), 131.1 (Ph), 129.8 (Ph), 114.7 (Ph), 108.7 (C3), 57.4 (C5), 55.8 (OCH$_3$), 20.8 (CH$_3$); MS (ESI) m/z 328.17 [M+NH$_4$]$^+$, calcd for C$_{14}$H$_{18}$NO$_6$S$^+$ 328.08.

106 had: 1H NMR (CDCl$_3$) δ 9.00 (br, 1H, NH), 7.76 (d, $J = 8.8$ Hz, 2H, Ph), 7.58 (s, 1H, H1'), 6.97-6.99 (m, 3H, Ph, H6), 5.69 (br s, 1H, OH), 5.62 (dd, $J = 1.2$, 8 Hz, 1H, H5), 4.93-4.79 (m, 1H, H3'), 4.27 (dd, $J = 4.4$, 12.4 Hz, 1H, H5'), 4.21 (dd, $J = 4.8$, 12.4 Hz, 1H, H5''), 3.86 (s, 3H, OCH$_3$), 1.95 (s, 3H, Ac); 13C NMR (CDCl$_3$) δ 170.4 (C=O), 164.2 (Ph), 162.6 (C4), 160.3 (C6, C2), 150.3 (C4'), 140.2 (C2'), 131.5 (Ph), 129.9 (Ph), 116.9 (C1'), 114.9 (Ph), 103.7 (C5), 88.7 (C3'), 63.4 (C5'), 55.6 (OCH$_3$), 20.5 (CH$_3$). MS (ESI) m/z 440.04 [M+NH$_4$]$^+$, calcd for C$_{18}$H$_{22}$N$_3$O$_8$S$^+$ 440.11.

107 had: 1H NMR (CDCl$_3$) δ 9.23 (br, 1H, NH), 7.79-7.75 (m, 2H, Ph), 7.24 (d, $J = 8.4$ Hz, 1H, H6), 7.18 (t, $J = 1.6$ Hz, 1H, H3'), 7.03-6.99 (m, 3H, Ph, H1'), 5.55 (dd, $J = 2.0$, 8.4 Hz, 1H, H5), 5.12-5.09 (m, 1H, H4'), 4.41 (dd, $J = 4.0$, 12.4 Hz, 1H, H5'), 4.29 (dd, $J = 3.6$, 12.4 Hz, 1H, H5''), 3.87 (s, 3H, OCH$_3$), 2.09 (s, 3H, Ac); 13C NMR (CDCl$_3$) δ 170.1 (C=O), 164.9 (Ph), 162.9 (C4), 150.3 (C2), 142.1 (C6), 141.9 (C2'), 139.5 (C3'), 130.8 (Ph), 129.1 (Ph), 115.2 (Ph), 103.2 (C5), 87.5 (C1'), 82.8 (C4'), 63.9 (C5'), 56.1 (OCH$_3$), 20.8 (Ac). HRMS (ESI) m/z 423.0856 [M+H]$^+$, calcd for C$_{18}$H$_{19}$N$_2$O$_8$S$^+$ 423.0857.
[4-[(4-Methoxyphenyl)sulfonyl]furan-2-yl]methyl acetate (105) and uracil (105a). In a glove box, SED (31 mg, 0.1 mmol) was added to a solution of 91a (50 mg, 0.1 mmol) in anhydrous DMF (4 mL) and stirred at ambient temperature for 15 minutes. Reaction flask was brought out of the glove box and water was added to the crude reaction mixture. The aqueous phase was extracted with CH₂Cl₂ (3 x), the combined organic phase was dried with Na₂SO₄ and volatiles were evaporated in vacuo to give 105 (29.4 mg, 95%) as a colorless oil.

Acidification of the aqueous phase (pH ~ 5-6) followed by a second extraction with CH₂Cl₂ (2 x) gave a white solid. ¹H NMR (MeOD) of the white solid revealed the presence of uracil 105a along with other impurities.

3,5-di-O-Benzyl-1,2-dideoxy-1,2-didehydro-2-[(4-methoxyphenyl)sulfonyl]ribose (108), 2-[(benzyloxy)methyl]-4-[(4-methoxyphenyl)sulfonyl]furan (109) and 3-N-benzyluracil (103). In a glove box, SED (22 mg, 0.067 mmol) was added to a stirred solution of 91b (45 mg, 0.07 mmol) in DMF (4 mL) and the reaction mixture was stirred at ambient temperature for 15 minutes. Reaction flask was brought out of the glove box and water was added to the crude reaction mixture. The aqueous phase was extracted with CH₂Cl₂ (3 x) and the combined organic phase was dried with Na₂SO₄. Volatiles were evaporated in vacuo and the residue was column chromatographed (PE 100% → PE/EtOAc 9/1 → EtOAc 100%) to give 108 (22 mg, 70%) as a white gum and 103 (9.4 mg, 69%) as a white solid.

108 had: ¹H NMR (CDCl₃) δ 7.83-7.79 (m, 2H, Ph), 7.42 (s, 1H, H1), 7.37-7.31 (m, 3H, Ph), 7.26-7.24 (m, 5H, Ph), 7.09-7.07 (m, 2H, Ph), 6.86-6.84 (m, 2H, Ph), 4.86 (d, J = 3.2 Hz, 1H, H3), 4.77 (td, J = 3.2, 5.6 Hz, 1H, H4), 4.49 (d, J = 2.4 Hz, 2H, CH₂), 4.40 (s,
2H, CH2), 3.81 (s, 3H, OCH3), 3.48 (dd, J = 5.6, 10.4 Hz, 1H, H5), 3.40 (dd, J = 5.6, 10.4 Hz, 1H, H5); 13C NMR (CDCl3) δ 163.3 (C Ph), 159.7 (C1), 137.4 (C Ph), 137.3 (C Ph), 133.6 (C Ph), 129.8 (2 CH Ph), 128.7 (2 CH Ph), 128.4 (2 CH Ph), 128.1 (3 CH Ph), 128.0 (CH Ph), 127.9 (2 CH Ph), 119.7 (C2), 114.2 (2 CH Ph), 90.3 (C3), 80.7 (C4), 73.7 (CH2), 70.8 (CH2), 68.9 (C5), 55.7 (OCH3); HRMS (ESI) m/z 484.1789 [M+NH4]+, calcd for C26H30NO6S+ 484.1788.

Analogous treatment of and 91b (50 mg, 0.075 mmol) with SED (64 mg, 0.22 mmol) in DMF (4 mL) for 30 minutes at room temperature gave 109 as a mixture with 108 (7.4 mg, 2:1 ratio of 109:108) as a colorless oil and 103 (13 mg, 86%) as a white solid.

109 had: 1H NMR (200MHz, CDCl3) δ 7.93 (s, 1H, H1), 7.91-7.84 (m, 2H, Ph), 7.36-7.30 (m, 5H, Ph), 7.01-6.96 (m, 2H, Ph), 6.49 (s, 1H, H3), 4.53 (s, 2H, CH2), 4.42 (s, 2H, CH2), 4.14-4.03 (m, 2H, H5), 3.86 (s, 3H, OCH3); MS (ESI) m/z 376.17 [M+NH4]+, calcd for C19H22NO5S+ 376.12.

5′-O-Acetyl-2′,3′-didehydro-2′,3′-dideoxy-2′-fluorouridine (111) and 1-(5-O-Acetyl-2-deoxy-2-fluoro-β-D-arabinofuranosyl)uracil (114). TDAE (0.06 mL, 50.1 mg, 0.25 mmol) was added drop-wise via syringe to a stirred solution of 95a (95 mg, 0.19 mmol) in dry THF (5 ml) at -70°C under sunlamp irradiation. After 1 h, Selectfluor (131 mg, 0.37 mmol) was added and the sunlamp was turned off. The resulting mixture was stirred for 1 h at -70°C and then overnight at ambient temperature. The reaction mixture was quenched with 3 ml of aqueous NH4Cl and stirred for 30 min and then extracted with EtOAc. The combined organic layer was washed with Na2CO3/H2O, brine and dried over
MgSO₄. Evaporation and column chromatography (5% MeOH in CHCl₃) gave 111 (10 mg: 18%) and 114 (5 mg: 10%).

111 was also obtained by another procedure (see Scheme 22). In a glove box, SED (68 mg, 0.24 mmol, 3 equiv.) was added to a stirred solution of 95a (40 mg, 0.08 mmol) in anhydrous DMF (4 mL) and the resulting dark brown solution was stirred at 120 °C for 18 h. Reaction flask was brought out of the glove box, and 10% HCl solution was added to the crude reaction mixture. Aqueous layer was extracted with CH₂Cl₂ (2 x). Combined organic layer was dried (Na₂SO₄), filtered, and concentrated in vacuo to give a brown solid. Et₂O was added to the solid and was filtered. Filtrate was concentrated in vacuo to give 111 (<10 mg, ~ 46%) along with other impurities. ¹H NMR of the black solid (DMSO-d₆) showed similar peaks to the ones obtained for the oxidized form of the SED (SED²⁺).

111 had: ¹H NMR (CDCl₃) δ 8.47 (br s, 1H, NH), 7.52 (dd, J = 1.0, 8.1 Hz, 1H, H6), 6.90-6.88 (m, 1H, H1'), 5.78 (d, J = 8.1 Hz, 1H, H5), 5.69 (m, 1H, H3'), 5.06-5.02 (m, 1H, H4'), 4.35-4.21 (m, 2H, H5',5''), 2.11 (s, 3H, Ac); ¹⁹F NMR (CDCl₃) δ -133.76 (t, J = 4.6 Hz, F2'); MS (EI) m/z 271.09 [M+H]+. calcd for C₁₁H₁₂FN₂O₅⁺ 271.07.

114 had: ¹H NMR (CDCl₃) δ 8.32 (br s, 1H, NH), 7.51-7.53 (m, 1H, H6), 6.22-6.28 (m, 1H, H1'), 5.76 (d, J = 8.1 Hz, 1H, H5), 5.06 (d, J = 51.3 Hz, 1H, H2'), 4.43-4.29 (m, 3H, H3', H5', H5''), 2.12 (s, 3H, Ac); ¹³C NMR (150 MHz, CDCl₃) δ 170.9 (C=O), 162.7 (C4), 150.1 (C2), 140.9 (C6), 102.2 (C5), 94.4 (d, J = 191.8 Hz, C2'), 84.7 (d, J = 16.5 Hz, C1'), 82.9 (C4'), 75.4 (d, J = 26.5 Hz, C3'), 63.1 (C5'), 20.9 (CH₃); ¹⁹F NMR (CDCl₃) δ -199.91 (s, F2'); MS (EI) m/z 288.9 [M+H]+, calcd for C₁₁H₁₄FN₂O₆⁺ 289.08.
3-(benzyloxy)-2-[(benzyloxy)methyl]-4-[(4-methoxyphenyl)sulfonyl]furan (112). In a glove box, SED (62 mg, 0.22 mmol) was added to a solution of 95b (50 mg, 0.073 mmol) in anhydrous DMF (4 mL) and the resulting solution was stirred at 120 °C for 3 h. Reaction flask was brought out of the glove box, and water was added to the crude reaction mixture. The aqueous phase was extracted with CH₂Cl₂ (3 x) and the combined organic phase was dried with Na₂SO₄. Volatiles were evaporated in vacuo and the residue was column chromatographed (PE/EtOAc 9/1 → EtOAc 100%) to give 112 (19.6 mg, 58%) as a white gum and 103 (12.4 mg, 84%) as a white solid.

Analogous treatment of 95b (58.3 mg, 0.085 mmol) with SED (72 mg, 0.25 mmol) at ambient temperature for 4 h showed only trace amounts of 112 and 103 on TLC. Addition of degazed water (0.5 mL, 500 mg, 27.75 mmol) followed by heating at 80 °C for 30 minutes gave, after workup and silica gel chromatography, 112 (31.7 mg, 80%) and 103 (10.1 mg, 60%).

112 had: ¹H NMR (200MHz, CDCl₃) δ 7.94-7.87 (m, 2H, Ph), 7.83 (s, 1H, H1), 7.37-7.24 (m, 10H, Ph), 6.95-6.88 (m, 2H, Ph), 5.07 (s, 2H, CH₂), 4.41 (s, 2H, CH₂), 4.17 (s, 2H, CH₂), 3.84 (s, 3H, OCH₃); ¹³C NMR (50 MHz, CDCl₃) δ 163.6 (C3), 144.8 (C1), 142.4 (Ph), 140.7 (Ph), 137.4 (Ph), 136.2 (Ph), 132.8 (C4), 130.0 (Ph), 128.55(Ph), 128.53 (Ph), 128.48 (Ph), 128.0 (Ph), 127.9 (Ph), 125.6 (C2), 114.3 (Ph), 77.3 (CH₂), 72.4 (CH₂), 61.1 (CH₂), 55.7 (OCH₃). HRMS (ESI) m/z 482.1632 [M+NH₄]⁺ calcd for C₂₆H₂₈NO₆S⁺ 482.1632.

3-N-Methyl-2'-deoxy-2'-fluoro-2'-[(4-methoxyphenyl)sulfonyl]uridine (115). TDAE (0.036 mL, 0.155 mmol) was added drop-wise via syringe to a stirred solution of 95a (15.4 mg, 0.031 mmol) in dry THF or DMF (0.5 ml) at -70°C under N₂. UV sunlamp
was switched on and after 1 h, CH₃I (44.4 mg, 0.31 mmol) was added. The resulting mixture (yellowish with white fine solid) was stirred for 1 h at -70°C and then overnight at ambient temperature. The reaction mixture was quenched with 3 ml of aqueous MeOH, stirred for 30 min and concentrated in vacuo. The crude product (100.8 mg), a yellowish solid, was washed with dichloromethane (2 x 5 mL), filtered and the filtrate concentrated in vacuo to recover 42.9 mg of a viscous orange. ¹⁹F-NMR of this crude product indicated no starting material (a triplet centred at - 157 ppm) and a triplet centred at -161.42 ppm with additional resonances at in the region -122 to -126 ppm. Column chromatography (5% MeOH in CHCl₃) gave 115 (10.2 mg, ~ 79%) that was contaminated with an impurity, as the fastest moving fraction.

¹¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, 2H, J = 6.9 Hz, Ph), 7.68 (d, 1H, J = 8.7 Hz, H6), 6.98 (d, 2H, J = 6.9 Hz, Ph), 6.40 (d, 1H, J = 20.4 Hz, H1'), 5.85 (d, 1H, J = 8.7 Hz, H5), 5.04 (m, 1H, H3'), 3.98-4.11 (m, 3H, H4' and H5',5''), 3.89 (s, 3H, OCH₃); 3.15 (s, 3H, NCH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -160.41 (t, J = 19.5 Hz, F2') and -160.75 (t, J = 19.8 Hz, F2') (ratio 1:0.16); MS (ESI) m/z 431.1 [M+ H]+, 453.1 [M+Na]+.

General Procedure for cyclic voltammetry. Electrochemical measurements were performed using an EG & G-Princeton Applied Research 263A all-in-one potentiostat, using a standard three-electrode setup with a glassy carbon electrode (working electrode, diameter = 3 mm), platinum wire auxiliary electrode and a non-aqueous Ag/Ag⁺ (0.01 M AgNO₃ + 0.1 M n-Bu₄NO₃) system in acetonitrile as the reference electrode. All solutions under the study were 0.1 M in the supporting electrolyte n-Bu₄NPF₆ (Fluka puriss electrochemical grade) with the voltage scan rate of 0.2 V s⁻¹. Anhydrous DMF was obtained from Fisher Scientific. Solutions (2.5 mL) were thoroughly bubbled with
dry argon for 15 minutes to remove oxygen before any experiment and kept under positive pressure of argon. Under these experimental conditions the ferrocene/ferricinium couple, used as internal reference for potential measurements, was located at $E_{1/2} = + 0.05$ V in DMF.

4-Benzylamino-7-(β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine (122a). BnBr (345 μL, 496 mg, 2.9 mmol) was added to a stirred solution of tubercidin (19a; 266 mg, 1 mmol) in dried DMF (5 mL). After stirring for 48 hours at 40 °C, TLC showed almost complete conversion to a more polar product. Volatiles were evaporated to ~1 mL (< 40 °C, vacuum pump) and the resulting syrup was added dropwise to dried acetone (30 mL) with vigorous stirring. Et₂O (60 mL) was added to the suspension, which was chilled for 20 min at 0 °C and vacuum filtered. The hygroscopic precipitate was quickly dissolved in MeOH (10 mL) and Me₂NH/THF (2 M, 8 mL) was added. The resulting solution was stirred at reflux (65 °C, oil bath) for 20 h. TLC showed ~80% conversion to less polar spot, and volatiles were evaporated and coevaporated with MeOH (2 ×). The residue was dissolved in warm MeOH (10 mL), H₂O (60 mL) was added, and the solution was extracted with EtOAc (5 × 20 mL). The combined organic phase was dried (Na₂SO₄), concentrated in vacuo, coevaporated (2 × EtOH) and flash chromatographed (EtOAc) to give 122a (238 mg, 67%) as a colorless oil: UV (MeOH) λ_{max} 276 nm, λ_{min} 244 nm; 1H NMR (DMSO-d_6) δ 8.09-8.13 (m, 2H, NH, H2), 7.38 (d, $J = 3.7$ Hz, 1H, H6), 7.29-7.35 (m, 4H, Ph), 7.22-7.25 (m, 1H, Ph), 6.67 (d, $J = 3.4$ Hz, 1H, H5), 6.01 (d, $J = 5.9$ Hz, 1H, H1'), 5.27-5.32 (m, 2H, 2'-OH, 5'-OH), 5.12 (d, $J = 4.3$ Hz, 1H, 3'-OH), 4.70-4.78 (m, 2H, CH₂), 4.44 (q, $J = 5.7$ Hz, 1H, H2'), 4.09 ("q", $J = 4.1$ Hz, 1H, H3'), 3.90 (q, $J = 3.4$ Hz, 1H, H4'), 3.60-3.65 (m, 1H, H5'), 3.50-3.56 (m, 1H, H5''); 13C NMR (DMSO-d_6) δ...
156.1, 151.4, 149.5, 140.1, 128.2 (Ph), 127.1 (Ph), 126.6, 122.3 (C6), 103.4, 99.2 (C5), 87.6 (C1'), 85.1 (C4'), 73.7 (C2'), 70.7 (C3'), 61.8 (C5'), 43.1 (CH2); MS (ESI) m/z 357 (100%, MH+), HRMS (ESI) m/z 357.1581 (MH+), calcd for C18H29N4O4 357.1563.

4-(4-Nitrobenzylamino)-7-(β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine (122b).

Method A. Tubercidin (19a; 266 mg, 1.0 mmol) was treated with 4-nitrobenzyl bromide (648 mg, 3.0 mmol) at 80 °C for 24 h as described above for 122a followed by addition of MeOH (15 mL) and Me2NH/THF (2 M, 8 mL). The reaction mixture was stirred at reflux for 20 h; TLC showed ~85% conversion to a less polar product 122b (244 mg, 56%, yellow oil): UV (MeOH) λmax 278 nm, λmin 240 nm; 1H NMR (DMSO-d6) δ 8.30 (t, J = 6.1 Hz, 1H, NH), 8.19 (“d”, J = 8.8 Hz, 2H, Ph), 8.12 (s, 1H, H2), 7.58 (d, J = 8.8 Hz, 2H, Ph), 7.43 (d, J = 3.7 Hz, 1H, H6), 6.69 (d, J = 3.5 Hz, 1H, H5), 6.04 (d, J = 6.3 Hz, 1H, H1'), 5.28-5.30 (m, 2H, 2 × OH), 5.14 (s, 1H, OH), 4.80-4.91 (m, 2H, CH2), 4.45 (“d”, J = 4.4 Hz, 1H, H2'), 4.11-4.13 (m, 1H, H3'), 3.92 (q, J = 3.5 Hz, 1H, H4'), 3.64 (dt, J = 3.9, 11.8 Hz, 1H, H5'), 3.52-3.57 (m, 1H, H5''); 13C NMR (DMSO-d6-D2O) δ 155.8, 151.0, 148.8, 147.9, 146.3, 127.9 (Ph), 123.4 (Ph), 122.8 (C6), 103.6, 99.3 (C5), 87.5 (C1'), 84.9 (C4'), 73.5 (C2'), 70.4 (C3'), 61.6 (C5'), 42.7 (CH2); MS (ESI): m/z 402 (100%, MH+). Anal. Calcd for C18H19N5O6•1.25 H2O (423.89): C, 51.00; H, 5.11; N, 16.52. Found: C, 51.05; H, 5.06; N, 16.03.

Method B. Step a. Ac2O (377 µL, 408 mg, 4 mmol) was added to a stirred suspension of 19a (266 mg, 1 mmol) in dried pyridine (5 mL) at 0 °C (ice bath) and stirring was continued at 0 °C for 12 h and then at ambient temperature for 9 h (total reaction time: 21 h). MeOH was added, the reaction mixture was stirred at ambient temperature for 30 min, and volatiles were evaporated (vacuum pump, <25 °C). MeOH was added and
evaporated, and the resulting gum was partitioned between CHCl₃ (50 mL) and 2% AcOH/H₂O (50 mL). The aqueous layer was extracted with CHCl₃, and the combined organic phase was washed with NaHCO₃/H₂O, brine, and dried (MgSO₄). Volatiles were evaporated in vacuo and the residue was column chromatographed (EtOAc) to give 2',3',5'-tri-O-acetyltubercidin (123; 337 mg, 86%) as a colorless foam with data as reported.²²²

Step b. NaNO₂ (66 mg, 0.95 mmol) was added to a solution of 123 (150 mg, 0.38 mmol) in freshly prepared ~55% HF-pyridine¹⁹² (1.9 mL) at −10 °C in a sealed polypropylene vessel. The mixture was stirred at −10 °C for 15 min, and TLC showed almost complete conversion to a less polar spot. Ice/H₂O was added and the mixture was extracted with CH₂Cl₂. The combined organic phase was washed with NaHCO₃/H₂O, brine, and dried (Na₂SO₄). Volatiles were removed in vacuo, and the resulting brown oil was column chromatographed (30% EtOAc in hexanes) to give 7-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-4-fluoropyrrolo[2,3-d]pyrimidine (124; 124 mg, 82%) as a colorless oil: UV (MeOH) λ_max 258 nm, λ_min 233 nm; ¹H NMR (CDCl₃) δ 8.53 (d, J_H-F = 0.5 Hz, 1H, H2), 7.37 (d, J = 3.8 Hz, 1H, H8), 6.66 (d, J = 3.8 Hz, 1H, H7), 6.45 (d, J = 6.0 Hz, 1H, H1'), 5.74 (t, J = 5.8 Hz, 1H, H2'), 5.55 (dd or m, J = 4.1, 5.6 Hz, 1H, H3'), 4.32-4.42 (m, 3H, H4', H5', H5''), 2.12 (s, 3H, CH₃), 2.13 (s, 3H, CH₃), 2.02 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃) δ −64.81 ppm (s); ¹³C NMR (CDCl₃) δ 170.2, 169.6, 169.4 (3 x C=O), 162.3 (d, J_C-F = 253.8 Hz, C4), 155.1 (d, J_C-F = 11.9 Hz, C7a), 151.1 (d, J_C-F = 14.5 Hz, C2), 125.7 (d, J_C-F = 2.6 Hz, C6), 105.4 (d, J_C-F = 33.4 Hz, C4a), 99.6 (d, J_C-F = 4.9 Hz, C5), 86.1 (C1'), 79.9 (C4'), 73.1 (C2'), 70.1 (C3'), 63.3 (C5'), 20.7, 20.5, 20.3 (3 x s, 3 x CH₃); MS (ESI): m/z 396 (100%, MH⁺).
Step c. Freshly distilled Et$_3$N (113 µL, 82 mg, 0.81 mmol) was added to a stirred suspension of 124 (93 mg, 0.23 mmol) and 4-nitrobenzylamine hydrochloride (67 mg, 0.35 mmol) in MeOH (3 mL) and stirring was continued for 5 h at ambient temperature. Volatiles were evaporated in vacuo and the residue was column chromatographed (50% EtOAc in hexanes) to give 2',3',5'-tri-O-acetyl-4-N-(4-nitrobenzyl)tubercidin (125; 58 mg, 47%) as a colorless oil: UV (MeOH) λ_{max} 277 nm, λ_{min} 238 nm. 1H NMR (CDCl$_3$) δ 8.36 (s, 1H, H2), 8.17 (d, J = 8.7 Hz, 2H, Ph), 7.51 (d, J = 8.7 Hz, 2H, Ph), 7.12 (d, J = 3.768 Hz, 1H, H6), 6.42-6.46 (dd, 3.8, 6.0 Hz, 2H, H1', H5), 5.73 (t, J = 5.8 Hz, 1H, H2'), 5.54-5.59 (m, 2H, H3', NH), 4.95 (d, J = 6.1 Hz, 2H, CH$_2$), 4.31-4.40 (m, 3H, H4', H5', H5''), 2.14 (s, 6H, 2 × CH$_3$), 2.04 (s, 3H, CH$_3$); 13C NMR (CDCl$_3$) δ 170.4, 169.7, 169.5 (3 × C=O), 156.0 (C4), 152.3 (C2), 150.8 (C7a), 147.3 (Ph), 146.7 (Ph), 128.0 (Ph), 123.9 (Ph), 121.5 (C6), 103.8 (C4a), 99.4 (C5), 85.4 (C1'), 79.5 (C4'), 73.1 (C2'), 70.8 (C3'), 63.5 (C5'), 44.2 (CH$_2$), 20.8, 20.6, 20.4 (3 x s, 3 x CH$_3$). MS (ESI): m/z 528 (100%, MH$^+$).

Step d. NH$_3$/MeOH (5 mL) was added to a stirred solution of 125 (54 mg, 0.1 mmol) in MeOH (1 mL) and stirring was continued at ambient temperature for 20 h. Volatiles were evaporated and the residue was column chromatographed with a 2 → 4% gradient of the upper phase of EtOAc/i-PrOH/H$_2$O (4:1:2) in EtOAc to give 122b (35 mg, 85%) as a yellow oil.

5-Carboxamido-4-(4-nitrobenzylamino)-7-(β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine (122c). Sangivamycin (19b; 155 mg, 0.5 mmol) was treated with 4-nitrobenzyl bromide (162 mg, 1.5 mmol) for 26 h at 40 °C as described for 19a → 122a and the alkylated intermediate was then stirred with Me$_2$NH/THF (2 M, 6 mL) and
MeOH (12 mL) for 45 h at ambient temperature. Me₂NH/THF (2 M, 2 mL) was added and the mixture was stirred at reflux for 32 h (total reaction time: 77 h). TLC showed ~80% conversion to the less polar 122c, which was obtained as off-white crystals (101 mg, 45%) after recrystallization from EtOH: mp 154-158 °C (dec.); UV (MeOH) 286 nm (ε 23 100), λ_mín 229 nm (ε 8700); ¹H NMR (DMSO-d₆) δ 10.29 (t, J = 6.0 Hz, 1H, NH), 8.17-8.21 (m, 4H, Ph, H2, H6), 8.11 and 7.47 (2 x s, 2 x 1H, CONH₂), 7.59 (brd, J = 8.8 Hz, 2H, Ph), 6.06 (d, J = 6.0 Hz, 1H, H1'), 5.43 (d, J = 6.3 Hz, 1H, 2'-OH), 5.20 (d, J = 5.0 Hz, 1H, 3'-OH), 5.09 (t, J = 5.8 Hz, 1H, 5'-OH), 4.90 (“d”, J = 6.2 Hz, 2H, CH₂), 4.37 (q, J = 5.8 Hz, 1H, H2'), 4.10 (“q”, J = 4.5 Hz, 1H, H3'), 3.93 (q, J = 4.0 Hz, 1H, H4'), 3.61-3.67 (m, 1H, H5'), 3.53-3.58 (m, 1H, H5''); ¹³C NMR (DMSO-d₆) δ 166.5, 156.5, 152.6, 150.4, 148.0, 146.4, 128.0 (Ph), 125.7, 123.6, 110.9, 101.7, 87.2 (C1'), 85.3 (C4'), 73.9 (C2'), 70.5 (C3'), 61.9 (C5'), 42.9 (CH₂); MS (ESI) m/z 445 (100%, MH⁺). Anal. Calcd for C₁₉H₂₀N₆O₇•1.5 H₂O (471.42): C, 48.41; H, 4.92; N, 17.83. Found: C, 48.59; H, 4.66; N, 17.65.

5-Cyano-4-(4-nitrobenzylamino)-7-(β-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidine (122d). Toyocamycin (19c; 146 mg, 0.5 mmol) was heated with 4-nitrobenzyl bromide (364 mg, 1.5 mmol) in dried DMF (3 mL) at 40 °C for 63 h (TLC showed ~85% conversion to a less polar product). Volatiles were evaporated to ~1 mL (< 40 °C, vacuum pump) and this material was added dropwise to 20 mL of vigorously stirred dried acetone. Et₂O (40 mL) was added to the stirred suspension, which was chilled at 0 °C for 20 minutes and the precipitate was collected by vacuum filtration. Recrystallization from MeOH gave 122d (99 mg, 46%) as colorless crystals: mp 214-216 °C; UV (MeOH) λ_mín 274, 236 nm (ε 22 100, 18 900), λ_mín 250, 228 nm (ε 12 800, 18 000); ¹H NMR (DMSO-d₆)
d_6) δ 8.35 (s, 1H, H2), 8.19-8.23 (m, 3H, H6, Ph), 7.59 (d, $J = 8.6$ Hz, 2H, Ph), 6.87 (s, 1H, NH), 5.93 (d, $J = 5.6$ Hz, 1H, H1'), 5.47 (d, $J = 6.0$ Hz, 1H, 2'-OH), 5.35 ("s", 2H, CH2), 5.21 (d, $J = 5.0$ Hz, 1H, 3'-OH), 5.09 (t, $J = 5.4$ Hz, 1H, 5'-OH), 4.31 (q, $J = 5.5$ Hz, 1H, H2'), 4.08 (q, $J = 4.6$ Hz, 1H, H3'), 3.92 (q, $J = 3.7$ Hz, 1H, H4'), 3.62-3.68 (m, 1H, H5'), 3.53-3.58 (m, 1H, H5''); 13C NMR (DMSO-d_6-D$_2$O) δ 152.6, 149.4, 146.7, 144.9, 142.7, 129.4, 128.5 (Ph), 123.5 (Ph), 115.2, 105.0, 87.7 (C1'), 85.8 (C4'), 85.5, 74.6 (C2'), 70.1 (C3'), 61.1 (C5'), 48.8 (CH2); MS (ESI): m/z 427 (100%, MH$^+$). Anal. Calcd for C$_{19}$H$_{18}$N$_6$O$_6$•0.5 H$_2$O (435.39): C, 52.41; H, 4.40; N, 19.30. Found: C, 52.17; H, 4.29; N, 19.30.

8-azidotoyocamycin (129). NaN$_3$ (158.1 mg, 2.43 mmol) was added to a stirred solution of 55 (300 mg, 0.810 mmol) in anhydrous DMF (10 mL) in a flame dried flask and the resulting colorless solution was stirred at room temperature in the dark for 16 h, by which time the solution turned a brown-red color and UV showed 6 nm bathochromic shift in the λ_{max}, indicating the conversion to product. Volatiles were removed from the clear, brown-red solution using high vacuum rotary evaporator on a hot water bath (<80 °C) while in a dark room. The resulting brown gummy oil was purified using column chromatography in the dark (5%, MeOH/EtOAc) to give 129 as an off white solid (123.2 mg, 46%): HRMS (ESI): m/z [M+Na]$^+$ calcd for C$_{12}$H$_{12}$N$_8$NaO$_4^+$: 355.0874; found 355.0952.

Click product (132). Cyclooctyne 130 (9.04 mg, 0.060 mmol) was added to a stirred solution of 129 (20 mg, 0.060 mmol) in ACN and H$_2$O (3:1) in a flask and the resulting clear, colorless solution was stirred at room temperature for 4 h, by which time TLC showed >80% conversion to product to a more polar product. Volatiles were removed
using high vacuum rotary evaporator and a hot water bath (<80 °C). The resulting yellow oil was purified using column chromatography (10%, EtOAc/MeOH) giving 132 as an off white solid (17 mg, 59%). This solid was then re-purified using RP-HPLC (20% CAN in H₂O) to give 132 as an off white gummy solid (9.6 mg, 33%). R₉ (EtOAc:iPrOH:H₂O, 4:1:2) 0.49; HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₂₇N₈O₅⁺: 483.2099; found 483.2087.

Click product (133). Cyclooctyne 131 (16.6 mg, 0.060 mmol) was added to a stirred solution of 129 (20 mg, 0.060 mmol) in ACN and H₂O (3:1) in a flask and the resulting clear, pale red solution was stirred at room temperature for 4 h, by which time TLC showed >80% conversion to product to a more polar product almost on the baseline. Volatiles were removed using high vacuum rotary evaporator and a hot water bath (<80 °C). The resulting pale red oil was purified using column chromatography (17.5%, EtOAc/MeOH) giving 133 as an off white gummy solid (17.1 mg, 47%). R₉ (EtOAc:iPrOH:H₂O, 4:1:2) 0.13; HRMS (ESI): m/z [M+H]⁺ calcd for C₃₀H₂₉N₁₀O₅⁺: 609.2317; found 609.2352.

2',3',5'-tri-O-acetyltoyocamycin. (138). Ac₂O (380μL, 4 mmol) was added to a stirred solution of 19c (292 mg, 1 mmol) in anhydrous pyridine (5 mL) at 0 °C (ice bath) and stirring was continued at 0 °C for 1 h and then at ambient temperature for 3 h (total reaction time: 4 h). MeOH was added, the reaction mixture was stirred at ambient temperature for 30 min, and volatiles were evaporated (vacuum pump, <25 °C). MeOH was added and evaporated, and the resulting gum was partitioned between CHCl₃ (25 mL) and 2% AcOH/H₂O (25 mL). The aqueous layer was extracted with CHCl₃, and the combined organic phase was washed with NaHCO₃/H₂O, brine, and dried (MgSO₄).
Volatiles were evaporated *in vacuo* and the residue was column chromatographed (70% EtOAc in hexanes) to give 2,3',5'-tri-O-acetyltoyocamycin (138; 405 mg, 97%) as a colorless foam: \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 8.24 (s, 1H, H2), 7.72 (s, 1H, H8), 6.37 (s, 2H, NH\(_2\)), 6.30 (d, \(J = 5.4\) Hz, 1H, H1'), 5.66 (d, \(J = 5.5\) Hz, H2'), 5.48 (d, \(J = 5.1\) Hz, H3'), 4.38 (“q”, \(J = 3.9\) Hz, H4'), 4.33-4.32 (“m”, 2H, H5', H5''), 2.08 (s, 3H, CH\(_3\)), 2.06 (s, 3H, CH\(_3\)), 2.00 (s, 3H, CH\(_3\)).

8-Bromo-2',3',5'-tri-O-acetyltoyocamycin (139). DBH (157 mg, 0.55 mmol) was added to a stirred solution of 138 (209 mg, 0.5 mmol) in CH\(_2\)Cl\(_2\) (4 mL) and the resulting brown solution was stirred at ambient temperature for 18 hours. The reaction mixture was partitioned between CH\(_2\)Cl\(_2\) (16 mL) and NaHCO\(_3\)/H\(_2\)O (25 mL). The aqueous layer was extracted with CH\(_2\)Cl\(_2\), and the combined organic phase was washed with brine and dried (MgSO\(_4\)). Volatiles were evaporated *in vacuo* and the residue was column chromatographed (50% EtOAc in hexanes) to give 139 (195 mg, 79%) as a brown oil with data as reported.\(^{223}\)

2',3',5'-tri-O-(tert-butyldimethylsilyl)toyocamycin (141). Imidazole (1.02 g, 15 mmol) and TBDMSCl (1.09 g, 7.2 mmol) was added to a stirred solution of 19c (583 mg, 2 mmol) in anhydrous DMF (6 ml) and the resulting suspension was stirred at ambient temperature for 24 h and then at 35 °C for 12 h, by which time TLC showed ~40% unchanged substrate and two less polar spots. A second portion of imidazole (1.02 g, 15 mmol) and TBDMSCl (1.09 g, 7.2 mmol) were added and the resulting suspension was stirred at 35 °C for 24 h (total reaction time: 60 h), by which time TLC showed 80% conversion to a major less polar spot. Volatiles were evaporated and co-evaporated with toluene (high vacuum rotavap, <40 °C). Crude pale gum was partitioned between CHCl\(_3\)
(50 mL) and brine (50 mL). The aqueous layer was extracted with CHCl₃, and the combined organic layer was dried over anhydrous MgSO₄. Volatiles were evaporated in vacuo and the residue was column chromatographed (25% EtOAc in hexanes) to give 141 (736 mg, 58%) as a colorless oil: ¹H NMR (CDCl₃) δ 8.30 (s, 1H, H2), 8.13 (s, 1H, H8), 6.27 (s, 2H, NH₂), 6.18 (d, J = 4.1 Hz, 1H, H1''), 4.32 (d, J = 4.2 Hz, H2''), 4.21 (d, J = 4.4 Hz, H3''), 4.12-4.10 (“m”, 1H, H4''), 4.02 (dd, J = 2.8, 11.6 Hz, 1H, H5''), 3.78 (dd, J = 1.8, 11.6 Hz, 1H, H5''), 0.97 (s, 9H, tBut), 0.89 (s, 9H, tBut), 0.80 (s, 9H, tBut), 0.16 (s, 3H, CH₃), 0.15 (s, 3H, CH₃), 0.06 (s, 3H, CH₃), 0.05 (s, 3H, CH₃), -0.04 (s, 3H, CH₃), -0.14 (s, 3H, CH₃).

8-Iodo-2',3',5',-tri-O-(tert-butyldimethylsilyl)toyocamycin (142). LDA (2 M solution in THF, 560 μL, 1.1 mmol) was added to a stirred solution of 141 (139.5 mg, 0.22 mmol) in dry THF (2 mL) at -78 °C. After ~1 h at -78 °C, iodine (84 mg, 0.33 mmol). The resultant brown solution was stirred at -78 °C for 2 h and at ambient temperature for 48 hours (total reaction time: 51h). Reaction mixture was portioned between EtOAc (10 mL) and 2% AcOH/H₂O (10 mL). Aqueous layer was extracted with EtOAc. Combined organic layer was washed with brine (20 mL), dried (MgSO₄), filtered and concentrated in vacuo, and column chromatographed (10% EtOAc in hexanes) to give 142 (27.3 mg, 16%) and 141 (82.3 mg, 58%) as brown oils.

142 had: ¹H NMR (CDCl₃) δ 8.40 (s, 1H, H2), 8.07 (s, 1H, NH₂), 6.15 (d, J = 4.5 Hz, 1H, H1''), 4.78 (s, 1H, NH₂), 4.27 (d, J = 4.3 Hz, H2''), 4.16 (d, J = 4.3 Hz, H3''), 4.06-4.03 (“m”, 1H, H4''), 3.94 (dd, J = 3.0, 11.5 Hz, 1H, H5''), 3.72 (dd, J = 2.1, 11.5 Hz, 1H, H5''), 0.91 (s, 9H, tBut), 0.84 (s, 9H, tBut), 0.74 (s, 9H, tBut), 0.10 (s, 3H, CH₃), 0.09 (s, 3H,
CH₃), 0.00 (s, 3H, CH₃), 0.01 (s, 3H, CH₃), -0.12 (s, 3H, CH₃), -0.24 (s, 3H, CH₃);
HRMS (ESI) m/z 745.4651 [M-CH₃+H]⁺, calcd for C₂₉H₅₂IN₅O₄Si₃ 745.9249.

7-(1H-benzo[d][1,2,3]triazol-1-yl)tubercidin (144). Tert-butyl hydroperoxide (85 µL, 0.75 mmol) and iodine (38 mg, 0.15 mmol) were added to a stirred suspension of 19a (100 mg, 0.38 mmol) and benzotriazole (89.5 mg, 0.75 mmol) in anhydrous DMF (2mL). The resulting dark brown solution was stirred at 35 °C for 72 h, by which time TLC showed ~10% conversion to a less polar product. A second portion of TBHP (85 µL, 0.75 mmol) was added and the resulting dark brown solution was stirred at 35 °C for 24 h (total reaction time: 96 h). Volatiles were evaporated and co-evaporated with toluene (high vacuum rotavap, <50 °C). The resulting brown gum was column chromatographed (5% MeOH in EtOAc) to give 144 (26 mg, 18%) as a brown gum. This brown gum was then injected into a semi-preparative HPLC column (Phenomenex Gemini RP-C18 column; 5µ, 25 cm x 1 cm) via a 5 mL loop and was eluted with an isocratic mobile phase mixture 20% CH₃CN in H₂O at a flow rate of 1.5 mL/min to give 144 (t_R = 21 min) as a white powder: UV (MeOH) λ_max 278 nm (ε = 16700), λ_min 240 nm (ε = 8000); ¹H NMR (DMSO-d₆) δ 8.50 (d, 1H, J = 8.3 Hz, Ph), 8.22 (s,1H, H2), 7.70-7.67 (m,1H, NH₂), 7.62-7.52 (m, 4H, Ph, NH₂), 7.04 (s, 1H, H8), 5.58 (dd, J=3.5,8.8, 3H, 5'-OH), 5.23 (d, J=6.9 Hz, 1H, H1'), 5.20 (d, J=6.4 Hz, 1H,2'-OH), 4.92 ("dd", J=6.4,11.2 Hz, 3'-OH, H2'), 3.82 ("brs", 1H, H3'), 3.75 ("d", J=3.7, 6.2 Hz, H4'), 3.43 (dt, J=3.6,11.9 Hz, H5'), 3.28-3.22 (m, 1H, H5''); ¹³C NMR (DMSO-d₆): δ 158.22, 153.13 (C2), 148.82, 144.52, 135.13, 129.42 (Ph), 125.63, 125.10 (Ph), 119.70 (Ph), 110.51 (Ph), 102.04, 99.48 (C8), 88.20 (C1'), 85.97 (C4'), 71.31 (C2'), 70.77 (C3'), 62.12 (C5'); HRMS (ESI): m/z 384.1391 [M+H]⁺, calcd for C₁₇H₁₇N₇O₄ 384.1415.
5. CONCLUSION

In conclusion, I developed a novel desulfurization-difluorination method for the synthesis of \(\alpha,\alpha \)-difluoro esters from the corresponding \(\alpha \)-arythio esters, wherein the thiol group is present on the secondary internal carbon. 1,3-Dibromo-5,5-dimethylhydantoin (DBH) was used as the oxidant (Br\(^+\)) and Py.9HF was the fluoride ion (F\(^-\)) source. Arylthio esters with hydrogen as well as a ring deactivating chloro substituent at the para position of the aromatic ring were converted to the corresponding gem-difluoro esters under mild reaction conditions. However, the presence of a ring activating methoxy substituent on the para position of the aromatic ring caused the reaction to be sluggish and the difluorination was observed in low yields. Expansion of this desulfurization-difluorination methodology towards the thioether substrates having aldehyde, ketone, and unactivated alkane functional groups on the adjacent carbon was unsuccessful. Also, treatment of lactones under similar reaction conditions gave low yield conversion to the corresponding \(\alpha \)-fluoro sulfides and \(\alpha \)-fluoro sulfoxides. Attempted synthesis of gem-difluorouridine derivatives from the corresponding 2'-arylthio uridine or 2'-fluoro-2'-arylthio uridine precursors was unsuccessful and resulted mostly in halogenation of the pyrimidinone ring at the C-5 and monofluorination at C2', without desulfurization. However, treatment of the fully benzylated uridine substrate bearing a \(p \)-methoxyphenylthioether substituent at the C2' with combination of NIS and DAST gave a moderate but encouraging yield (44%) of the corresponding monofluorinated thioether without any appreciable oxidation of thioether and iodination of the pyrimidine ring.

Chemical reduction protocols in combination with cyclic voltammetry were employed for reductive desulfonylation of 2'-arylsulfonyl-2'-deoxyuridines as a possible
alternative process towards incorporation of fluorine and other substituents at the C2'. A critical impact on the outcome of these reactions was the choice of the protecting groups. Thus, 3',5'-O-diacetylated substrates 91a were found to decompose readily into the corresponding vinyl sulfone 102 during silica gel column purification, whereas the fully benzylated substrate 91b was prone to uracil elimination in the presence of strong base. The cleavage of the C2'-S was found to occur at a relatively high cathodic potential close to - 2.4 V vs SCE, with the expulsion of the corresponding sulfinate, meaning that strong chemical reducing agents or selective electrochemical reductions were required. Interestingly the protecting group (Bn or Ac) had no impact on the reduction potential.

Reactions of 2'-arylsulfonyl-2'-deoxy-2'-fluorouridines with using Organic Electron Donors (OEDs) under different conditions (excess of reducing agents, temperature, uv light activation) gave products resulting from the elimination of either acetate anion from C3' position or uracil from C1' upon reduction of the C2'-S bond leading to furan-type products. Interestingly, less powerful reducing-agent TDAE under UV light activation was found to cleave the C2'-sulfonyl bond to give 2',3'-unsaturated 2'-fluorouridine (18%) and 2'-fluoro-2'-deoxyuridine (10%) products. Tentative trapping of the resulting C2'-anion under these uv light conditions either with Selectfluor or MeI were however unsuccessful.

Bromination at C5-position of pyrimidine nucleosides such as uridine, 2'-deoxyuridine, arabinouridine, cytidine, and N4-benzoylcytidine were achieved under mild reaction conditions using DBH. Also, transformation of purine nucleosides such as adenosine, 2'-deoxuadenosine, guanosine, and 2'-deoxyguanosine to their corresponding 8-brominated counterparts with DBH. Although purine nucleosides required higher
amounts of reagents and produced brominated products in lower yields when compared to that of the pyrimidine counterparts (47-98% vs 70-98%). Increase in temperature and presence of Lewis acids such as TMSOTf and TsOH increased the rate of bromination reaction and reduced the equivalents of DBH reagent required. The DBH bromination protocol is bench friendly, with most conversions taking place at ambient temperature and producing the brominated products in moderate to high yields. Also, acid labile protection groups such as isopropylidene, and base labile protection groups such as acetyl, benzoyl, and silyl were found to be stable during the course of bromination. In addition, I developed novel NBS or DBH mediated bromination methodology for the synthesis of previously known 8-bromotoyocamycin and 8-bromosangivamycin. This methodology offers mild and improved synthetic alternative from previous reaction conditions. I also found that DBH-bromination of various unprotected nucleosides proceeded efficiently in MeOH, avoiding the need to use high-boiling and expensive solvent DMF.

Novel 6-N-benzyltubercidin and 6-N-(4-nitrobenzyl) analogues of tubercidin and sangivamycin were synthesized by initial alkylation at N1 with respective benzyl bromide followed by Me₂NH mediated Dimroth rearrangement. However, no evidence of formation of an initial N1-alkylated cationic intermediate was observed on TLC upon treatment of toyocamycin with 4-nitrobenzyl bromide. Isolated less polar product indicated direct alkylation on the exocyclic amino group to give 4-N-(4-nitrobenzyl)toyocamycin. Alternatively, 6-N-(4-nitrobenzyl)tubercidin was also prepared by (i) conversion of acetylated tubercidin to its 6-fluorocounterpart via Balz-Schiemann type fluoro-diazotization with NaNO₂/Py.9HF (55% HF); (ii) SₙAr displacement of the 6-fluoro group by 4-nitrobenzylamine; (iii) deacetylation with NH₃/MeOH. The 6-N-(4-
nitrobenzyl) derivatives of tubercidin and sangivamycin inhibited cross-membrane transport of labelled uridine by the human equilibrative nucleoside transporter hENT1 at >1 µM and ~120 nM, respectively. Inhibition of the proliferation of L1210, HeLa, and PC-3 tumor cells in culture was observed with 6-N-benzyltubercidin and the 6-N-(4-nitrobenzyl) derivatives of sangivamycin and toyocamycin at 0.92–9.4 µM concentrations.

Novel 8-azidotoyocamycin was synthesized by treatment of 8-bromotoyocamycin with sodium azide. But the azide product was light sensitive and decomposed after exposure to light. Strain promoted click chemistry of 8-azidotoyocamycin with cyclooctynes gave the corresponding 8-triazolyl derivatives in moderate yields. Iodine mediated CH arylation of tubercidin with benzotriazole gave the corresponding 7-substituted benzotriazolyl product, which showed emission at 420 nm with a quantum yield of 0.002 s.

REFERENCES

(2) Avery, O. T.; MacLeod, C. M.; McCarty, M. J. Exp. Med. 1944, 79, 137.

(28) Silva, D. J.; Stubbe, J.; Samano, V.; Robins, M. J. Biochemistry 1998, 37, 5528.

(29) van der Donk, W. A.; Yu, G. X.; Perez, L.; Sanchez, R. J.; Stubbe, J.; Samano, V.; Robins, M. J. Biochemistry 1998, 37, 6419.

(42) Hugenberg, V.; Haufe, G. Synlett 2009, 106.

Unsuccessful attempt of bromination of inosine with NBS in DMF has been reported.61

In view of the high reduction potential of the arylsulfone moiety compared to OED, even transferring one electron would theoretically appear difficult. Nevertheless, it is well known that electron transfer through a mediator, such as a charge-transfer complex, in solution is frequently achieved more easily (i.e. at a
less negative potential) than would be expected from the bare electrochemical
data (explained by the formation of intimate complexes and ion pairing).

(173) Martin, J. A.; Bushnell, D. J.; Duncan, I. B.; Dunsdon, S. J.; Hall, M. J.; Machin,
P. J.; Merrett, J. H.; Parkes, K. E. B.; Roberts, N. A.; et, a. J. Med. Chem. 1990,
33, 2137.

1425.

(176) Fritscher, J.; Artin, E.; Wnuk, S.; Bar, G.; Robblee, J. H.; Kacprzak, S.; Kaupp,

(179) Adhikary, A.; Kumar, A.; Heizer, A. N.; Palmer, B. J.; Pottiboyina, V.; Liang, Y.;

(181) Clark, J. L.; Hollecker, L.; Mason, J. C.; Stuyver, L. J.; Tharnish, P. M.; Lostia,

(186) Pande, P.; Shearer, J.; Yang, J.; Greenberg, W. A.; Rokita, S. E. J. Am. Chem.
Soc. 1999, 121, 6773.

VITA

RAMANJANEYULU RAYALA

2002 - 2005 B.Sc., Chemistry
Kakatiya University, Warangal, India

2006 - 2008 M.Sc., Chemistry
Osmania University, Hyderabad, India

2008 – 2010 Chemistry Lecturer
KLR Degree College, Palwancha, India

2010 - 2015 Doctoral Candidate
Florida International University, Miami, Florida, USA

2011-12 “Outstanding Organic Chemistry Teaching Assistant” Award

2014-2015 Dissertation Year Fellowship award
American Chemical Society

PUBLICATIONS AND PRESENTATIONS

Rayala, Ramanjaneyulu; Theard, Patricia; Ortiz, Heysell; Yao, Sylvia; Young, James D.; Balzarini, Jan; Robins, Morris J., Wnuk, Stanislaw F., “Synthesis of Purine and 7-Deazapurine Nucleoside Analogues of 6-N-(4-Nitrobenzyl)adenosine; Inhibition of Nucleoside Transport and Proliferation of Cancer Cells”, ChemMedChem 2014, 9, 2186-2192.

Rayala, Ramanjaneyulu; Theard, Patricia; Ortiz, Heysell; Wnuk, Stanislaw F.; Robins, Morris J., “Synthesis of 6-N-substituted 7-deazapurine nucleoside antibiotics: Potential
nucleoside transport inhibitors”, 247th ACS National Meeting & Exposition, Dallas, TX, United States, March 16-20, 2014.

Rayala, Ramanjaneyulu; Giuglio, Gamal; Broggi, Julie; Medebielle, Maurice; Wnuk, Stanislaw F., “Reductive desulfonylation of 2'-(arylsulfonyl)-2'-deoxy-2'-fluorouridine derivatives with tetrakis(dimethylamino)ethylene”, 245th ACS National Meeting & Exposition, New Orleans, LA, United States, April 7-11, 2013.