11-15-2006

Synthesis of multisubstituted halo-olefins via Pd-catalyzed cross-coupling reactions: applications in nucleoside chemistry

Daniela Andrei
Florida International University

DOI: 10.25148/etd.FI14032316
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the [Chemistry Commons](https://digitalcommons.fiu.edu/etd)

Recommended Citation
https://digitalcommons.fiu.edu/etd/1287

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.
SYNTHESIS OF MULTISUBSTITUTED HALO-OLEFINS VIA PD-CATALYZED CROSS-COUPLING REACTIONS. APPLICATIONS IN NUCLEOSIDE CHEMISTRY

A dissertation submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

CHEMISTRY

by

Daniela Andrei

2006
To: Interim Dean Mark Szuchman
College of Arts and Sciences

This dissertation, written by Daniela Andrei, and entitled Synthesis of Multisubstituted Halo-olefins via Pd-catalyzed Cross-coupling Reactions. Applications in Nucleoside Chemistry, having been approved in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Kevin O'Shea
David Becker
Djero Gardinali
Richard Schoepfnerster
Stanislaw Whuk, Major Professor

Date of Defense: November 15, 2006

The dissertation of Daniela Andrei is approved.

Interim Dean Mark Szuchman
College of Arts and Sciences

Dean George Walker
University Graduate School

Florida International University, 2006
DEDICATION

To Geanina, Bogdan, Viorel and my parents.
ACKNOWLEDGMENTS

I will be forever grateful of my major professor, Dr. Stanislaw F. Wnuk, for all the valuable experience and knowledge that I have acquired as a graduate student in his lab. His dedication and enthusiasm to teach, support and encourage me through all these years are deeply appreciated.

I also would like to extend my gratitude to my committee members: Dr. O’Shea, Dr. Becker, Dr. Gardinali and Dr. Schoephoerster for their guidance and suggestions. I am also very thankful of Dr. Lees for all his help and kindness. Many thanks also go to Dr Wnuk’s entire group who has offered me their friendship.

Most importantly, I would like to thank God for his never ending blessing.
The enzyme S-adenosyl-L-homocysteine (AdoHcy) hydrolase effects hydrolytic cleavage of AdoHcy to adenosine (Ado) and L-homocysteine (Hcy). The cellular levels of AdoHcy and Hcy are critical because AdoHcy is a potent feedback inhibitor of crucial transmethylation enzymes. Also, elevated plasma levels of Hcy in humans have been shown to be a risk factor in coronary artery disease.

On the basis of the previous finding that AdoHcy hydrolase is able to add the enzyme-sequestered water molecule across the 5',6'-double bond of (halo or dihalohomovinyl)-adenosines causing covalent binding inhibition, we designed and synthesized AdoHcy analogues with the 5',6'-olefin motif incorporated in place of the carbon-5' and sulfur atoms. From the available synthetic methods we chose two independent approaches: the first approach was based on the construction of a new C5'-C6' double bond via metathesis reactions, and the second approach was based on the formation of a new C6'-C7' single bond via Pd-catalyzed cross-couplings. Cross-metathesis of the suitably protected 5'-deoxy-5'-methyleneadenosine with racemic 2-amino-5-hexenoate in the presence of Hoveyda-Grubb's catalyst followed by standard
deprotection afforded the desired analogue as 5′E isomer of the inseparable mixture of 9′R/S diastereomers. Metathesis of chiral homoallylglycine [(2S)-amino-5-hexenoate] produced AdoHcy analogue with established stereochemistry E at C5′ atom and S at C9′ atom. The 5′-bromovinyl analogue was synthesized using the bromination-dehydrobromination strategy with pyridinium tribromide and DBU.

Since literature reports on the Pd-catalyzed monoalkylation of dihaloalkenes (Csp2-Csp3 coupling) were scarce, we were prompted to undertake model studies on Pd-catalyzed coupling between vinyl dihalides and alkyl organometallics. The 1-fluoro-1-haloalkenes were found to undergo Negishi couplings with alkylzinc bromides to give multisubstituted fluoroalkenes. The alkylation was trans-selective affording pure Z-fluoroalkenes. The highest yields were obtained with PdCl$_2$(dppb) catalyst, but the best stereochemical outcome was obtained with less reactive Pd(PPh$_3$)$_4$. Couplings of 1,1-dichloro-and 1,1-dibromoalkenes with organozinc reagents resulted in the formation of monocoupled 1-halovinyl product.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1. S-Adenosyl-L-Homocysteine Hydrolase</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1. Biological Functions of S-Adenosyl-L-Homocysteine Hydrolase</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2. Mechanism of S-Adenosyl-L-Homocysteine Hydrolase Action</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3. Hydrolytic Activity of AdoHcy Hydrolase with Halovinyl Adenine</td>
<td>7</td>
</tr>
<tr>
<td>1.1.4. Hydrolytic Activity of AdoHcy Hydrolase with Halohomovinyl Adenine Analogues</td>
<td>9</td>
</tr>
<tr>
<td>1.2. The Alkene - Metathesis Reaction</td>
<td>14</td>
</tr>
<tr>
<td>1.2.1. Introduction into the Alkene - Metathesis Reaction</td>
<td>14</td>
</tr>
<tr>
<td>1.2.2. Metathesis Reaction in Nucleoside Chemistry</td>
<td>19</td>
</tr>
<tr>
<td>1.3. Palladium-Catalyzed Cross-Coupling Reactions</td>
<td>24</td>
</tr>
<tr>
<td>1.3.1. Introduction to Pd-catalyzed Cross-Coupling Reaction</td>
<td>24</td>
</tr>
<tr>
<td>1.3.2. Negishi Coupling Reaction</td>
<td>27</td>
</tr>
<tr>
<td>1.3.3. Negishi Cross-Couplings Involving Csp²-Csp³ Centers</td>
<td>30</td>
</tr>
<tr>
<td>1.3.4. Negishi Cross-Couplings with Dihalovinyl Derivatives</td>
<td>33</td>
</tr>
<tr>
<td>2. RESEARCH OBJECTIVES</td>
<td>38</td>
</tr>
<tr>
<td>3. RESULTS AND DISCUSSION</td>
<td>41</td>
</tr>
<tr>
<td>3.1. Are L-Adenosine and Its Derivatives Substrates for S-Adenosyl-L-Homocysteine?</td>
<td>41</td>
</tr>
<tr>
<td>3.1.1. Synthesis of L-Adenosine and L-Adenosine 5’-Oximes</td>
<td>41</td>
</tr>
<tr>
<td>3.1.2 Theoretical Studies of L-Adenosine</td>
<td>43</td>
</tr>
<tr>
<td>3.1.2.1. Computational Results with L-Adenosine</td>
<td>43</td>
</tr>
<tr>
<td>3.1.2.2. Docking of L-Adenosine to the Closed Structure of AdoHcy Hydrolase</td>
<td>44</td>
</tr>
<tr>
<td>3.1.3. Interaction of AdoHcy Hydrolase with L-Adenosine</td>
<td>45</td>
</tr>
<tr>
<td>3.2. Design and Synthesis of S-Adenosylhomocysteine Analogues with the Sulfur and C5’ Atoms Replaced by the Vinyl Unit</td>
<td>46</td>
</tr>
<tr>
<td>3.2.1. Metathesis Approach between the 5’-Deoxy-5’-Methyleneadenosine and the Racemic Homoallylglycine Precursors</td>
<td>47</td>
</tr>
<tr>
<td>3.2.2. Metathesis Approach between the 5’-Deoxy-5’-Methyleneadenosine and the Chiral Homoallylglycine Precursors</td>
<td>53</td>
</tr>
<tr>
<td>3.2.3. Synthesis of the Halovinyl S-AdoHcy Analogue</td>
<td>55</td>
</tr>
<tr>
<td>3.3. Negishi Cross-Coupling Approach</td>
<td>57</td>
</tr>
<tr>
<td>3.3.1. Couplings with 1-Fluoro-1-Haloalkenes</td>
<td>57</td>
</tr>
<tr>
<td>3.3.2. Couplings with 1,1-Dichloro- and 1,1-Dibromoalkenes</td>
<td>65</td>
</tr>
<tr>
<td>4. EXPERIMENTAL SECTION</td>
<td>71</td>
</tr>
<tr>
<td>4.1. General Procedures</td>
<td>71</td>
</tr>
<tr>
<td>4.2. Synthesis</td>
<td>72</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Mechanism of S-adenosyl-L-Homocysteine Hydrolase.</td>
<td>5</td>
</tr>
<tr>
<td>2. Selected Inhibitors of the AdoHcy Hydrolase.</td>
<td>8</td>
</tr>
<tr>
<td>3. The 6’-Halo(vinyl)homoadenosine and Related Aristeromycin Analogues</td>
<td>9</td>
</tr>
<tr>
<td>4. The Selected Vinyl and Homovinyl Analogues of Ado and HomoAdo</td>
<td>12</td>
</tr>
<tr>
<td>5. The Dihalo-Vinylhomoadenosine Analogues</td>
<td>13</td>
</tr>
<tr>
<td>6. Possible Mechanism by which 6’-Bromo-6’-Fluoro(homovinyl)adenosine Inactivates AdoHcy Hydrolase</td>
<td>13</td>
</tr>
<tr>
<td>7. Commonly Used Metathesis Catalysts</td>
<td>18</td>
</tr>
<tr>
<td>8. Neplanocin A and Aristeromycin</td>
<td>21</td>
</tr>
<tr>
<td>9. A General Catalytic Cycle for Pd-Catalyzed Cross-Coupling Reactions</td>
<td>26</td>
</tr>
<tr>
<td>10. L-Adenosine and its 5’-Aldehyde Oxime</td>
<td>38</td>
</tr>
<tr>
<td>11. List of Chemical Structures for Chemicals</td>
<td>111</td>
</tr>
</tbody>
</table>
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>SCHEME</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Role of AdoHcy Hydrolase in Regulating AdoMet Dependent Biological Methylation.</td>
<td>2</td>
</tr>
<tr>
<td>2. Mechanism of Inactivation of AdoHcy Hydrolase by EDDFHA</td>
<td>11</td>
</tr>
<tr>
<td>3. Types of Olefin Metathesis Reactions</td>
<td>15</td>
</tr>
<tr>
<td>4. Mechanism of Olefin Metathesis</td>
<td>16</td>
</tr>
<tr>
<td>5. Basic Catalytic Cycle for Metathesis</td>
<td>16</td>
</tr>
<tr>
<td>6. First Synthesis of Nucleoside Using RCM</td>
<td>20</td>
</tr>
<tr>
<td>7. Synthesis of the Carbocyclic Analogue of Ribavirin Using RCM</td>
<td>20</td>
</tr>
<tr>
<td>8. Synthesis of the L-Neplanocin Analogues</td>
<td>21</td>
</tr>
<tr>
<td>9. Synthesis of the Aristeromycin Analogues</td>
<td>23</td>
</tr>
<tr>
<td>10. Synthesis of the Acyclic Nucleosides via Cross-Metathesis Reaction</td>
<td>24</td>
</tr>
<tr>
<td>11. Synthetic Application of the Negishi Coupling</td>
<td>30</td>
</tr>
<tr>
<td>12. Negishi Cross-Couplings of the Alkyl Electrophiles under “Ligandless” Condition</td>
<td>31</td>
</tr>
<tr>
<td>13. The Pd-Catalyzed Alkyl-Alkenyl Coupling with an Alkylzine in a Total Synthesis of (-)-Discodermolide</td>
<td>32</td>
</tr>
<tr>
<td>14. Negishi Cross-Couplings of Aryl and Vinyl Chlorides with Alkylzincs</td>
<td>33</td>
</tr>
<tr>
<td>15. Pd-Catalyzed Double-Alkylation of β,β-Dichlorostyrene</td>
<td>34</td>
</tr>
<tr>
<td>16. Pd-Catalyzed Trans-Selective Monoalkylation of 1,1-Dichloro-1-Alkenes and Pd-Catalyzed Second Substitution</td>
<td>34</td>
</tr>
<tr>
<td>17. Pd-Catalyzed Trans-Selective Monoalkylation of 1,1-Dichloro-1-Alkenes with Alkylzine Reagents</td>
<td>35</td>
</tr>
</tbody>
</table>
18. Putative Mechanism for the Competitive Formation of the Mono- and Dialkylation Products

20. Retrosynthetic Analysis of the AdoHcy Analogues

21. Synthesis of the L-Adenosine and L-Adenosine 5’-oximes

22. Retrospective Analysis for the Unsaturated S-Adenosyl-L-Homocysteine Analogues

23. Synthesis of the Protected 5’-Deoxy-2’,3’-O-Isopropylidene-5’-Methylene Adenosine Precursors

24. Synthesis of the Amino Acid Precursors for Metathesis Approach

25. Cross-Metathesis between 5’-Deoxy-5’-Methyleneadenosine and Unsaturated N-Boc or N-Benzoyl Protected Amino Acids

26. Enantioselective Hydrolysis of the Alkenyl-α-Amino Acid Ester

27. Cross-Metathesis of Adenosine Precursor with S-Amino Acid Derivative

28. Synthesis of the halovinyl S-AdoHcy Analogue

29. Stereoselective Synthesis of 1-Fluoro-1-Haloalkenes

30. Couplings of 1-Fluoro-1-Haloalkenes with Alkylzincs

31. Effect of the Pd Catalyst on the Efficiency of Negishi Coupling

32. Establishing the Stereochemistry of Couplings with 1,1-Dihaloalkenes

33. Couplings with Branched Alkylzincs

34. Synthesis of 1,1-Dichloro- and 1,1-Dibromoalkenes

35. Screening of Pd Catalyst for the Monoalkylation Reaction

36. Pd-Catalyzed Trans-Selective Monoalkylation of 1,1-Dichloro- and 1,1-Dibromoalkenes with Alkylzinc Reagents
1. INTRODUCTION

1.1. S-Adenosyl-L-homocysteine hydrolase

1.1.1 Biological functions of S-adenosyl-L-homocysteine hydrolase

The normal cellular role of S-Adenosyl-L-homocysteine hydrolase (AdoHcy hydrolase) is regulating S-Adenosyl-L-methionine (AdoMet) dependent biological methylation reactions (Scheme 1). AdoMet is involved in the methylation of many biomolecules, from small molecular weight neurotransmitters (e.g., histamine) to macromolecules (e.g., proteins, nucleic acids) and the various methyltransferases which catalyze these reactions have themselves been targets for drug design. AdoMet is also decarboxylated by AdoMet decarboxylase to dcAdoMet. S-Adenosyl-L-homocysteine (AdoHcy) is the byproduct of these methylation reactions and functions as a feedback inhibitor of these methyltransferases. Alteration of the cellular AdoMet/AdoHcy ratio results in serious perturbation of biological methylation of viral RNA. AdoHcy hydrolase provides the only known mechanism for AdoHcy catabolism in eukaryotes, catalyzing its hydrolysis to adenosine (Ado) and L-homocysteine (Hcy). Although the in vitro reaction favors the synthetic direction, subsequent metabolic conversions of adenosine and homocysteine within the cell assure the reaction will run in the hydrolytic direction.

The cellular enzyme S-Adenosyl-L-homocysteine hydrolase effects hydrolytic cleavage of AdoHcy to give Ado and Hcy (Scheme 1). AdoHcy hydrolase plays a significant role in controlling the intracellular level of Hcy that is a cystathionine synthetase- catalyzed precursor to cysteine and methionine. The metabolism of AdoHcy by this enzyme is the only known source of Hcy in mammalian cells. The elevated
plasma Hcy levels in humans have been demonstrated to be a risk factor for coronary artery disease in clinical studies.8 Inhibitors of AdoHcy hydrolase have the potential to reduce the risk of developing coronary heart disease by lowering the cellular level of Hcy. Although, supplementation with B-vitamins and folic acid has been shown to be effective in lowering plasma Hcy level in homocysteinemia patients with residual activity of cystathionine synthetase8b,9, inhibitors of AdoHcy hydrolase have also the potential to regulate plasma level of Hcy.8

\textbf{Scheme 1.} The Role of AdoHcy hydrolase in regulating AdoMet dependent biological methylation.
Study of the distribution of AdoHcy hydrolase in various mammalian tissues revealed that the enzyme activity was highest in the liver, kidney and pancreas; intermediate in the spleen and low in brain and heart. The liver of the mouse contains around twelve times more AdoHcy hydrolase than the kidney, which in turn has five times more AdoHcy than the brain. A one molar equivalent of copper is bound per subunit of mouse liver enzyme. In copper-deficient mice there was a 45% decrease in the hepatic level of AdoHcy. The binding of copper by enzyme means that there is a role for its involvement in copper metabolism.

AdoHcy hydrolase has attracted attention as a target for drug design because inhibitors of this enzyme are known to exhibit antiviral, antiparasitic, antiarthritic and immunosuppressive effects. Inhibition of the cellular AdoHcy hydrolase results in an intracellular build-up of AdoHcy, giving rise to an increase in the intracellular AdoHcy/AdoMet ratios and the subsequent inhibition of fundamental AdoMet dependent methylation reactions. The relationships established are particularly well recognized for the antiviral effect of AdoHcy. De Clercq and Cools found a linear relationship between the log IC$_{50}$ values (concentration which inhibits vaccinia virus replication by 50%) and their log K_i values (inhibition potency of AdoHcy hydrolase) for a series of AdoHcy hydrolase inhibitors.

AdoHcy hydrolase inhibitors are potent as well as broad-spectrum antiviral agents, inhibiting the replication of a variety of (-) RNA viruses and double-stranded RNA viruses. This type of inhibitors are not particularly active against (+) RNA viruses or DNA viruses, except for vaccinia and African swine fever viruses. Their wide range of activity is in contrast to almost all clinically used nucleoside antiviral drugs, which are
usually specific toward a particular species or strain of virus.6a Broad-spectrum antiviral drugs offer many advantages over narrow-spectrum agents; it is often difficult in clinical diagnoses to identify a viral pathogen in a short time. For instance in acute infections, viral chemotherapy must start as soon as the patient presents clinical symptoms. Thus, the development of broad-spectrum antiviral drugs is highly desired.

1.1.2. Mechanism of S-adenosyl-L-homocysteine hydrolase action

The mechanism by which AdoHcy hydrolase catalyzes the conversion of AdoHcy to Ado and Hey (Figure 1) was established by Palmer and Abeles.20 The first step in the enzymatic reaction involves oxidation of the 3′-hydroxyl group of AdoHcy by the enzyme-bound NAD+ (E•NAD+) to form E•NADH and 3′-keto-AdoHcy (oxidative activity of the enzyme). The 3′-keto group increases the acidity of the C-4′ proton, allowing for abstraction of this proton by a base in the active site of the enzyme. Subsequently, β-elimination of Hey results in the formation of the intermediate 3′-keto-4′,5′-didehydro-5′-deoxyAdo, (KDDA). Michael type addition of water (hydrolytic activity of the enzyme) to the 5′ position of KDDA affords 3′-ketoAdo, which is then reduced by the enzyme bound NADH, resulting in the formation of Ado and regenerating the NAD+ form of the enzyme. Palmer and Abeles also found that 4′,5′-didehydro-5′-deoxyadenosine, DDA is an alternative substrate of the enzyme and its oxidation at C3′ gave enone KDDA directly. Isotopes studies21,22 and also general kinetic studies23a reinforced this mechanism.20

Porter and Boyd showed that neither the apoenzyme nor the reduced form of AdoHcy hydrolase (E•NADH) was catalytically active.23b The mechanism suggests that breakage of the C5′-S bond (elimination of the Hey from 3′-keto-AdoHcy) and the
formation of C5'-O bond (addition of water to the KDDA) were dependent on the oxidative activity of the enzyme. Parry and Askonas studied the stereochemistry of this reaction and found a syn geometry of the addition of Hcy to KDDA. Thus, the overall reaction catalyzed by AdoHcy hydrolase occurs with retention of configuration at C5'. It also follows that the elimination step is catalyzed by an enzyme which also exhibits a syn geometry.

Figure 1. The mechanism for S-adenosyl-L-homocysteine hydrolase.

It has been assumed for long time that the Palmer and Abeles mechanism is operated in a sequential fashion and that oxidation of the hydroxyl function at C3' to form the 3' keto-AdoHcy (oxidative activity) is a prerequisite for conjugated addition of water (hydrolytic activity) across the double bond of the activated enone KDDA.
However, Borchardt and his coworkers have demonstrated that these two catalytic activities of AdoHcy hydrolase can be considered independent of each other.25 Borchardt et al. defined \textit{type I-mechanism-based inhibitors of AdoHcy hydrolase} as inhibitors that serve as substrates for “oxidative” activities of the enzyme. These inhibitors are oxidized to the 3’-keto derivatives and they convert the enzyme from its active form (NAD+) to its inactive form (NADH) (cofactor depletion mechanism). A striking feature of all these first-generation AdoHcy hydrolase inhibitors is the similarity in their broad-spectrum antiviral activity, indicating a common mechanism of action. The \textit{type II-mechanism-based inhibitors of AdoHcy hydrolase} were defined as inhibitors which use the “oxidative” and/or the “hydrolytic” activity of the enzyme to produce electrophiles on the active site, which in turn react with the protein nucleophiles to modify the enzyme (covalent inactivation mechanism).6b,12a,24,26 These second-generation AdoHcy hydrolase inhibitors have added to the body of evidence indicating that inhibition of this enzyme results in the inhibition of viral replication. Finally, \textit{type III inhibitors} are those that use neither the “oxidative” nor the “hydrolytic” activity, but they are reversibly bound to the enzyme.12a,26

The X-ray crystal structure of a substrate-bound NADH form of human AdoHcy hydrolase has been determined.27 In this crucial experiment the pure NAD+-form of the enzyme was inactivated with 9-(2,3-dihydroxycyclopent-4-en-1-yl)adenine [DHCeA], to give crystal of the 3’-ketoDHCeA/NADH form of human AdoHcy suitable for X-ray crystallographic analysis. The sequestered water molecules at the active site were found to be hydrogen bounded to His55, Asp131 and His301. The water molecule seems to have a dual role in the catalytic mechanism. It is not only the sole candidate for the
catalytic base responsible for the H4’ abstraction initiating Hcy elimination but it may also add to the intermediate enone in the formation of 3’-ketoAdo.26b,27 A crystal structure of AdoHcy hydrolase from rat liver in the substrate-free NAD$^+$ form shows an open catalytic site in the absence of substrate.28 This identified Glu55 as a proton acceptor from the 3’-OH during the abstraction of the H3’ by NAD$^+$ and His54 or Asp130 as general acid-base catalyst. The Cys194 was proposed to modulate the oxidation state of the bound NAD$^+$. However, these two crystal structures do not define clearly the binding site for the homocysteine moiety of AdoHcy at the active site of the enzyme.

1.1.3. Hydrolytic activity of AdoHcy hydrolase with halovinyl adenine analogues

Various adenosine analogs and adenine carboxylic nucleosides have been shown to be potent inhibitors of AdoHcy hydrolase (Figure 2).6a,12b,13a,29,30 Many of these compounds are type I mechanism-based inhibitors of AdoHcy hydrolase,6a,12b which inactivate the enzyme by reducing the enzyme-bound NAD$^+$ to NADH. In the process of inactivation, the inhibitor is oxidized stoichiometrically to the corresponding 3’-keto nucleoside.6a,12b

McCarthy and co-workers synthesized vinyl fluoride analogs of 4’,5’-didehydro-5’-deoxyadenosine as potential mechanism-based inhibitors.31 Of the vinyl fluorides synthesized, (Z)-4’,5’-didehydro-5’-deoxy-5’-fluoroadenosine (ZDDFA, 1, Figure 2) was shown to be the most potent inhibitor of AdoHcy hydrolase.31 In addition to being a potent inhibitor, ZDDFA was of interest mechanistically because it was first reported as a
type II mechanism-based inhibitor (reduce the $E\cdot\text{NAD}^+$ to $E\cdot\text{NADH}$ and release fluoride ion quantitatively).

Figure 2. Selected inhibitors of AdoHcy hydrolase.

Borchardt and his coworkers have demonstrated that vinyl fluoride 1 is not a type II inhibitor but rather a “pro-inhibitor” that is converted by the hydrolase into adenosine 5’-aldehyde 3 (and its epimer) which inactivates the enzyme by the type I mechanism. The “hydrolytic” activity of AdoHcy hydrolase removes the fluoride anion from 1 by addition-elimination process. It was proved that the “hydrolytic” activity of the enzyme was independent of its “oxidative” activity. The Ado-5’-aldehyde 3 was independently synthesized and shown to be equally potent inhibitor of AdoHcy hydrolase. The 5’-chloromethylene analog 2 was found to be a time-dependent inactivator of the AdoHcy with potency comparable to that of its 5’-fluoromethylene analogue 1.
1.1.4. Hydrolytic activity of AdoHey hydrolase with halohomovinyl adenine Anallogues

The AdoHey hydrolase is also capable of adding water across the isolated 5',6'-double bond of the 6'-halo(vinyl)homoAdo derivative 435,36 (Figure 3). The synthesis of homovinyl halides 436,37,38 was based on the vinyl sulfones and organotin chemistry developed by Wnuk and others. The 6'-halo(vinyl) homoAdo analogues 4 were found to be concentration and time dependent inactivators of AdoHey hydrolase. The inhibition potencies were correlated with anticancer and antiviral activities of 4 and it was found to be in the order of I > Br > Cl > F (and E > Z).36

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{The 6'-halo(vinyl)homoadenosine and related aristeromycin analogues.}
\end{figure}

Surprisingly, AdoHey hydrolase possesses the catalytic power to effect addition of water to the isolated double bond of 4. Scheme 2 shows the mechanism by which the fluorine derivative, (E)-5',6'-didehydro-6'-deoxy-6'-fluoro-homoadenosine (EDDFHA) 4 is processed by AdoHey hydrolase. The reaction was shown to proceed by three pathways:
\begin{itemize}
\item \textbf{pathway a}, water attack at the 6'-position of EDDFHA and elimination of fluoride ion results in the formation of homoadenosine 6'-carbox-aldehyde (HACA), which degrades chemically to form Ade;
\item \textbf{pathway b}, water attack at the 5' position of EDDFHA results in
the formation of 6'-deoxy-6'-fluoro-5'-hydroxyhomoadenosine (DFHHA) and pathway c, oxidation of EDDFHA results in the formation of the NADH form of the enzyme (inactive form) and 3'-keto-EDDFHA, which could react with water at either the C5' or C6' positions. The partition ratios among the three pathways were determined to be $k_3:k_6:k_5 = 1:29:79$, with one lethal event (enzyme inactivation) occurring every 108 nonlethal turnovers.36b

To eliminate ribosyl ring cleavage during inhibition of AdoHcy hydrolase by 4, the 6'-halo (vinyl) homoaristeromycin derivatives 5 (Figure 3) were prepared in which the furanosyl ring oxygen was replaced by a methylene unit.39 This type of modification was expected to provide analogues that could not suffer cyclopentanylation ring cleavage by β-elimination (H5' and the ring oxygen O4') as observed for homoadenosine 6'-aldehyde (HACA, Scheme 2). Inactivation of AdoHcy hydrolase by 5 ($X = F$) involved addition of water at the vinyl C5' or C6' (with elimination of fluoride) and oxidation of C3'. The partition ratio among three pathways were found to be: $k_3:k_6:k_5 = 1: 1.7: 0.6$.

The 4',5'-didehydro-5'-deoxy-5'-fluoroaristeromycin 6 was also synthesized (Figure 3) and it was found not to be a substrate for the hydrolytic activity of the enzyme since incubation of AdoHcy hydrolase with 6 did not result in the release of fluoride ion.40a However, independently synthesized aristeromycin 5'-aldehyde as well as 6 were found to be potent type I inhibitors.40 It is possible that enzyme-mediated protonation of the ribosyl ring oxygen of 1 (as well 4) enhances the electrophilicity of the C5', making the 5' position more susceptible to attack by the enzyme-bound water.
Scheme 2. Mechanism of inactivation of AdoHcy hydrolase by EDDFHA

To probe “pure” hydrolytic activity of the AdoHcy hydrolase, analogues of vinyl halides 1 and 4 without an oxidizable function (hydroxyl group) at C3’ have been targeted.41 The 3’-deoxy modification gave halovinyl analogue 7 and halohomovinyl analogue 10 with greater differences in stereoelectronic effects and lack of a hydrogen-bond acceptor at C3’ (Figure 4). In other series, the 3’-hydroxyl group was replaced with fluoro 8 or chloro 9 substituents to give a closer stereoelectronic analogue to the natural substrates, but still preventing the oxidative activity at C3’. The 3’-modified analogues 7-10 were found to be weak inhibitors of AdoHcy in a sharp contrast to the 3’-hydroxy analogues 1 and 4. They were not substrates for the “hydrolytic” activity of the enzyme.41 Thus, it is secure to conclude, that the 3’-hydroxyl group is essential for effective
inhibitors/substrate binding to AdoHcy hydrolase, and such binding is required for execution of the “hydrolytic” activity of the enzyme.

![Chemical structures](image)

Figure 4. The selected vinyl and homovinyl analogues of Ado and homoAdo.

Recently, 6’-cyano-5’,6’-didehydro-6’-deoxyhomoadenosine 11\(^3\) and 6’-chloro-6’-cyano-5’,6’-didehydro-6’-deoxyhomoadenosine 12\(^3\) were also synthesized and tested as new mechanism-based inhibitors of AdoHcy hydrolase (Figure 4). Nucleoside (E)-11 was identified as a type I inhibitor of the enzyme, whereas inactivation of the enzyme by nucleoside (Z)-3 and (E)-12 was accompanied by the formation of a covalent labeling of AdoHcy hydrolase.

The geminal and vicinal (dihalo)homovinyl analogues 13-15 were also designed as potential new substrates for the hydrolytic activity of AdoHcy hydrolase. (Figure 5).\(^4\) These types of analogues were found to be the first examples of type II (covalent) inhibitors that are activated by the “hydrolytic” activity of the enzyme without prior oxidation at C3’.
Figure 5. The dihalo-vinylhomoadenosine analogues.

Inactivation of the enzyme with [bromo(fluoro)]homovinyl analogue 13 was shown to be concentration and time-dependent and resulted in covalent linkage between the enzyme and the inhibitor with concomitant release of halide ions (F⁻ and Br⁻)⁴³. The enzyme-mediated addition of water to 13 at C6’ of the 5’,6’-double bond (followed by elimination of bromide ion) generates an electrophilic acyl fluoride 16 (Figure 6). Nucleophilic attack by a proximal Arg 196-NH₂ group forms a covalent adduct 17 (lethal event). The enzyme maintains its original NAD⁺/NADH content indicating no oxidation at C3’. In second non-lethal event depurination and hydrolysis of 16 (with elimination of fluoride ion) produced hexose-derived 6-carboxylic acid.⁴³

Figure 6. Possible mechanism by which 6’-bromo-6’-fluoro(homovinyl)adenosine inactivates AdoHcy hydrolase.
1.2. The Alkene-metathesis reaction

1.2.1 Introduction into the alkene - metathesis reaction

Olefin metathesis reaction is a unique carbon skeleton redistribution in which unsaturated carbon-carbon bonds are rearranged in the presence of metal carbone complexes. With the advent of efficient catalyst, this reaction has emerged as a powerful tool for the formation of carbon-carbon bonds in organic chemistry. In fact, with the exception of palladium-catalyzed cross-coupling reactions, no other group of reactions has had such a profound impact on the formation of carbon-carbon bonds in the last quarter of a century. The number of applications of this reaction has dramatically increased in the past few years. Of particular significance, this type of reaction utilizes no additional reagents beyond a catalytic amount of metal carbone and the only other product from the reaction is, in most cases, a volatile olefin, such as ethylene. The history of alkene metathesis is a fascinating one, beginning with its unexpected discovery nearly 50 years ago through the design and application of the latest initiators available today.

There are several classes of olefin metathesis reactions (Scheme 3). In the cross-metathesis reaction (CM) a mixtures of products are obtained unless a volatile byproduct (ethylene) is produced that can be removed from the reaction mixture. Ring closing metathesis (RCM) is favored for the production of unstrained rings and is driven both entropically and by the elimination of a volatile alkene. Ring opening metathesis (ROM) is only favored at very high olefin concentration, or more commonly with strained olefins. The same general features will hold true for the polymerization reactions.
Scheme 3. Types of olefin metathesis reactions

The elucidation of the mechanistic pathway was, itself, the culmination of nearly two decades of extensive research by numerous groups, and the subject of lively debate in the literature during that time. The generally accepted mechanism of alkene metathesis was originally proposed by Herisson and Chauvin\(^4\) in 1971 with key experimental evidence for its validity subsequently being provided by the Casey\(^{49}\), Katz\(^{50}\) and Grubbs groups\(^51\), and invokes metal carbine intermediates as key propagating species in the catalytic cycle. Chauvin proposed that olefin metathesis involves interconversion of an olefin and a metal alkylidene. This process is believed to occur via a metal-cyclobutane intermediate by alternating \([2 + 2]\) cycloadditions and cycloreversions (Scheme 4). The basic catalytic cycle for metathesis is depicted in scheme 5.
Scheme 4. Mechanism of olefin metathesis.

Scheme 5. Basic catalytic cycle for metathesis.

The success of the alkene-metathesis reaction and the many stunning and ingenious situations in which it has been applied are largely due to the advent of today’s readily available catalyst systems that display high activity and excellent functional-group tolerance. Some of typical metathesis catalyst which are commercially available are shown in Figure 7.
The molybdenum–based catalyst (Schrock catalyst) was introduced by the Schrock group52 and represented the first real groundbreaking advance in catalyst design since the tungsten carbenes initially used by Katz.53 Schrock catalyst displays excellent metathesis activity with a variety of alkene substrates and it is particularly useful for the formation of sterically crowded systems. The only drawback of this catalyst is its pronounced sensitivity to oxygen, moisture and certain polar or protic functional groups owing to the electrophilicity of the high-oxidation-state transition-metal center.54

Grubbs and co-workers subsequently introduced ruthenium-based carbene complexes.55 The ruthenium reacts preferentially with carbon-carbon double bonds over most other functional groups which makes these ruthenium-catalysts unusually stable towards alcohols, amides, aldehydes and carboxylic acids.56 Because of this aspect, it is possible to increase the functional group tolerance of an olefin metathesis catalyst by focusing on a transition metal, such as ruthenium.56

The first and second generation Grubbs catalyst exhibit much greater functional-group tolerance than the Schrock catalyst. The Hoveyda-Grubbs catalyst shows efficiencies similar to those of Grubbs catalyst second generation but with a different substrate specificity. The exchange of the PCy\textsubscript{3} ligand with the isopropyl ether leads to different reactivities. For instance, in contrast to Grubbs second generation catalyst, which proved to be an excellent catalyst for yne-ene CM, analogous reaction with Hoveyda-Grubbs second generation catalyst yielded only traces of the desired products. Polymerisation of the alkyne component was not observed. Substantial differences in terms of reactivity were found also in RCM reactions. The recyclable catalyst is unique in catalyzing RCM, ROMP and CM reactions with highly electron-deficient substrates.57
Figure 7. Commonly used metathesis catalysts.
1.2.2. Metathesis reaction in nucleoside chemistry

The intense search for clinically useful nucleoside derivatives has resulted in a wealth of new approaches to their synthesis. In this context, the olefin metathesis reaction has emerged over the past decade as a powerful reaction that has fundamentally changed the outlook on nucleoside chemistry.

Historically, the first synthesis of nucleoside analogues using metathesis was achieved in 1996 by Crimmins and King utilizing chiral (S)-4-benzyl-2-oxazolidinones through a strategy combining three key transformations: (1) an asymmetric aldol addition to establish the relative and absolute configuration of the pseudosugar, (2) a ring-closing metathesis (RCM) to construct the carboxylic ring and (3) a Trost-type palladium(0) substitution to introduce the heterocyclic base (Scheme 6). The cyclisation by RCM of diene 22, was achieved in the presence of Grubbs first generation catalyst giving enantiomerically pure cyclopentenol 23 in 97% yield.

Kuang et al. have prepared the carbocyclic analogue of ribavirin in a similar approach, starting from the anti-aldol, which then underwent a ring-closing metathesis in the presence of Grubbs first generation catalyst to yield 25 in 96% (Scheme 7). Further treatment of 25 with LiBH₄/MeOH/THF at 0°C followed by reaction with mCPBA gave the corresponding non-racemic epoxy diol. After protecting the hydroxyl groups, the resulting epoxide was reacted with triazole in the presence of NaH to give the desired ring-opening product as the major isomer. Then treatment with ammonia followed by hydrogenolytic deprotection provided carbocyclic ribavarin 26 in a moderate yield.
1. n-BuLi, THF, -78°C,
CH$_2$=CH(CH$_2$)$_2$C(O)OPiv

2. TiCl$_4$ (-)-sparteine,
CH$_2$Cl$_2$, R-CH=CH-CHO

Scheme 6. First synthesis of nucleoside using RCM

Among the nucleoside analogues prepared by metathesis approach, synthesis of neplanocins and aristeromycins analogues represent a major part of existing literature. Neplanocin A, 27, {(-)-9-[trans-2',trans-3'-dihydroxy-4'-(hydroxymethyl)-cyclopent-4'-enyI]adenine}, (Figure 8), has a wide range of biological activities and it is a strong
inhibitor of AdoHcy hydrolase. Analogs of L-neplanocins have been synthesized starting from methyl α-D-galactopyranoside 28 as depicted in scheme 8.

Figure 8. Neplanocin A and Aristeromycin

Scheme 8. Synthesis of L-neplanocins analogues
After benzylolation and demethylation on the anomeric position of 28, reaction with methyltriphenyl phosphonium bromide and subsequent oxidation gave optically pure L-tagatose [L-lyxo-hexulose] as a single isomer. Oxidation of L-tagatose produced the keto-derivative 29. A second Wittig reaction on 29 afforded the (+) diene 30 in 77% yield. The 1,6-hepta diene 30, which bears the three asymmetric centers of the final molecule, underwent RCM in the presence of Grubbs catalyst in refluxing benzene to give the cyclopentene derivative 31 in 90% yield. After removal of the benzyl group using sodium metal in liquid ammonia, the heterocycles were introduced under Tsuji-Trost allylic amination. Also, a synthesis of D-neplanocin has been realized by Jin through a similar approach, using a RCM, starting from protected D-ribose.

The naturally occurring carbocyclic nucleoside, aristeromycin 32, (Figure 8) is also known to be an inhibitor of AdoHcy hydrolase. Borchardt and his co-workers reported the synthesis of modified analogues of this compound using a non-metathesis approach. Of the carbocyclic purine nucleosides tested, the most potent inhibitor of AdoHcy hydrolase were the carbocyclic adenosine (aristeromycin) itself and 3-deaza-carbocyclic adenosine 33 (Figure 9) both of which totally inhibited the enzyme at concentrations of 0.2 μM.

In most of cases, the aristeromycin analogues 40 have been synthesized involving the key cyclopentenone intermediate 39 (Scheme 9). The cyclopentenone intermediate is in fact a versatile starting point for the preparation of many other carbocyclic nucleosides.
Scheme 9. Synthesis of the aristeromycin analogues.

Synthesis of the aristeromycin analogues started with the protected D-ribose 34 being treated with vinylmagnesium bromide to give triol 35. Oxidative cleavage of triol 35 with sodium metaperiodate gave the lactol 36 in 85% yield. Wittig reaction of 36 with triphenylphosphonium methylidene afforded the diene 37. Ring closing-metathesis of diene 37 using Ru-Grubbs catalyst gave the allylic alcohol 38 (90%) which was converted to the D-cyclopentanone 39 in 89% yield. In the following steps the cyclopentanone intermediate 39 is used in the synthesis of aristeromycins 40.\(^{59}\)

Agrofoglio and his co-workers\(^{58b}\) reported a method for the synthesis of E-unsaturated acyclic nucleosides via a combination of palladium-catalyzed allylic alkylation and ruthenium-based cross-metathesis (CM). This approach provides an efficient and reliable route to new nucleoside analogues such as 43 (Scheme 10). Thus, the cross-metathesis (CM) of protected allylic diol 41 with allylic pyrimidine derivatives 42 was achieved by using Grubbs 2\(^{nd}\) generation catalyst. The tolerance of the ruthenium metathesis catalyst towards basic tertiary amines is less understood as most examples reported in literature use a deactivated nitrogen (amide, carbamate).\(^{58b,70}\)
Scheme 10. Synthesis of acyclic nucleosides via cross-metathesis reaction

Less than a decade has elapsed since Crimmins60 reported the first use of metathesis reaction for nucleoside. From the work published by this time, it is apparent that metathesis has played and will most likely continue to play, a major role in the synthesis of new nucleosides.

1.3. Palladium-catalyzed cross-coupling reactions

1.3.1 Introduction to Pd-catalyzed cross-coupling reaction

The palladium-catalyzed cross-coupling of an organometal (R1M) with an organic electrophile (R2X) has emerged over the past thirty years as one of the most general and selective methods for carbon-carbon bond formation (eq.1)71. Currently, it appears to be generally superior to related methods involving the use of Ni, Cu of Fe catalysts in its scope and stereo-, regio- and chemoselectivities.72 The R1 group of R1M can be aryl, alkenyl, alkynyl, allyl, benzyl, alkyl, cyano, propargyl, enoxy; while the R2 group of R2X can be aryl, alkenyl, alkynyl, allyl, benzyl, propargyl, alkyl or acyl.

\[R^1M + R^2X \xrightarrow{PdLn(cat)} R^1 - R^2 + MX \]

Eq.1. Pd-catalyzed cross-coupling of an organometal (R1M) with an organic electrophile (R2X).
The Pd-catalyzed cross-coupling can be performed with organometals containing any of these metals including Zn, Al, Zr, B, Sn, Li, Mg, In, Si, Cu, Mn (Table 1).

Taking the mechanism for organopalladium chemistry into account, several points should be addressed. Reactions involved in formation of organopalladium intermediates are done in the presence of phosphine ligands. These ligands coordinate at palladium and play an important role in the reaction by influencing the reactivity. One point is the relative weakness of the C-Pd bond and the instability of alkylpalladium species in which there is β-hydrogen. The transition metal-catalyzed coupling reactions occur in a sequence of: (a) oxidative-addition; (b) transmetallation (alkylation)/isomerization and (c) reductive-elimination. These three steps provide a powerful catalytic method for the new carbon-carbon bond formation (Figure 9). Transmetallation is the most characteristic of the cross-coupling reactions because this process combines the quality of the transition metal and the main group metal reagent. However, this step is also the one that is the least understood because of its highly dependence on the nature of organometallic reagents and the conditions of the reaction.

Table 1. Transition metal-catalyzed cross-coupling reactions

<table>
<thead>
<tr>
<th>Name Reaction</th>
<th>R^1M</th>
<th>R^2X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kumada-Corriu</td>
<td>R^1-MgX or R^1-Li</td>
<td>aryl, alkenyl</td>
</tr>
<tr>
<td>Suzuki-Miyaura</td>
<td>R^1-BR'R_2</td>
<td>aryl, alkenyl, alkyl</td>
</tr>
<tr>
<td>Negishi</td>
<td>R^1-ZnX, R^1-AlX, R^1-ZrX</td>
<td>aryl, alkenyl, alkynyl, acyl</td>
</tr>
<tr>
<td>Hiyama</td>
<td>R^1-SiX_3</td>
<td>triflates, alkenyl, aryl</td>
</tr>
<tr>
<td>Stille</td>
<td>R-Sn(alkyl)_3</td>
<td>aryl, alkynyl, acyl</td>
</tr>
</tbody>
</table>
The coupling reaction begins with oxidative-addition of an electrophilic component to Pd catalyst. The Pd catalyst such as Pd(PPh\textsubscript{3})\textsubscript{4}, Pd\textsubscript{2}(db)	extsubscript{3}, PdCl\textsubscript{2}(dppb), with or without an extra ligand are used. The reaction rates and yields vary with the choice of Pd(0) or Pd(II) used. The stoichiometric ratio between palladium and ligand is also very important. Excess of phosphine retards the oxidative-addition step that is often the rate-determining step.

\[\text{R}^1 \text{R}^2 \rightarrow [\text{M}] \rightarrow \text{R}^1 \text{R}^2 \]

\[\text{X} \rightarrow \text{R}^1 \text{R}^2 \]

\[\text{X} = \text{halide} \]

\[\text{R}^1 \rightarrow \text{R}^1 \rightarrow \text{X} \rightarrow \text{H} \]

\[\beta\text{-hydride elimination (undesired)} \]

\[\text{M} \rightarrow \text{M}_\text{X} \rightarrow \text{m}-X \rightarrow \text{m}-\text{R}^2 \]

\[\text{transmetallation and isomerization} \]

\[[\text{M}] = \text{Pd, Cu, Ni, Fe, Rh...} ; ~ m = \text{Li, Mg, Zn, B, Al, Si, Cu, Sn, Zr...} \]

Figure 9. A general catalytic cycle for Pd-catalyzed cross-coupling reactions.

The most studies of the coupling reactions have been focused on forming of the C\textsubscript{sp}2-C\textsubscript{sp}2 and C\textsubscript{sp}-C\textsubscript{sp}2 bonds. There has been considerably less progress in developing effective cross-couplings involving C\textsubscript{sp}3 centers with the exception of couplings between C\textsubscript{sp}2 as electrophiles and C\textsubscript{sp}3 as nucleophiles.73 Moreover, the monocross-coupling reactions of 1,1-dihalovinyl electrophiles with C\textsubscript{sp}2 or C\textsubscript{sp} nucleophiles are less common74 and monocouplings between 1,1-dihalovinyl electrophiles and C\textsubscript{sp}3 nucleophiles are
Couplings of two sp³ centers of unactivated alkyls do not show much success due to the slow oxidative-addition of alkyl halides and the β-hydride elimination from organopalladium (II) intermediates. The final steps in Pd-mediated reactions are the elimination of Pd to form a carbon-carbon bond. Organopalladium species with two organic substituents show tendency to decompose with recombination of the organic groups by reductive elimination.

1.3.2 Negishi coupling reaction

In 1972, after the discovery of Ni-catalyzed coupling of alkenyl and aryl halides with Grignard reagents, it became apparent that in order to improve the functional group tolerance of the process, the organometallic coupling partners should contain less electropositive metals than lithium and magnesium. In 1976, E. Negishi and his coworkers reported the first stereospecific Ni-catalyzed alkenyl-alkenyl and alkenyl-aryl cross-coupling of alkenylalanes (organoaluminums) with alkenyl- and aryl halides. Extensive research by Negishi showed that the best results (reaction rate, yield, stereoselectivity) are obtained when organozincs are coupled in the presence of Pd(0)-catalysts. The Pd- or Ni-catalyzed stereoselective cross-coupling of organozincs and aryl, alkenyl, or alkynyl halides is known as the Negishi cross-coupling reaction (eq. 2).
Equation 2. Negishi cross-coupling reaction

The general features of the Negishi cross-coupling reaction are:

- both Ni and Pd-phosphine complexes work well as catalysts. However, Pd-catalyst tend to give somewhat higher yields and better stereoselectivity, and their functional group tolerance is better;

- the active catalysts are relatively unstable Ni(0) and Pd(0)-complexes but these can be generated in situ from more stable Ni(II) and Pd(II)-complexes with a reducing agent (e.g. 2 equiv. of DIBAL-H or n-BuLi);

- in the absence of the transition metal catalyst, the organozinc reagents do not react with the alkenyl halides to any appreciable extent;

- the most widely used ligand is PPh₃, but other achiral and chiral phosphine ligands have been successfully used;

- the various organozinc reagents can be prepared by either direct reaction of the organic halide with zinc metal or activated zinc metal or by transmetallation of the corresponding organolithium of Grignard reagent with a zinc halide (ZnX₂)⁸²,⁸³, also many of organozinc reagents are commercially available;
the use of organozinc reagents allows for a much greater functional group tolerance in both coupling partners than in the Kumada cross-coupling where organolithiums and Grignard reagent are utilized as coupling partners.

- other advantages of the use of organozincs include: high reactivity, high regio- and stereoselectivity, wide scope and applicability, few side reactions and almost no toxicity;

- the reaction is mostly used for coupling of two C (sp²) carbons but C(sp²) – C(sp) as well C(sp³)- C(sp³) are also well known;

- besides organozincs, compounds of Al and Zr can also be utilized;

- if the organoaluminium or organozirconium derivatives are not sufficiently reactive, they can be transmetallated by the addition of zinc salts, and this protocol is referred to as the double metal catalysis;

- of all the various organometals (Al, Zr, B, Sn, Cu, Zn), organozincs are usually the most reactive in Pd-catalyzed cross-coupling reactions and do not require the use of additives (e.g. bases as in Suzuki coupling) to increase the reactivity.

Some of the limitations of the Negishi cross-coupling reaction are: • propargylzincs do not couple well but homopropargylzincs do; • secondary and tertiary alkylzincs may undergo isomerization, but cross-couplings of primary alkyl- and benzylzincs give good results; • due to the high reactivity of organozincs, CO insertion usually does not happen unlike in the case of less reactive organotins (Stille cross-coupling).

The mechanism of the Negishi reaction follows the same pathway as the general catalytic cycle for the Pd-catalyzed cross-coupling reactions described above in section 1.3.1.
The Negishi cross-coupling reaction has been widely utilized in organic synthesis. For instance, the Negishi reaction was used during the final stages of the total synthesis of Caerulomycin C for the preparation of the bipyridyl system by T. Sammakia et al.\(^6\) (Scheme 11). The highly substituted 6-bromopyridine was coupled, in the presence of the \(\text{Pd}_2(\text{dba})_3/\text{PPh}_3\) catalyst system, with 2-lithiopyridine, which was transmetallated by \(\text{ZnCl}_2\) \textit{in situ} to the corresponding organozinc reagent. Interestingly, the analogous Stille cross-coupling using 2-tributylstannyl pyridine was far less efficient and gave a low yield of the desired product.

\[\text{OMe} \quad \text{OMe} \quad \text{Me} \quad \text{OMe} \]
\[\text{MeO} \quad \text{N(\text{i-Pr})}_2 \quad \text{Br} \quad \text{0} \quad \text{N} \quad \text{N} \]

\[\text{Br} \quad \text{N} \quad \text{ZnCl}_2, \quad \text{Pd}_2(\text{dba})_3 \quad \text{PPh}_3, \quad \text{THF}, \quad \text{r.t.} \quad 80\%\]

\[\text{Caerulomycin C}\]

Scheme 11. Synthetic application of Negishi coupling.

1.3.3 Negishi cross-couplings involving \textit{Csp}^2-\textit{Csp}^3 centers.

Alkyl halides and related electrophiles are much less reactive toward Pd than unsaturated organic electrophiles including those containing aryl, alkenyl, alkynyl, acyl as well as allyl, benzyl, and propargyl groups. The lower reactivity of alkyl halides toward Pd has been explained in terms of the lack of a proximal \(\pi\) bond. A difference in reactivity of at least a 100-fold between alkenyl and alkyl iodides has been observed.\(^7\) Until recently, the use of alkyl electrophiles lacking proximal \(\pi\) bonds had been considered very difficult, and therefore the task of Pd-catalyzed alkylation had been achieved by using...
alkylmetals. Mainly, for this reason, Pd-catalyzed alkylation of alkenyl derivatives has been accomplished via the alkyl-alkenyl coupling. However, alkyl halides are not inert towards Pd. For example, the use of highly nucleophilic Pd-complexes containing bulky trialkylphosphines, such as PCyp₃ (Cyp = cyclopentyl) and PCy₃ (Cy = cyclohexyl), has permitted the alkenyl-alkyl coupling between alkenylzinc derivatives and alkyl iodides, bromides, and tosylates. Fu et al. also developed the first ligandless palladium based method for Negishi cross-coupling of alkyl electrophiles: Pd(acac)₂ (bis[acetylacetonato]Pd(II)) catalyzed reactions of functionalized alkyl halides/tosylates with organozirconium reagents (Scheme 12). In view of the attractiveness of ligandless catalyst (cost, simplicity, easy purification), this method added a significant new dimension to the development of effective processes for coupling alkyl electrophiles.

Scheme 12. Negishi cross-couplings of alkyl electrophiles under "ligandless" conditions.

Despite recent promising developments such as those mentioned above, the Pd-catalyzed alkylation of alkenyl derivatives is still achieved mostly by alkyl-alkenyl coupling protocol. In this regard, alkylzincs are generally superior to the other alkylmetals that have been examined to date, although alkylborons and alkylmagnesiums are satisfactory in many cases. It is important to mention that in the Pd-catalyzed alkylation with alkylzincs or in general with organozincs, the precise
composition of alkylzincs, which significantly depends on the methods of their
generation, affects the course of the subsequent cross-coupling process. One important
determining factor is the alkyl/Zn ratio. In a synthesis of (-)-discodermolide, it was
proved to be necessary to add 3 equiv. of t-BuLi to an alkyl iodide premixed with ZnCl₂
(Scheme 13).

A large number of natural products and related compounds have been synthesized by
using the Pd-catalyzed alkenylation of alkylzinc derivatives.

Scheme 13. The Pd-catalyzed alkyl-alkenyl coupling with an alkylzinc in a total
synthesis of (-)-Discodermolide

Dai and Fu have also described the Negishi cross-coupling of aryl and vinyl
chlorides with alkylzincs (Scheme 14). Among aryl halides, chlorides are arguable the
most useful class of substrates for coupling reactions, due to their lower cost and the
wider diversity of available compounds. The commercially available, air-stable catalyst
Pd(P(t-Bu)₃)₂ can effect the Negishi cross-coupling of a wide range of aryl and vinyl
chlorides with alkylzinc reagents in a single protocol. Besides primary alkylzinc reagents,
branched alkylzincs were also used in this protocol. The Negishi couplings of branched
alkylzincs gave desired coupling products and also isomerization products, due to the isomerization of alkyl group, mostly secondary to primary.

\[
\begin{align*}
R-\text{Cl} & \quad + \quad \text{ClZn-alkyl} & \quad \xrightarrow{2\% \text{Pd}(P(t-\text{Bu})_3)_2} \quad R-\text{alkyl} \\
\text{R} = \text{aryl; vinyl} & \quad 1.5 \text{ equiv.} & \quad \text{THF/NMP, 100°C}
\end{align*}
\]

Scheme 14. Negishi cross-couplings of aryl and vinyl chlorides with alkylzincs

1.3.4. Negishi cross-couplings with dihalovinyl derivatives

Although the development of the monosubstitution reaction of the dihalo-alkenes with aryl,\(^9\) alkyl,\(^{74a,b}\) and alkynyl metals\(^{74e}\) and related nucleophiles has been reasonably successful, the Pd- or Ni-catalyzed monoalkylation has not been,\(^9\) except in one isolated example published in 1987 by Minato et al.\(^{76a}\) In fact, this was the first successful regio- and stereoselective monoalkylation and -arylation of 1,1-dichloro-1-alkenes by organozinc or Grignard reagents in the presence of PdCl₂(dppb) as a catalyst, (dppb = diphenylphosphine butane) which produced 1-substituted (Z)-chloro-alkenes (Scheme 15).\(^{76a}\) In the only example of trans-selective monoalkylation reported in this paper, \(n\)-BuZnCl led to the desired monobutylated product, trans 2- chloro-1-phenyl-1-hexene 45 while the use of \(n\)-BuMgBr did not afford the desired product. The Pd-catalyzed second alkylation of the monobutylated intermediate with \(n\)-HexMgBr led to the formation of the trisubstituted alkene 46 in 77% yield (Scheme 15). Most probably, the first-stage alkylation was strongly aided by the fact that the starting material was \(\beta,\beta\)-dichlorostyrene, since attempts to achieve analogous trans-selective monoalkylation of 2-
alkyl-substituted 1,1-dichloro- or 1,1-dibromo-1-alkenes under the same conditions failed.76a

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {\includegraphics[width=\textwidth]{scheme15.png}};
\end{tikzpicture}
\end{center}

\textbf{Scheme 15.} Pd-catalyzed double-alkylation of β,β-dichlorostyrene.76a

Since the discovery of the Pd-catalyzed highly trans-selective monosubstitution of 1,1-dichloro-1-alkenes followed by the second Pd-catalyzed substitution to produce trisubstituted alkenes (Scheme 16)76a, its development as a method for not only the selective synthesis of monosubstituted products74c,100 but also for disubstitution products74,76a has attracted considerable attention from synthetic chemists.

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {\includegraphics[width=\textwidth]{scheme16.png}};
\end{tikzpicture}
\end{center}

\textbf{Scheme 16.} Pd-catalyzed trans-selective monoalkylation of 1,1-dichloro-1-alkene and Pd-catalyzed second substitution.
In this regard, recently Tan and Negishi76b reported a widely applicable Pd-catalyzed \textit{trans}-selective method for the monoalkylation of unactivated 1,1-dichloro-1-alkenes followed by the second Pd-catalyzed substitution for the selective synthesis of the \textit{E} and \textit{Z} trisubstituted alkenes. A systematic screening of Pd catalysts, additives, and solvents was conducted, which led to an optimized set of conditions that involve 5 mol\% of \([\text{PdCl}_2(\text{dpephos})]\) (dpephos = bis(o-diphenyl-phosphanylphenylether) as a catalyst/ligand and dimethylformamide (DMF) as solvent (scheme 17). In some cases, the use of one molar equivalent of \textit{N}-methylimidazole (NMI) relative to an alkyl zinc reagent has been shown to improve the yields.

![Scheme 17. Pd-catalyzed trans-selective monoalkylation of 1,1-dichloro-1-alkenes with alkylzinc reagents.](image)

There is no example in literature on the monoalkylation of 1,1-dibromo-1-alkenes. In fact, Negishi76b reported that coupling of 1,1-dibromo-1-alkenes has a very high tendency to produce dialkylated products. Thus, even \(\beta,\beta\)-dibromostyrenes would produce only their dialkylation products. The success observed with 1,1-dichloro-1-
alkenes but not with 1,1-dibromo-1-alkenes was explained in the mechanistic terms (Scheme 18).76b

\begin{center}
\begin{tikzpicture}
\node[anchor=west] (1) at (0,0) {\textbf{Scheme 18.} Putative mechanism for the competitive formation of the mono- and dialkylation products.};
\end{tikzpicture}
\end{center}

Although the intricate mechanistic details remain unclear, the following characteristics are worth mentioning: the difference between dppb and dpephos ligands in the selective monoalkylation of alkyl-substituted 1,1-dichloroalkenes is noticeable, and it is clear that competitive formation of the disubstitution products is the major side reaction to be minimized. In order to minimize this side reaction, the suppressing of the second substitution through promotion of catalyst dissociation from the putative monosubstituted alkene-Pd π-complex A (scheme 18) is required. It is possible that the ethereal oxygen atom of dpephos may exert a chelation effect to facilitate the dissociation of alkenes. Although unwanted, the formation of the disubstitution product must undoubtedly be responsible for the high stereoselectivity (> 98%) attainable by Pd-catalyzed \textit{trans}-selective monosubstitution through kinetic resolution in the second stage of disubstitution, in which the undesired cis-monosubstituted isomer of A must be
significantly more reactive than A itself. In this sense, the observed formation of the dissubstitution products must be a good thing in disguise to a certain extent.76b

With the development of a widely applicable and satisfactory protocol for the \textit{trans}-selective monoalkylation of 1,1-dichloro-1-alkenes, the second Pd-catalyzed substitution of relatively unreactive internal \textit{Z} chloroalkenes was also investigated. Negishi76b reported that the use of Cy\textsubscript{3}P (Cy = cyclohexyl) or Cyp\textsubscript{3}P (Cyp = cyclopentyl) as ligands, led to the formation of the desired alkylation products in high yields (scheme 19). Pd-complexes with Cy\textsubscript{3}P or Cyp\textsubscript{3}P appear to be generally satisfactory catalysts for the second substitution with Grignard reagents containing alkyl, aryl, alkenyl and allyl groups. Although this protocol has not yet been applied to the synthesis of natural products, it promises to be applicable to the synthesis of natural products containing \textit{Z} trisubstituted alkenes, such as discodermolide92b,101 and hennoxazole A.102

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{scheme19.png}
\caption{Cross-coupling of internal \textit{Z}-chloroalkenes with Grignard reagents in the presence of Pd catalysts containing bulky trialkylphosphines.}
\end{figure}
2. RESEARCH OBJECTIVES

The purpose of this dissertation was to design and to synthesize potential inhibitors of S-adenosyl-L-homocysteine (AdoHcy) hydrolase, which should utilize the hydrolytic activity of the enzyme during the inhibition process. The first targets were L-adenosine \(A \) and its 5’-aldehyde oxime derivative \(B \), enantiomers of the natural substrate (Figure 10). They were designed on the basis that some unnatural L-nucleoside analogues possess more potent antiviral activity against HIV and HBV viruses than their natural D-counterparts. We have planned to examine the possibility of whether L-adenosine and its derivatives can act as (un)likely substrates and/or inhibitors of AdoHcy hydrolase. The enzymatic studies on the interaction of L-adenosine and its 5’-oxime derivatives with AdoHcy hydrolase and computational studies of substrates specificity of the enzyme toward L-adenosine were performed in order to evaluate these targets.

![Figure 10. L-adenosine and its 5’-aldehyde oxime](image)

The second targets were AdoHcy analogues of type \(C \) in which the sulfur and C5’ atoms in the S-adenosyl-L-homocysteine were replaced by the vinyl or the halovinyl “unit”. Such compounds should be substrates for the hydrolytic activity of the enzyme. They should form “stable” complexes with the enzyme that would help to identify key binding groups at the active site of AdoHcy that interact with Hcy moiety and participate in
subsequent elimination and hydrolytic activity steps. However, such analogs due to the lack of the leaving group (sulfur replaced by sp^2 carbon) can not undergo elimination of the Hcy surrogate upon oxidation of the 3'-hydroxyl to its 3'-keto derivative. It is believed that, the individual steps can be “frozen” and the proteins at the active site of the enzyme identified. These unsaturated AdoHcy analogues were attempted to be synthesized via metathesis between 5’-deoxy-5’-methylene adenosine G and racemic or chiral unsaturated amino acid derivatives F (Scheme 20). Successive bromination-dehydrobromination at the C5’-C6’ double bond of C ($X = H$) was expected to afford AdoHcy analogues with C5’ and sulfur atom replaced by the halovinyl unit.

Scheme 20. Retrosynthetic analysis of AdoHcy analogues
The analogues with halovinyl “units” were also envisioned to be synthesized directly via the Pd-catalyzed cross-coupling reactions between dihalohomovinyl nucleoside derivatives E and organozinc reagents D (Scheme 20). Since the literature reports on the Pd-catalyzed monoalkylation of dihaloalkenes (sp²-sp³ coupling) were scarce, we were prompted to undertake model studies on Pd-catalyzed cross-coupling between vinyl dihalides and alkyl organometallics. We undertook effort to develop a novel Negishi monoalkylation of 1-fluoro-1-iodo, bromo or chloro- alkenes, derived from the conjugated or unconjugated aldehydes and ketones with primary, secondary and tertiary alkylzinc bromides as a novel method for the synthesis of the internal fluoroalkenes. We have also attempted cross-couplings between 1,1-dichloroalkenes and 1,1-dibromoalkenes with alkylzinc bromides. This type of coupling required developing of a novel methodology to differentiate two identical halogens in order to provide access to the multisubstituted chloro or bromo alkenes.
3. RESULTS AND DISCUSSION

3.1 Are L-adenosine and its derivatives substrates for S-adenosyl-L-homocysteine hydrolase?

3.1.1 Synthesis of L-adenosine and L-adenosine 5’-oximes.

The first targets of this thesis were L-adenosine 52 and its 5’-aldehyde oxime derivative 55. The L-adenosine 52 was prepared from L-xylose 44 utilizing the Moyround and Strazewski protocol (Scheme 21). In the first step of synthesis, L-xylose was acetonated in the presence of sulfuric acid to give the 1,2-O-isopropylidene-α-L-xylofuranose 45. Compound 45 was then silylated with tert-butyldiphenylsilyl chloride at the primary 5- hydroxyl group under standard conditions to give 46 in 90% yield. The inversion of configuration at C3 was accomplished via an oxidation/reduction procedure. Thus, ketone 47 was obtained by treatment of 46 with CrO3/pyridine complex in CH2Cl2. The subsequent reduction step was performed with NaBH4 in EtOH and led to the L-ribosyl derivative 48. Deacetonization of 48 with MeOH/H2SO4 and O-methylated at C1 in one pot followed by O-benzylation gave 1-O-Methyl-2,3,5-tri-O-benzoyl-L-ribofuranose 49 (as a mixture of α and β-anomers) in 80% yield of sufficient purity to be used in the next glycosidation step. According to Vorbruggen104a the best leaving group for the formation of the required oxonium intermediate is acetate at C1 and in the β position. Treatment of 49 with a mixture of glacial acetic acid, acetic anhydride and sulfuric acid at 0 °C led to the standard ribosyl donor 1-O-acetyl-2,3,4- tri-O-benzoyl-L-ribofuranoside 50 as an α/β mixture (1:3). The pure β-anomer was obtained after column chromatography. The introduction of the β-N-glycosidic bond was accomplished through the well-establish procedure reported by Vorbruggen.104b,c Thus, subjection of 50 with 6-
N-benzoyladenine in the presence of TMSOTf, MFSTA in 1,2-dichloroethane gave protected L-adenosine derivative 51 in 86% yield. The standard deprotection of 51 with NH$_3$/MeOH furnished the L-adenosine 52 in high yield.

Scheme 21. Synthesis of L-adenosine and L-adenosine 5'-oximes.
The 2',3’-O-isopropylidene-L-adenosine 53 was prepared by treatment of L-adenosine 52 in the presence of triethyl orthoformate in dried acetone with p-toluenesulfonic acid monohydrate. Moffat oxidation of 2’,3’-O-isopropylidene-L-adenosine 53 gave crude 5’-aldehyde that was treated with hydroxylamine hydrochloride in pyridine to give the protected oxime 54 (E/Z, ~6:1; 80%). Acid-catalyzed removal of isopropylidene group gave 55 (E/Z, 6:1; 89%). Oximes 55 have spectroscopic properties identical to those of their known enantiomer, adenosine 5’-carboxaldehyde oximes.105

3.1.2 Theoretical studies of L-adenosine

3.1.2.1 Computational results with L-adenosine.

In order to find the differences for the preferred protein:ligand binding modes, interaction strengths and binding specificity for the adenosine and L-adenosine the AutoDock simulations were performed. For each protein:ligand pair 128 LGA (Lamarckian Genetic Algorithm) docking runs were performed, with each run producing one possible binding mode or solution. The 128 solutions were first sorted in terms of the binding mode, i.e. the position and orientation of the ligand relative to the protein target. The solutions having rms (root mean square) deviations in ligand atomic positions of less than 0.5 Å were grouped into a cluster. The total number of clusters generated measures the specificity of binding. A small number of clusters indicates that the ligand has only a few possible binding modes, and interacts with a specific site (or sites) on the target protein. On the other hand, a large number of clusters implies the existence of a wide range of binding modes and lack of specific ligand:target interactions. The second step in sorting solutions involves identification of the solution of lowest binding energy within
each cluster and ranking the different clusters according to this energy value. The solution with the lowest energy in the top ranked (i.e. lowest-energy) cluster, as well as all solutions with energies higher by up to 5.0 kcal/mol were considered as possible binding modes for ligand and target.

3.1.2.2. Docking of L-adenosine to the closed structure of AdoHcy hydrolase

A summary of the AutoDock results is presented in Table 2. For the L-Ado, AutoDock produced 24 clusters out of 128 runs (Table 2). The first cluster consisted of 26 solutions, with the average docking energy of -16.3 kcal/mol. The positions of the first and second clusters are about 2 Å away from the substrate in the 1A7A crystal structure, indicating that L-Ado does not fit into the inhibitor/substrate binding site. Comparison of the AutoDock results suggests that L-Ado should be a poor substrate of AdoHcy hydrolase compared to D-Ado. The binding of L-Ado to the protein is both weaker (higher energy) and less specific (larger number of clusters) compared to D-Ado. The binding energy difference \(\Delta E = -18.9 - (-16.3) = -2.6 \text{ kcal/mol} \) corresponds to a change in the binding constant by a factor of \(\exp(-\Delta E/RT) = 76 \) at room temperature. The microscopic reason for these effects appears to be a lack of fit between L-Ado and the inhibitor/substrate binding site. Lack of the structural fit was recently observed by computer overlaid structures of D and L enantiomers of 6'(E)-(bromohomovinyl)adenosine (e.g., C: X = Br, Y = H).\(^{106}\)
Table 2. Summary for autodock results for D-Ado and L-Ado docking to the closed form of AdoHcy hydrolase

<table>
<thead>
<tr>
<th></th>
<th>Total number of clusters</th>
<th>Av. Energy of top cluster (kcal/mol)</th>
<th>Number of solutions in top of cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Ado</td>
<td>16</td>
<td>-18.9 +/- 0.3</td>
<td>21</td>
</tr>
<tr>
<td>L-Ado</td>
<td>24</td>
<td>-16.3 +/- 0.3</td>
<td>26</td>
</tr>
</tbody>
</table>

a Clustering of a total of 128 runs. *b* Average binding energy of the first cluster for L-Ado and second cluster for D-Ado. *c* Standard deviation over solutions within cluster.

The docking results are approximate. The scoring is based on an empirical energy function, solvation effects treated with a highly simplified model, and only ligand flexibility taken into account, with the protein structure kept fixed. The binding energy difference calculated here, -2.6 kcal/mol, is only slightly greater in magnitude than the estimated standard error of the method, 2 kcal/mol. Thus, the AutoDock results should be only considered as qualitative. The calculated binding energy results are in qualitative agreement with the observed inhibitory effects. Additionally, the simulations suggest that L-Ado has a lower specificity and worse fit into the known active site than D-Ado.

3.1.3. Interaction of AdoHcy hydrolase with L-Adenosine

L-Adenosine 52 and its 5'-oxime derivatives 55 were evaluated for their ability to inhibit the activity of recombinant human placental AdoHcy hydrolase by incubating the enzyme with the compounds at 200 μM for 20 min at 37° C. The AdoHcy hydrolase activity was determined by assaying the enzyme’s ability to catalyze the conversion of Ado and Hey to AdoHey. Under these conditions, both 52 and 55 were inactive as inhibitors of the AdoHcy hydrolase. In contrast, adenosine-5'-carboxaldehyde oximes
under these conditions produce 72% inhibition of the enzyme. Adenosine-5'-carboxaldehyde oxime is known to be a potent inhibitor of AdoHcy hydrolase with K_i and k_{inact} values of 0.67 μM and 0.16 min^{-1}, respectively105 and is a substrate for the enzyme hydrolytic activity.108

Our findings106a are in agreement with a recent report106b where the (halohomovinyl) and acetylenic derivatives of L-adenosine were found to be much weaker inhibitors than the corresponding analogues derived from adenosine.35 In conclusion, docking calculations showed that binding of L-Ado is not as specific as that of D-Ado for human AdoHcy hydrolase and that the binding energy of the D-Ado/enzyme complex is lower than that of the L-Ado/enzyme complex. These results might explain why L-Ado and its analogues were found to be inactive as inhibitors of AdoHcy hydrolase, and therefore not good candidates for drug design targeting AdoHcy hydrolase and/or transmethylation enzymes.

3.2. Design and synthesis of S-adenosylhomocysteine analogues with the sulfur and C5' atoms replaced by the vinyl unit.

The second targets of this thesis were S-adenosyl-L-homocysteine analogues of type A and B with the sulfur and C5' atoms replaced by the vinyl or homovinyl unit (Scheme 22). Retrosynthetic analyses of compound A indicate that the easiest approach would be to start synthesis from the parental nucleoside and the suitable constructed amino acid units. First approach was envisioned to be metathesis via construction of a new C5'-C6' double bond using two terminal alkenes in the presence of Grubbs catalyst.
The second approach employed Negishi coupling to construct a new C6’-C7’ single bond between dihalonucleoside derivative with the corresponding organozinc reagent.

![Chemical Structure](image)

Scheme 22. Retrospective analysis for the unsaturated S-adenosyl-L-homocysteine analogues.

3.2.1 Metathesis approach between the 5’-deoxy-5’-methyleneadenosine and the racemic homoallylglycine precursors.

In order to explore the metathesis approach the protected 5’-deoxy-5’-methyleneadenosine derivatives (e.g. 60 or 61) and the 6-carbon amino acid, e.g. homoallylglycine 65 or 66 bearing a terminal double bond were prepared. Synthesis of the protected 5’-deoxy-2’,3’-O-isopropylidene-5’methyleneadenosine started with adenosine 56 which was dissolved in acetone and treated with p-toluenesulfonic acid and
ethyl orthoformate. Crystallization of the crude product from MeOH gave 2',3'-O-isopropylidene adenosine 57 in 97% yield (Scheme 21). Moffat oxidation of the 5'-OH group in 57 with dicyclohexylcarbodiimide (DCC) in DMSO in the presence of dichloroacetic acid at ambient temperature afforded crude 5'-aldehyde which was *in situ* treated with (toluenesulfonylmethylene)triphenylphosphorane\(^{35}\) to produce 9-[5,6-dideoxy-2,3-O-isopropylidene-6-(p-toluenesulfonyl)-\(\beta\)-D-ribo-hex-5(E)-enofuranosyl]adenine 58 in 80% yield after purification on silica gel column. \(^1\)H NMR spectrum confirmed the structure and the *trans* configuration was assigned on the basis of the magnitude of the coupling constant \((J_{6':5'} = 15.1 \text{ Hz})\). Reflux of 58 in toluene with tributyltin hydride in the presence of AIBN effected stanylo-detsosylation via a radical addition-elimination reaction. The 9-[6-(tributylstannyl)-5,6-dideoxy-2,3-O-isopropylidene-\(\beta\)-D-ribo-hex-5-enofuranosyl] adenine 59 was obtained in 71% yield as a separable mixture of \(E/Z\) isomers (~5:1). The stereochemical composition of the mixture was established based on the coupling constant analysis in \(^1\)H NMR spectrum \([59(E) \quad (J_{6':5'} = 19.1 \text{ Hz}), \quad 59(Z) \quad (J_{5':6'} = 12.8 \text{ Hz})]\). Treatment of 59 \((E/Z)\) with \(\text{NH}_4\text{F}\) in MeOH at reflux for 48 h produced a more polar 9-[5,6-dIDEOXY-2,3-O-ISOPROPYLIDENE-\(\beta\)-D-RIBO-HEX-5-ENOFURANOSYL]adenine 60 in 90% yield after purification on silica gel column. Splitting pattern for protons of the terminal alkene group at \(\delta\) 5.13 [(d, \(J_{6':5'} = 10.4 \text{ Hz (cis)}, \quad J_{6':6'} = 1.2 \text{ Hz})\) and 5.25 \([J_{6''':5'} = 17.2 \text{ Hz (trans) H6}''\)] were confirmed on \(^1\)H NMR spectrum. In order to protect the amino group from the adenine ring, compound 60 was dissolved in dried pyridine and reacted with benzoyl chloride to provide 61a in 95% yield. Treatment of 60 with excess of benzoyl chloride afforded 61b in 98% yield.
Scheme 23. Synthesis of the protected 5’-deoxy-2’,3’-O-isopropylidene-5’-methylene adenosine

The synthesis of the unsaturated amino acid precursors (homoallylglycine) for the metathesis approach is depicted in scheme 24. Thus, the unsaturated α-amino acid 63 was obtained in 72% in phase-transfer catalyzed S_N2 reaction between commercially available N-(diphenylmethylene)glycine ethyl ester 62 and 4-bromo-1-butene. 1H NMR spectrum of 63 confirmed the presence of the characteristic splitting for a terminal alkene. Acid deprotection of 63 afforded the corresponding racemic mixture of amino acid 64 in 96% yield with the appropriate number of carbons suitable for the metathesis approach. It is worthy to note that there is an extra carbon in chain as compared with homocysteine, because one of the carbon will be lost during metathesis with 5’-deoxy-5’-methyleneadenosines 60 or 61. Benzylation of the amino group in 64 with BzCl in pyridine gave the N-benzoyl aminoacid 65 in 89% yield as a white solid after purification on silica gel column. 1H NMR spectrum of 65 showed peaks from the aromatic protons at
δ 7.38-7.52 (m, 5H, Ar). Compound 65 had also UV for better control of the subsequent metathesis reaction. Treatment of 64 with (tBuO)2CO and NaHCO3 in dioxane provided N-Boc aminoacid derivative 66.

Scheme 24. Synthesis of the amino acid precursors for metathesis approach.

Attempted cross-metathesis45,46,47b,70 between 5′-deoxy-2′,3′-O-isopropylidene-5′-methylene adenosine 60 with N-benzoyl 65 or N-Boc 66 protected amino acids bearing the terminal double bond in the presence of 1st and 2nd (2-imidazolinylidene-Ru) generation Grubbs catalysts46,47b failed to give desired products 67a or 68a (Scheme 25). Also, metathesis of the 6-N-benzoyl adenosine substrate 61a with 65 or 66 in the presence of the same catalysts did not afford the desired products. However, treatment of 61a with 65 in the presence of Hoveyda-Grubb’s catalyst11a,b led to the formation of metathesis product 67b (51%) in addition to dimer 73 (11%) as a less polar compound. Self-metathesis of adenosine substrate 61a was not observed. Metathesis of the 6-N,N-dibenzoyl 61b with 65 gave 67c in 60% yield in addition to dimer 73 (18%). Interestingly, metathesis of the 5′-deoxy-5′-methylene adenosine 60 having 6-amino
group unprotected with 65 or 66 even in the presence of Hoveyda-Grubb’s catalyst did not yield the corresponding cross-metathesis products 67a or 68a. This means that the protection of 6-amino group of adenine plays an important role in cross-metathesis reaction and more than likely is necessary.

The cross-metathesis reaction (CH₂Cl₂, at 65°C) between protected 5'-deoxy-5'-methylene adenosine 61a or 61b with racemic N-Boc protected aminoacid 66 in the presence of Hoveyda-Grubbs catalyst gave the desired products 68b (61%) and 68c (76%) respectively, (Scheme 25). The self-metathesis of nucleosides substrates or amino acid byproducts were not isolated from the reaction mixtures. In agreement with literature reports, the cross-metathesis products 67 and 68 were found to be predominantly the trans-isomers. Column chromatography on silica gel afforded products 67 and 68 as pure 5’E isomers of the 1:1 mixture of 9’R/S diastereomers. ¹H NMR and mass spectrometry confirmed the structure of 67 and 68. The E stereochemistry for 67 and 68 was established from ¹H NMR spectra based on the magnitude of J₅’-H₆’. For example, the 5’ proton in 68c appears at δ 5.58 (dd, J₅’-H₄’ = 7.3 Hz and J₅’-H₆’ = 15.2 Hz) while the 6’ proton resonates at δ 5.73 (dt, J₆’-H₇’/7” = 6.5 Hz and J₅’-H₆’ = 15.2 Hz).

The next step in the synthesis of desired AdoHcy analogues was deprotection of products 67 and 68. Thus, treatment of 68c (or 68b) with 1:1 mixture of the saturated (at 0 °C) methanolic ammonia solution and methanol for 48 h at ~ 0 °C removed the 6-N-benzoyl group(s) and afforded a partially separable mixture of methyl 69 and ethyl 70 esters (~ 3:2, ~92% total yield). The use of diluted methanolic ammonia solution was important since saturated solution of NH₃/MeOH led to the formation of the amidation byproducts in substantial yield (up to 40%).
Scheme 25. Cross-metathesis between 5’-deoxy-5’-methylene adenosine and unsaturated N-Boc or N-benzoyl protected amino acids.

Acid catalyzed deprotection of 69 and 70 with aqueous solution of trifluoroacetic acid (TFA) effected removal of both Boc and the isopropylidene protection groups to give the esters 71a and 71b in high yields. It is worthy to note that debenzoylation of 68 (or 67) should be performed as the first deprotection step, because treatment of 68 (or 67) with TFA/H₂O resulted in the substantial cleavage of glycosylic bond. Saponification of 71a and 71b with NaOH in H₂O/MeOH solution followed by purification on RP-HPLC afforded the sodium salt of 72 in 67% percent yield as a single E isomer of the 1:1 mixture of 9’R/S diastereomers.
3.2.2 Metathesis approach between the 5’-deoxy-5’-methylene adenosine and the chiral homoallylglycine precursors.

In order to synthesize AdoHcy analogue having the L-configuration for the amino group which corresponds to the natural amino acids, we first attempted separation of $9'R/S$ diastereomers in products 67 and 68. Unfortunately, separation of $9'R/S$ diastereomers in 67 or 68 was unsuccessful. Then we turned our attention to the synthesis of AdoHcy analogue with $9'S$ configuration employing a chiral amino acid precursor, e.g., (S)-homoallylglycine. Given that the methods available for the preparation of enantiomerically pure unnatural amino acids usually require multistep synthesis, we chose the enantioselective hydrolysis of racemic 66 as a way to provide chiral (S)-homoallylglycine.

Treatment of 66 with α-chymotrypsin in phosphate buffer (0.1M, pH 8) produced the unreacted (R)-ester 66 (~50%) and (S)-acid 74 (~50%) (Scheme 26). In order to establish the enantiomeric purity of 66 as R enantiomer, the Mosher test was applied. Optically active α-methoxy-α-(trifluoromethyl)phenyl acetic acid (MTPA acid), known as the Mosher reagent, was originally developed in 1969 for use in determination of the enantiomeric purity of chiral alcohols and amines by NMR spectroscopy. The use of this reagent was subsequently expanded to chromatographic resolution of chiral alcohols and assigning the absolute configuration of its chiral esters based on the empirical correlation between their NMR chemical shift and the absolute stereochemistry of the alcohol. In our case, treatment of ester 66-R with TFA/H$_2$O followed by acylation with (R)-2-methoxy-2-(trifluoromethyl)phenyl-2-phenylacetyl chloride [(R)-MPTA-Cl] gave 76 R/S. Analysis of the 19F NMR spectra [δ -69.55 (s,
0.98F) and -69.8 (s, 0.02F)] established the stereochemistry for 66 as R in agreement with Mosher’s correlations. The acid 74-S was next converted into the methyl ester 75-S in reaction with diazomethane in ethanol (Scheme 26). It is worthy to note that the metathesis of the “free” carboxylic acid precursor 74-S with 61a or 61b in the presence of Hoveyda-Grubbs catalyst did not yield the desired product.

Scheme 26. Enantioselective hydrolysis of alkenyl-α-amino acid ester.

Once the chiral amino acid precursor 75-S was synthesized, we attempted the cross-metathesis reaction between 61b and 75-S which afforded 77-S in 77% yield (Scheme 27). Standard deprotection of 77-S with diluted NH₃/MeOH gave 69-S in 91% yield. Acid deprotection with TFA/H₂O yielded methyl ester 71a-S (90%) as a single E isomer after purification on RP-HPLC. Alterantively, metathesis of 61b with 66-R gave ethyl ester derivative 68c-R. Contrary to the products 67-72 obtained from racemic homoallylglycine, the ¹³C NMR spectra for the products obtained from (S)- and (R)-
homoallylglycine substrates showed a single set of peaks. 1H NMR spectrum also showed some spectral differences especially for H2 and H8 from the adenine base.

![Scheme 27. Cross-metathesis of adenosine precursor with S-amino acid derivative.](image)

3.2.3. Synthesis of the halovinyl S-AdoHcy analogue.

Taking into consideration that AdoHcy hydrolase is able to add water across to the isolated 5',6'-double bond of a 6'-halo(vinyl)homoAdo derivative,\(^{35,36}\) we have also attempted the synthesis of bromovinyl analogue of type B (scheme 22). This synthesis was executed using the bromination-dehydrobromination strategy (Scheme 28). Thus, treatment of 68c with pyridinium tribromide\(^{119}\) in dioxane gave the 5',6'-dibromo diastereomers 78 in a very high yield. 1H NMR and LC-MS spectra confirmed the structure of 78. In fact, 1H NMR spectrum showed no presence of the olefinic protons and the LC-MS spectrum showed the characteristic peaks pattern ($M^+ + 2$ and $M^+ + 4$) due to the presence of two bromine atoms. Compound 78 underwent dehydrobromination
with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in THF yielding 79b as a single isomer. Also one of the 6-N-benzoyl protective group was partially cleaved and formation of 79a was observed. Standard deprotection of 79a/79b mixture with diluted NH₃/MeOH gave 80 as an inseparable mixture of methyl and ethyl esters. Treatment of 80 with TFA/H₂O removed both Boc and isopropylidene protection group affording 81. Saponification of 81 with solution of NaOH followed by RP-HPLC purification gave 82 as a single E isomer in 54% overall yield (Scheme 28).

Scheme 28. Synthesis of the halovinyl S-AdoHcy analogue.

The regioselectivity of the HBr elimination and therefore position of the bromine at 5' (versus 6') in 79-82 was assigned based on the COSY experiment. The COSY experiment showed a strong cross-peak correlation between protons H6'-H7' but did not show any cross-peak between protons H4'-H5'. Also ¹H NMR spectrum supported this assignment. In fact, ¹H NMR spectrum showed the presence of the H6' as a triplet at δ 6.40 (J₆',7' = 7.6 Hz), rather then the expected doublet with J₅',4' for H5' in the case of 6'-bromo regioisomer.
The E configuration of products 79-82 is expected from a specific anti-addition in the pyridinium tribromide bromination of the E alkene 68e which is followed by an E2 (anti elimination) process of HBr from 78. This was also supported by the NOESY analysis of 82 in which the cross-peak between H4’ and H7’/7” was observed while no cross-peak between H4’ and H6’ was detected.

3.3 Negishi cross-coupling approach

3.3.1 Coupling with 1-fluoro-1-haloalkenes

Since the elimination of HBr gave 5’-bromovinyl analogue 82 instead of the more desired 6’-bromo analogue, we turned our attention to the coupling approach. On the basis of retrosynthetic analysis, the synthesis of analogue type A or B (see scheme 22) can be accomplished using Pd-catalyzed cross-coupling reaction between sp^2 hybridized carbon of dihalohomovinyl precursor of adenosine and sp^3 hybridized carbon of the corresponding organozinc reagent, Negishi coupling, to form a new C6’-C7’ single bond as a key step. Since literature reports on the Pd-catalyzed monoalkylation of dihaloalkenes (Csp^2-Csp^3 coupling) were scarce, we were prompted to undertake model studies on Pd-catalyzed cross-coupling between vinyl dihalides and alkyl organometallics.

Taking into account that the fluoride is unreactive towards couplings, we first accomplished Pd-catalyzed monoalkylation between a series of 1-fluoro-1-haloalkenes 86-88, derived from the conjugated or unconjugated aldehydes and ketones with alkyl zinc-bromides reagents. The corresponding 1-fluoro-1-haloalkenes were synthesized using McCarthy’s procedure. In the first step aldehydes 83a-c and ketone 83d
underwent condensation with sulfonyle-stabilized fluorophosphonates to give (fluoro)vinyl sulfones 84 in high yield. The radical-mediated stannyldesulfonilation of 84 with Bu₃SnH/AIBN yielded (fluoro)vinyl stannanes 85. In the last step of synthesis, 85 underwent the halodestannylation with NIS or NBS or Cl₂ to give 1-fluoro-1-iodo- (86), 1-fluoro-1-bromo- (87) and 1-fluoro-1-chloroalkenes (88) (Scheme 29). It is noteworthy that dihaloalkenes of series c with a benzyloxy substituent at allylic carbon are structural analogues of the dihalohomovinyl nucleoside or ribofuranosyl precursors which also possesses oxygen atom at carbon δ from the α-halovinyl carbon.

Scheme 29. Stereoselective synthesis of 1-fluoro-1-haloalkenes.
Having the desired starting materials synthesized, we attempted couplings of the 1-fluoro-1-haloalkenes \(86-88\) with different types of primary alkylzinc bromides in the presence of Pd catalyst in benzene at \(65^\circ\text{C}\) (Scheme 30). Thus, treatment of 1-fluorovinyl iodide \(86a\) (E/Z, 95:5) with 2 equiv. of primary alkylzinc bromide [BrZn(CH\(_2\))\(_3\)CO\(_2\)Et] in the presence of Pd(PPh\(_3\))\(_4\) in benzene (65 °C, 10 h) gave fluoro alkenoate \(89a\) as a single Z isomer \((J_{\text{F-H(trans)}} = 39.8\ \text{Hz})\) in 70% yield (Scheme 30; Table 3, entry 1). Analogous treatment of \(86a\) (E/Z, 95:5) with alkylzinc bromides containing double bond [BrZn(CH\(_2\))\(_3\)CH=CH\(_2\)] or acetal functionality [BrZn(CH\(_2\))\(_2\)CH(OCH\(_2\))\(_2\)] gave \(90a(Z)\) or \(91a(Z)\), respectively (Table 3, entries 5 and 6). The couplings occurred with retention of configuration via trans-selective alkylation, but E/Z descriptors changed due to the change in Cahn-Ingold-Prelog priority at the reaction center carbon. The 1-fluorovinyl bromides \(87a\) and chlorides \(88a\) also underwent efficient couplings with BrZn(CH\(_2\))\(_3\)CO\(_2\)Et to give \(89a(Z)\) in 70% and 80% yield (Table 3, entries 3 and 4).

\[
\begin{align*}
\text{Compds } 86-91 & \quad R & \quad R' \\
\text{a} & \text{Ph} & \text{H} \\
\text{b} & \text{PhCH\(_2\)CH\(_2\)} & \text{H} \\
\text{c} & \text{PhCH\(_2\)OCH\(_2\)} & \text{H} \\
\text{d} & \text{Ph} & \text{CH\(_3\)}
\end{align*}
\]

\textbf{Scheme 30.} Couplings of 1-fluoro-1-haloalkenes with alkylzincs.
In order to optimize reaction conditions, we tested efficiency of various Pd catalysts for such Negishi monoalkylation (Scheme 31). We found that tris(dibenzylideneacetone)palladium \([\text{Pd}_2(\text{dba})_3]\) and 1,4-bis(diphenylphosphinobutane)palladium chloride \([\text{PdCl}_2(\text{dppb})]\) gave smooth conversion of \(86a\) into \(91a\) in 2 h at 50 °C. Pd(PPh\(_3\))\(_4\) effected only 11% conversion of \(86a\) into \(91a\) under analogous conditions. The Pd(OAc)\(_2\) and 1,1'-bis(diphenylphosphinoferrocene) palladium chloride \([\text{PdCl}_2(\text{dppf})]\) were also found to be less effective. In comparison with Pd(PPh\(_3\))\(_4\), coupling of \(86a\) with BrZn(CH\(_2\))\(_3\)CO\(_2\)Et in the presence of PdCl\(_2(\text{dppb})\) gave a higher yield of \(89a(Z)\) (93%, entry 2 vs. entry 1) under milder conditions (50 °C, 2 h). The cross-coupling reactions of the unconjugated 1-fluorovinyl halides \(86b\) (E/Z, 78:22) with primary alkylzinc bromides in the presence of Pd(PPh\(_3\))\(_4\) gave \(89b\), \(90b\), and \(91b\) in high yields (Table 3; entries 9, 13, and 14). The conversion of \(86b\) into \(89b\) was achieved in higher yield under milder conditions with PdCl\(_2(\text{dppb})\) as catalyst (Table 3, entry 12).

The vinyl iodide \(86c\) (E/Z, 75:25) with benzyloxymethyl substituent at carbon \(\beta\) (analogue of the nucleoside precursor) reacted with BrZn(CH\(_2\))\(_3\)CH=CH\(_2\) \([\text{Pd}(\text{PPh}_3)_4]\) to give the internal fluoroalkene \(90c(Z)\) in moderate yield (56%, Table 3, entry 17) in addition to unchanged \(86c\) with enriched \(Z\) to \(E\) ratio (56:44). It seems that the PdCl\(_2(\text{dppb})\) catalyst not only increased the yield but also led to the formation of \(90c\) as mixture of \(E/Z\) isomers (20:80, 86%; Table 3, entry 18). Also bromide \(87c\) yielded \(90c\) as \(E/Z\) mixture in high yield (Table 3, entry 19).

The 1-fluorovinyl halides derived from acetophenone (series \(d\)) served as convenient starting material for the synthesis of multisubstituted alkenes.\(^{121}\) Thus, Pd-
catalyzed monoalkylation of 86d (E/Z, 49:51) in the presence of Pd(PPh₃)₄ produced 89d(Z), 90d(Z), and 91d(Z) (Table 3, entries 20, 22, 23). Analogous coupling of 86d with more reactive PdCl₂(dppb) gave 89d as a mixture of E/Z (16:84) isomers (Table 3, entry 21).

In order to learn more about the stereochemistry of coupling reactions, the pure E isomer and a mixture enriched in Z isomer (E/Z, 15:85) of fluoro(iodo)alkenes 86b were synthesized by separation of the corresponding (fluoro)vinyl stannanes 85b followed by the stereospecific iododestannylation. Treatment of 86b(E) with BrZn(CH₂)₂CO₂Et or BrZn(CH₂)₂CH(OCH₂)₂[Pd(PPh₃)₄/12 h/65 °C] resulted in smooth conversion (GC/MS, ¹⁹F NMR) to 89b(Z) or 91b(Z) with the isolated yields of 88% and 89%, respectively (Table 3, entries 10 and 15). On the other hand, analogous Negishi treatment of 86b (E/Z, 15:85) yielded 89b(Z) or 91b(Z) in 14% (96% conversion of E isomers) while the corresponding 89b(E) or 91b(E) were not formed (Scheme 32). Prolonged reaction time and harsher condition resulted in decomposition of the 86b(Z) isomer (GC/MS, ¹⁹F NMR).
Table 3. Pd-catalyzed alkylation of 1-fluoro-1-haloalkenes 86-88.

<table>
<thead>
<tr>
<th>Entry</th>
<th>substrate</th>
<th>E/Z</th>
<th>product (Z)</th>
<th>time (h)</th>
<th>yield b</th>
<th>yield c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86a</td>
<td>95/5</td>
<td>89a</td>
<td>10</td>
<td>70%</td>
<td>74%</td>
</tr>
<tr>
<td>2</td>
<td>86a</td>
<td>95/5</td>
<td>89a</td>
<td>2</td>
<td>93%</td>
<td>97%</td>
</tr>
<tr>
<td>3</td>
<td>87a</td>
<td>93/7</td>
<td>89a</td>
<td>10</td>
<td>70%</td>
<td>75%</td>
</tr>
<tr>
<td>4</td>
<td>88a</td>
<td>93/7</td>
<td>89a</td>
<td>10</td>
<td>80%</td>
<td>86%</td>
</tr>
<tr>
<td>5</td>
<td>86a</td>
<td>95/5</td>
<td>90a</td>
<td>10</td>
<td>65%</td>
<td>69%</td>
</tr>
<tr>
<td>6</td>
<td>86a</td>
<td>95/5</td>
<td>91a</td>
<td>12</td>
<td>90%</td>
<td>94%</td>
</tr>
<tr>
<td>7</td>
<td>86a</td>
<td>95/5</td>
<td>91a</td>
<td>2</td>
<td>92%</td>
<td>96%</td>
</tr>
<tr>
<td>8</td>
<td>86a</td>
<td>95/5</td>
<td>91a</td>
<td>2</td>
<td>94%</td>
<td>98%</td>
</tr>
<tr>
<td>9</td>
<td>86b</td>
<td>78/22</td>
<td>89b</td>
<td>24</td>
<td>60%</td>
<td>78%</td>
</tr>
<tr>
<td>10</td>
<td>86b</td>
<td>100/0</td>
<td>89b</td>
<td>12</td>
<td>88%</td>
<td>88%g</td>
</tr>
<tr>
<td>11</td>
<td>86b</td>
<td>15/85</td>
<td>89b</td>
<td>24</td>
<td>14%</td>
<td>96%</td>
</tr>
<tr>
<td>12</td>
<td>86b</td>
<td>84/16</td>
<td>89b</td>
<td>8</td>
<td>82%</td>
<td>98%</td>
</tr>
<tr>
<td>13</td>
<td>86b</td>
<td>78/22</td>
<td>90b</td>
<td>20</td>
<td>76%</td>
<td>98%</td>
</tr>
<tr>
<td>14</td>
<td>86b</td>
<td>78/22</td>
<td>91b</td>
<td>20</td>
<td>74%</td>
<td>94%</td>
</tr>
<tr>
<td>15</td>
<td>86b</td>
<td>100/0</td>
<td>91b</td>
<td>12</td>
<td>89%</td>
<td>89%i</td>
</tr>
<tr>
<td>16</td>
<td>86b</td>
<td>15/85</td>
<td>91b</td>
<td>24</td>
<td>14%</td>
<td>96%</td>
</tr>
<tr>
<td>17</td>
<td>86c</td>
<td>75/25</td>
<td>90c</td>
<td>48</td>
<td>56%i</td>
<td>74%</td>
</tr>
<tr>
<td>18</td>
<td>86c</td>
<td>67/33</td>
<td>90c</td>
<td>4</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>87c</td>
<td>77/23</td>
<td>90c</td>
<td>6</td>
<td>84%</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>86d</td>
<td>49/51</td>
<td>89d</td>
<td>24</td>
<td>45%</td>
<td>94%</td>
</tr>
<tr>
<td>21</td>
<td>86d</td>
<td>49/51</td>
<td>89d</td>
<td>8</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>86d</td>
<td>49/51</td>
<td>90d</td>
<td>24</td>
<td>45%</td>
<td>92%</td>
</tr>
<tr>
<td>23</td>
<td>86d</td>
<td>49/51</td>
<td>91d</td>
<td>24</td>
<td>46%</td>
<td>90%</td>
</tr>
</tbody>
</table>

a Pd(Ph$_3$P)$_4$ was used as a catalyst unless otherwise specified (50-65 °C). b isolated yield. c isolated yield based on the conversion of the E isomer only. d PdCl$_2$(dppb) catalyst. e (Z,Z)-2,3-difluoro-1,4-diphenyl-1,3-butadiene 94 was also isolated (8%; 16% consumption of 86a). f Pd$_2$(dba)$_3$ catalyst. g 96% based on GC-MS. h (Z)-1-fluoro-4-phenyl-1-butene, E isomer of 90b and (Z,Z)-4,5-difluoro-1,8-diphenyl-3,5-octadiene was also detected in crude reaction mixture (19F NMR). i 98% based on GC-MS. j 56% based on 19F NMR. k (E/Z, 20:80). l (E/Z, 16:84; based on 19F NMR and GC-MS).
Scheme 31. Effect of the Pd catalyst on the efficiency of Negishi coupling.

Scheme 32. Establishing the stereochemistry of couplings with 1,1-dihaloalkenes.
Generally, we only observed formation (above detection limit\(^{122}\) of 1-2%, \(^{19}\)F NMR) of the corresponding \(E\) isomers via cis-couplings in a few instances (Table 3, entry 13, 18, 19, 21). For example alkylation of \(86c\) (iodide) and \(87c\) (bromide) in the presence of \(\text{PdCl}_2(\text{dppb})\) produced \(90c\) as \(E/Z\) (20:80) mixture. These results are in agreement with \textit{trans}-selective mono cross-coupling of 1,1-dihaloalkenes reported previously.\(^{72,76,100,123}\) Burton and coworkers showed that \textit{trans} selectivity with 1-bromo-1-fluoroalkenes originate in oxidative addition step since formation of the \(E\)-palladium complex is faster than the formation of the \(Z\)-palladium complex which is hampered by steric hinderence of vicinal \textit{cis}-substituent.\(^{123a}\) They applied this finding for the kinetic resolution of the \(E\) and \(Z\) coupling products.\(^{123}\) The major by-product isolated from the coupling reactions resulted from the reductive homocoupling of dihalide components. For example, self-coupling product of \(86a\), e.g., \((E,E)\)-2,3-difluoro-1,4-diphenyl-1,3-butadiene \(94\), was isolated in 8% yield from the reaction of \(86a\) with \(\text{BrZn(CH}_2\text{)}_3\text{CH=CH}_2\) (Table 3, entry 5).

We have also examined the Pd-catalyzed 1,1-dihaloalkenyl coupling with branched alkylzincs. Thus, \(\text{PdCl}_2(\text{dppb})\) was found to be effective for monoalkylation of \(86a\) (E/Z, 95:5) with tert-BuZnBr (\(92a\)) to provide \(93a\) (80%; 3 h, 50 °C; Scheme 33). The \(\text{Pd}_2(\text{dba})_3\) and \(\text{Pd}(\text{PPh}_3)_4\) catalysts were less effective leading to the formation of the significant amount of self-coupling (\(E,E\))-2,3-difluoro-1,4-diphenyl-1,3-butadiene \(94\) by-product. Interestingly, attempted couplings of \(86a\) (E/Z, 95:5) with secondary 2- and 3-pentylzinc bromide (\(92b,c\)) in addition to various amount of desired products \(93b\) and \(93c\) gave also isomerization byproduct \(93d\) (35-70%) in addition to selfcoupled diene \(94\) and reduced (\(Z\))-\(\beta\)-fluorostyrene (in some cases). Formation of byproducts derived from
isomerization of the alkyl group (secondary to primary) during Negishi cross-coupling reaction is known.123c,124

\begin{align*}
\text{BnR(92)} & \xrightarrow{\text{BrZnR (92)}} \text{Pd(O)/C}_6\text{H}_6 \rightarrow 86a \\
(E/Z, 95:5) & \quad 93 \\
& + 94
\end{align*}

Compounds 92, 93: Series
\begin{itemize}
 \item \textbf{a} \text{R} = \text{tert-Bu}
 \item \textbf{b} \text{R} = \text{2-pentyl}
 \item \textbf{c} \text{R} = \text{3-pentyl}
 \item \textbf{d} \text{R} = \text{n-Bu}
\end{itemize}

Scheme 33. Couplings with branched alkylzincs.

3.3.2. Coupling with 1,1-dichloro- and 1,1-dibromoalkenes

In order to investigate the differentiation of the two identical halogens in 1,1-dihaloalkenes for the selective monoalkylation with alkylzincs, we attempted Pd-catalyzed selective monosubstitution of 1,1-dichloro- and 1,1-dibromoalkenes with alkylzinc reagents. The corresponding 1,1-dichloro- and 1,1-dibromoalkenes were prepared using Rabinowitz and Marcus125 procedure. Thus, a solution of triphenylphosphine and the corresponding carbonyl compound in carbon tetrachloride (or carbon tetrabromide) were heated at 60 °C for 3 h. Analysis of GC-MS spectrum revealed that the carbonyl compound disappeared while \(\beta,\beta \)-dihaloalkenes 96-97 were formed (Scheme 34).
In order to find the optimal reaction conditions for the monoalkylation reaction, we conducted a systematic screening of Pd-catalysts (Scheme 35). Screening of the Pd-catalyst in the monoalkylation of \(\beta,\beta \)-dichloro-4-methoxystyrene \(98b \) revealed that \(\text{PdCl}_2(\text{dppf}) \) was the best catalyst for this reaction giving the desired monocoupling product in 70% isolated yield. \(\text{PdCl}_2(\text{dppb}) \) effected conversion of \(96b \) into \(98b \) in 63% yield under analogous conditions. On the other hand \(\text{Pd}(\text{PPh}_3)_4 \), \(\text{Pd}(\text{OAc})_2 \) and \(\text{Pd}_2(\text{dba})_3 \) were found to be less effective. It is worthy to note that the monoalkylation reaction was improved in the presence of DPEPhos [bis(o-diphenylphosphanylphenylether)]\(^{126}\) as an extra ligand.

Negishi and Tan\(^{76b}\) explained that DPEPhos plays an important role in the Pd-monoalkylation reaction and it is possible that the ethereal oxygen atom of DPEPhos may exert a chelation effect to facilitate the dissociation of alkenes (see section 1.3.4). Once the reaction conditions were established, we examined the Pd-catalyzed monocoupling
using different 1,1-dichloro- and 1,1-dibromoalkenes (Scheme 36, Table 4). In agreement with literature reports,76 the Pd-catalyzed monoalkylation of 1,1-dihaloalkenes was found to be \textit{trans}-selective.

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Catalysta</th>
<th>Yieldb,c</th>
</tr>
</thead>
<tbody>
<tr>
<td>PdCl\textsubscript{2}(dppf)</td>
<td>70</td>
</tr>
<tr>
<td>PdCl\textsubscript{2}(dppb)</td>
<td>63</td>
</tr>
<tr>
<td>Pd(PPh\textsubscript{3})\textsubscript{4}</td>
<td>55</td>
</tr>
<tr>
<td>Pd(OAc)\textsubscript{2}</td>
<td>15</td>
</tr>
<tr>
<td>Pd\textsubscript{2}(dba)\textsubscript{3}</td>
<td>9</td>
</tr>
</tbody>
</table>

Key: a 5\% molar. b Isolated yields. c Only Z product was detected

\textbf{Scheme 35}. Screening of Pd catalyst for the monoalkylation reaction.
Scheme 36. Pd-catalyzed trans-selective monoalkylation of 1,1-dichloro- and 1,1-dibromoalkenes with alkyl zinc reagent.

Table 4. Pd-catalyzed monoalkylation of 1,1-dichloro- and 1,1-dibromoalkenes.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Conditions Catalyst</th>
<th>Conditions Ligand</th>
<th>Conditions Time</th>
<th>Yield(^a) (%) Mono</th>
<th>Yield(^a) (%) Dialkylated</th>
<th>Yield(^a) Reduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96a</td>
<td>PdCl(_2)(dppf)</td>
<td></td>
<td>14</td>
<td>65</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>96a</td>
<td>PdCl(_2)(dppb)</td>
<td></td>
<td>12</td>
<td>53</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>96a</td>
<td>Pd(PPh(_3))(_4)</td>
<td></td>
<td>12</td>
<td>0</td>
<td>68</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>96b</td>
<td>PdCl(_2)(dppf)</td>
<td>DPEPhos</td>
<td>8</td>
<td>70</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>96b</td>
<td>PdCl(_2)(dppb)</td>
<td>DPEPhos</td>
<td>8</td>
<td>63</td>
<td>27</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>96b</td>
<td>Pd(PPh(_3))(_4)</td>
<td>DPEPhos</td>
<td>8</td>
<td>55</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>96c</td>
<td>PdCl(_2)(dppb)</td>
<td>DPEPhos</td>
<td>10</td>
<td>0</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>97a</td>
<td>PdCl(_2)(dppf)</td>
<td></td>
<td>10</td>
<td>0</td>
<td>69</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>97a</td>
<td>PdCl(_2)(dppb)</td>
<td></td>
<td>10</td>
<td>0</td>
<td>75</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>97a</td>
<td>Pd(PPh(_3))(_4)</td>
<td></td>
<td>10</td>
<td>0</td>
<td>60</td>
<td>38</td>
</tr>
<tr>
<td>11</td>
<td>97b</td>
<td>PdCl(_2)(dppf)</td>
<td>DPEPhos</td>
<td>7</td>
<td>47</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>97b</td>
<td>PdCl(_2)(dppb)</td>
<td>DPEPhos</td>
<td>7</td>
<td>0</td>
<td>78</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>97b</td>
<td>Pd(PPh(_3))(_4)</td>
<td>DPEPhos</td>
<td>10</td>
<td>40</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>97b</td>
<td>Pd(PPh(_3))(_4)</td>
<td></td>
<td>10</td>
<td>0</td>
<td>72</td>
<td>26</td>
</tr>
<tr>
<td>15</td>
<td>97c</td>
<td>PdCl(_2)(dppb)</td>
<td>DPEPhos</td>
<td>12</td>
<td>0</td>
<td>87</td>
<td>10</td>
</tr>
</tbody>
</table>

\(^a\) isolated yield
We found that the β,β-dichlorostyrene 96a coupled with BrZn(CH$_2$)$_3$CO$_2$ in the presence of PdCl$_2$(dppf) to give the desired trisubstituted chloroalkene 98a121b (Z, 65% Table 4, entry 1) in addition to the monocoupled/reduced byproduct 101a (22%). Analogous coupling of 96a in the presence of PdCl$_2$(dppb) also produced 98a (Z, 53%, Table 4, entry 2). Besides the desired monoalkylated product 98a, the formation of dialkylated byproduct 100a (27%) and reduced byproduct 101a (15%) was also observed. Similar couplings with more reactive β,β-dibromostyrene 97a did not produced the desired trisubstituted bromoalkene 99a. In fact coupling of 97a with BrZn(CH$_2$)$_3$CO$_2$ in the presence of PdCl$_2$(dppf) or PdCl$_2$(dppb) produced mainly the dialkylated 100a (69% or 75%, Table 4, entries 7 and 8) in addition to the reduced by-product 101a.

We found that the addition of an extra ligand such as DPEPhos (bis-o-diphenylphosphanylphenylether) can control the Pd-catalyzed monoalkylation reaction of 1,1-dihaloalkenes. Thus, treatment of 96b with BrZn(CH$_2$)$_3$CO$_2$ in the presence of PdCl$_2$(dppf) as a catalyst and DPEPhos as a ligand gave the desired trisubstituted chloroalkene 98b in a higher yield (Z, 70% Table 4, entry 4). The major improvement of using DPEPhos was observed in coupling of β,β-dibromostyrene derivative 97b with an alkylzinc reagent. Thus, treatment of 97b with BrZn(CH$_2$)$_3$CO$_2$/PdCl$_2$(dppf) and DPEPhos as a ligand afforded the desired trisubstituted bromoalkene 99b (Z, 47%, Table 4, entry 11) in addition to the dialkylated by product 100b. Analysis of 1H NMR and GC-MS spectra showed the characteristic peaks for a trisubstituted bromoalkene. Analogous coupling of 97b with organozinc reagent in the presence of Pd(PPh$_3$)$_4$ as a catalyst and DPEPhos as ligand also furnished the desired bromoalkene 99b (Z, 40%, Table 4, entry 13). It is noteworthy that coupling of 97b using only Pd(PPh$_3$)$_4$ (without ligand) did not
afford 99b (Table 4, entry 14). Treatment of 1,1-dihaloalkenes derived from the acetophenone (96c or 97c) with PdCl$_2$(dppb) and DPEPhos yielded mainly the dialkylated products (Table 4, entry 7 and 15).

Generally speaking, the major byproduct isolated from the Pd-catalyzed trans-selective monoalkylation of 1,1-dihaloalkenes was the dialkylated byproduct. It is clear that competitive formation of this type of byproduct is the major side reaction to be minimized in future work.
4. EXPERIMENTAL SECTION

4.1 General procedures

UV spectra were measured with solutions in MeOH. 1H (400 MHz and 600 MHz), 13C (100 MHz) and 19F NMR (376.4 MHz) spectra were determined with solutions in CDCl$_3$ unless otherwise noted. Mass spectra (MS) were obtained with atmospheric pressure chemical ionization (APCI) technique and HRMS using AP-ESI mode unless otherwise noted. Reagent grade chemicals were used, and solvents were dried by reflux over and distillation from CaH$_2$ (except THF/potassium) under an argon atmosphere. TLC was performed with Merck kieselgel 60-F$_{254}$ sheets with MeOH/CHCl$_3$ (1:19), EtOAc/hexane (2:1) and EtOAc/i-PrOH/H$_2$O (4:1:2, upper layer) as developing systems. Products were detected with 254 nm light or by development of color with Ce(SO$_4$)$_2$/(NH$_4$)$_6$Mo$_7$O$_{24}$$\cdot$4H$_2O/H_2SO_4$/H$_2$O or I$_2$ or 10% H$_2$SO$_4$/MeOH. Merck kieselgel 60 (230-400 mesh) was used for column chromatography. HPLC purifications were performed using XTerra® preparative RP$_{18}$ OBD™ column (5µm 19 x 150 mm) with gradient program using CH$_3$CN/H$_2$O as a mobile phase. Purity and identity of some products (crude and/or purified) were established using a Hewlett-Packard (HP) GC/MS (El) system with a HP 5973 mass selective detector [capillary column HP-5MS (30 m x 0.25 mm x 25 µm)]. Elemental analyses were determined by Galbraith Laboratories, Knoxville, TN.
4.2. Synthesis

L-2',3'-O-Isopropylideneadenosine (53). L-Adenosine\(^{103}\) (52, 200 mg, 0.75 mmol) was suspended in dried acetone (6 mL) containing p-toluenesulfonic acid monohydrate (470 mg, 2.5 mmol). Triethyl orthoformate (1.5 mL, 1.34 mg, 9.0 mmol) was then added over a period of 10 to 20 min at ambient temperature with vigorous mechanical stirring until a clear solution was obtained. After 18 h, water (4.5 mL) and concentrated ammonium hydroxide (0.1 mL) were added (to pH ~ 7-8). Volatiles were evaporated and the residue was column chromatographed (EtOAc → 5% MeOH/EtOAc) to give 53 (206 mg, 90%) with spectroscopic data identical to the commercial sample of 2',3'-O-isopropylideneadenosine.

L-2',3'-O-Isopropylideneadenosine-5'-carboxaldehyde Oximes (54). A solution of 53 (100 mg, 0.33 mmol) and \(N, N'-\text{dicyclohexylcarbodiimide (DCC; 235 mg, 1.13 mmol) in dried DMSO (1.5 mL) was stirred under argon at ambient temperature. The } \text{Cl}_2\text{CHCO}_2\text{H (0.013 mL, 21 mg, 0.16 mmol) was then added and stirring was continued for 90 min. Pyridine (0.5 mL) and NH}_2\text{OH}•\text{HCl (226 mg, 3.25 mmol) were added to the solution of the crude L-adenosine-5'-carboxaldehyde and stirring was continued at ambient temperature overnight. Volatiles were evaporated, CHCl}_3 \text{ was added and the precipitated dicyclohexylurea (DCU) was filtered. The mother liquor was partitioned (1% AcOH/H}_2\text{O/CHCl}_3) and the aqueous layer was extracted (4 × CHCl}_3). The combined organic phase was washed (NaHCO}_3/H}_2\text{O, brine), dried (Na}_2\text{SO}_4), and was concentrated and column chromatographed (2 → 4% MeOH/CHCl}_3) to give 54 (E/Z, ~ 6:1; 83 mg, 80%): MS (APCI) \text{m/z 321 (100, MH}^+) and other spectroscopic data as described for D-enantiomer.\(^{105}\)
L-Adenosine-5'-carboxaldehyde oximes (55). A solution of 54 (83 mg, 0.08 mmol) in CF$_3$CO$_2$H/H$_2$O (9:1, 5 mL) was stirred at 0 °C for 45 min under argon. Volatiles were evaporated and the residue was coevaporated (3 × toluene) and then column chromatographed (EtOAc → 8% MeOH/EtOAc) to give 55 (E/Z, ~ 6:1; 20 mg, 89%) as an amorphous white solid: MS (APCI) m/z 281 (100, MH$^+$); UV (MeOH) max 260 nm (ε 14 100), min 228 (ε 4000). 1H NMR (MeOH-d_4) for 55(E) δ 4.50 (t, J = 4.7, 1, H3'), 4.58 (dd, J = 6.9, 4.4 Hz, 1, H4'), 4.83 (t, J = 5.0 Hz, 1, H2'), 6.06 (d, J = 5.0 Hz, 1, H1'), 7.64 (d, J = 6.9 Hz, 1, H5'), 8.24 (s, 1, H2), 8.32 (s, 1, H8). 55(Z) δ 4.38 (dd, J = 4.6, 1.5 Hz, 1, H3'), 5.08 (dd, J = 7.5, 4.8 Hz, 1, H2'), 5.22 (dd, J = 5.2, 1.6 Hz, 1, H4'), 6.03 (d, J = 7.5 Hz, 1, H1'), 7.28 (d, J = 5.2 Hz, 1, H5'), 8.24 (s, 1, H2), 8.32 (s, 1, H8).

6-N,N-Dibenzoyl-5'-deoxy-5'-methylene-2,3-O-isopropylideneadenosine (61b). Benzoyl chloride (323.4 mg, 0.23 mmol) was added dropwise to a stirred solution of 6035,37 (350 mg, 1.15 mmol) in pyridine (5 mL) at 0 °C (ice bath) and the resulting mixture was stirred overnight at ambient temperature. NaHCO$_3$/H$_2$O (3 mL) was added and the volatiles were evaporated. The residue was partitioned (HCl/H$_2$O/EtOAc) and the organic layer was washed (NaHCO$_3$, brine), dried (Na$_2$SO$_4$) and evaporated. Column chromatography (30 → 50% EtOAc/hexanes) gave 61b (560 mg, 97%): 1H NMR δ 1.41 (s, 3, CH$_3$), 1.65 (s, 3, CH$_3$), 4.73-4.75 (m, 1, H4'), 4.95 (dd, J = 3.3, 6.2 Hz, 1, H3'), 5.14 ("d", J = 10.4 Hz, 1, H6"), 5.22 ("d", J = 17.1 Hz, 1, H6'), 5.50 (dd, J = 1.9, 6.3 Hz, 1, H2'), 5.90 (ddd, J = 6.8, 10.4, 17.2 Hz, 1, H5'), 6.20 (d, J = 1.9 Hz, 1, H1'), 7.35 (t, J = 7.6 Hz, 4, Ph), 7.46 (t, J = 7.4 Hz, 2, Ph), 7.85 (d, J = 7.2 Hz, 4, Ph), 8.16 (s, 1, H2), 8.68 (s, 1, H8); 13C NMR δ 25.7 & 27.5 (CMe$_2$), 84.6 (C3'), 84.7 (C2'), 88.6 (C4') 91.1 (C1'), 115.1 (CMe$_2$), 118.9 (C6'), 128.3 (C5), 129.1 (Ph), 129.8 (Ph), 133.4 (Ph), 134.4 (Ph), 137.4 (Ph).
135.0 (C5'), 144.5 (C8), 152.4 (C4), 152.7 (C2), 152.8 (C6), 172.6 (CO); MS m/z 512 (100, MH⁺). Anal. Calcd for C₂₈H₂₅N₅O₅ (511.1856): C, 65.74; H, 4.93. Found: C, 65.72; H, 4.90.

Ethyl 2-Aminohex-5-enoate (64). Step a. The 4-bromo-1-butene (1.7 mL, 2.27 g, 16.8 mmol) was added to a heterogeneous mixture of N-(diphenylmethylene)glycine ethyl ester 62 (3 g, 11.2 mmol), finely grounded K₂CO₃ (4.5 g, 32 mmol), and tetrabutylammonium bromide (0.36 g, 1.12 mmol) in CH₃CN (10 mL) and the resulting mixture was refluxed with stirring (oil bath, 98 °C). After 24 h, the reaction mixture was cooled down to room temperature and was filtered. The filtrate was evaporated and the oily residue was partitioned (H₂O/EtOAc). The organic layer was dried (Na₂SO₄), evaporated and column chromatographed (hexane/EtOAc, 85:15) to give 63 (2.77 g, 77%): ¹H NMR δ 1.30 (t, J = 7.0 Hz, 3, CH₃), 1.98-2.13 (m, 4, H3,3',4,4'), 4.08 (t, J = 6.1 Hz, 1, H₂), 4.21 (q, J = 7.0 Hz, 2, CH₂), 4.92 (dd, J = 1.8, 10.2 Hz, 1, H6), 4.98 (dd, J = 1.8, 17.2 Hz, 1, H6'), 5.64-5.77 (m, 1, H5), 7.12-7.85 (m, 10, Ar); MS m/z 321 (100, MH⁺). Step b. 1 N HCl (5.6 mL, 5.6 mmol) was added dropwise to a stirred solution of 63 (2.0 g, 6.23 mmol) in Et₂O (12 mL) at 0 °C (ice-bath). After 30 min, the reaction mixture was allowed to warm-up to ambient temperature and stirring was continued for 5 h. The resulting two layers were separated, and the aqueous layer was neutralized with NaHCO₃ to pH ~ 8 and was then extracted with ether (3 x 15 mL). The combined organic layer was evaporated to give 64²⁷ (0.93 g, 95%) of sufficient purity for direct use in next step: ¹H NMR δ 1.25 (t, J = 7.1 Hz, 3, CH₃), 1.52 (br s, 2, NH₂), 1.56-1.65 (m, 1, H3'), 1.76-1.85 (m, 1, H3), 2.07-2.10 (m, 2, H4,4'), 3.39 (t, J = 7.7 Hz, 1, H2), 4.15 (q, J = 7.1 Hz, 2, CH₂), 4.97 (dq, J = 10.2, 1.7 Hz, 1, H6'), 5.04 (dq, J = 15.7, 1.6 Hz, 1, H6), 5.73-
5.83 (ddt, $J = 15.7, 10.2, 6.6$ Hz, 1, H5); 13C NMR δ 14.6 (CH$_3$), 30.2 (C4), 34.4 (C3), 54.3 (C2), 61.1 (CH$_2$), 115.6 (C6), 137.9 (C5), 176.4 (C1); MS m/z 158 (100, MH$^+$).

Ethyl 2-N-Benzoyl-2-aminohex-5-enoate (65). Benzoyl chloride (0.82 mL, 992 mg, 7.06 mmol) and DMAP (12 mg, 0.1 mmol) were added to a stirred solution of 64 (554 mg, 3.53 mmol) in pyridine (5.5 mL) at ambient temperature. The resulting mixture was stirred for 3 h at ambient temperature. Volatiles were evaporated and the residue was partitioned (HCl/H$_2$O/CHCl$_3$). The organic layer was washed (NaHCO$_3$, brine), dried (MgSO$_4$), evaporated and chromatographed (CHCl$_3$) to give 65 (765 mg, 84%) as a white solid: 1H NMR δ 1.33 (t, $J = 7.1$ Hz, 3, CH$_3$), 1.89-1.95 (m, 1, H3'), 2.15-2.23 (m, 3, H3,4,4'), 4.26 (q, $J = 7.1$ Hz, 2, CH$_2$), 4.87 (ddd, $J = 5.4, 6.9, 7.9$ Hz, 1, H2), 5.04 (br d, $J = 10.2$ Hz, 1, H6, 5.10 (br d, $J = 15.6$ Hz, 1, H6'), 5.79-5.89 (m, 1, H5), 6.73 (br d, $J = 7.0$ Hz, 1, NH), 7.45 (t, $J = 7.5$ Hz, 2, Ph), 7.55 (t, $J = 7.2$ Hz, 1, Ph), 7.82 (d, $J = 7.0$ Hz, 2, Ph); 13C NMR δ 14.5 (CH$_3$), 29.9 (C4), 32.2 (C3), 52.6 (C2), 61.8 (CH$_2$), 116.0 (C6), 127.4 (Ph), 128.9 (Ph), 132.1 (Ph), 134.4 (Ph), 137.5 (C5), 167.4 (CO), 173.0 (C1); MS m/z 262 (100, MH$^+$). Anal. Calcd. for C$_{15}$H$_{19}$NO$_3$ (261.32): C, 68.94; H, 7.33; N, 5.36. Found: C, 69.03; H, 7.46; N, 5.28.

Ethyl 2-N-(tert-Butoxycarbonyl)-2-aminohex-5-enoate (66). NaHCO$_3$ (668 mg, 7.95 mmol) and di-tert-butyl dicarbonate (867 mg, 3.98 mmol) were added to a stirred solution of 64 (416 mg, 2.65 mmol) in dioxane/H$_2$O (1:1, 8 mL) at ambient temperature. After 18 h, the reaction mixture was partitioned (EtOAc/H$_2$O) and the organic layer was washed (brine), dried (Na$_2$SO$_4$) and evaporated. Column chromatography (CHCl$_3$ \rightarrow 2% MeOH) gave 66113c,128 (540 mg, 79%). 1H NMR δ 1.28 (t, $J = 7.1$ Hz, 3, CH$_3$), 1.44 (s, 9, t-Bu), 1.66-1.77 (m, 1, H3'), 1.85-1.96 (m, 1, H3), 2.08-
2.16 (m, 2, H4,4'), 4.20 (q, J = 7.1 Hz, 2, CH2), 4.25-4.35 (m, 1, H2), 4.98 (br d, J = 10.2 Hz, 1, H6), 5.02 (br d, J = 15.6 Hz, 1, H6'), 5.04 (br, 1, NH), 5.76-5.80 (m, 1, H5); 13C NMR δ 14.5 (CH3), 28.7 (t-Bu), 29.8 (C4), 32.4 (C3), 53.4 (C2), 61.6 (CH2), 80.2 (t-Bu), 115.9 (C6), 137.4 (C5), 155.7 (Boc), 173.1 (C1); MS m/z 258 (20, MH+).

Ethyl 2-N-(tert-Butoxycarbonylo)-2-aminohept-5-enoate (66-R) and 2-N-(tert-butoxycarbonylo)-2-aminohept-5-enolic acid (74-S). Ester 66 (250 mg, 0.97 mmol) was suspended in phosphate buffer (15 mL, 0.1 M; pH 8.00) and α-chymotrypsin (1.25 mg, 61 units/mg; Sigma) was added. The resulting mixture was gently stirred at 37 °C for 24 h (pH decreased to 7.65) and extracted with ethyl acetate. The combined organic layer was evaporated to give unreacted ester 66-R113c,128 (122 mg, 49%) with data as reported above for 66. The aqueous solution was acidified to pH 2.5 with 1N HCl and extracted with ethyl acetate (5x). The combined organic layer was dried (Na2SO4) and evaporated to give 74-S112 (109 mg, 49%): 1H NMR δ 1.46 (s, 9, t-Bu), 1.70-1.85 (m, 1, H3), 1.90-2.05 (m, 1, H3'), 2.10-2.22 (m, 2, H4,4'), 4.32-4.42 (m, 1, H2), 5.00 (br d, J = 10.0 Hz, 1, H6), 5.07 (br s, 1, NH), 5.10 (br d, J = 16.1 Hz, 1, H6'), 5.76-5.86 (m, 1, H5), 9.06 (br s, 1, COOH); MS m/z 230 (100, MH+).

Notes. The enantiomeric purity of 66-R was determined using Mosher test with (R)-2-methoxy-2-trifluoromethyl-2-phenylacetyl chloride (R-MTPA-Cl):119 Step a (Deprotection). Treatment of 66-R (30 mg, 0.11 mmol) with CF3CO2H/H2O (9:1, 2 mL) by procedure C [column chromatography (CHCl3/MeOH, 95:5)] gave 64-R (16 mg, 90%). Step b (Acylation). DMAP (0.46 mg, 0.0038 mmol) and (R)-MTPA-Cl (57.5 mg, 0.22 mmol) was added to a stirred solution of 64-R (30 mg, 0.19 mmol) in pyridine/benzene (3 mL, 1:2) at ambient temperature. After 2 h, volatiles were
evaporated and the residue was partitioned (NaHCO$_3$/H$_2$O/EtOAc). The separated organic layer was washed (brine), dried (Na$_2$SO$_4$), evaporated, and chromatographed (0 → 15% EtOAc/hexane) to give 76-R/R (53 mg, 73%; ee 96): 19F NMR δ -69.55 (s, R/R, 0.98 F) and -69.15 (s, S/R, 0.02 F).

Subjection of racemic 66-R/S to the analogous sequence with (R)-MTPA-Cl gave 1:1 (19F NMR) mixture of 76-R/R and its diastereomer 76-S/R.

Ethyl 1,5,6,7,8,9-Hexadeoxy-9(R/S)-benzamido-1-(6-N-benzoyladenin-9-yl)-2,3-O-isopropylidene-β-D-ribo-dec-5(E)-enofuranuronate (67b). Procedure A. Compounds 61a (100 mg, 0.25 mmol), 65 (65 mg, 0.25 mmol) and 1,3-[bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(isopropoxyphenylmethylene)ruthenium (7.8 mg, 0.0125 mmol) were dissolved in dried CH$_2$Cl$_2$ (6 mL) at ambient temperature under N$_2$ and the resulting mixture was heated overnight at 65 °C (oil bath) in a pressure tube (Ace glass). Volatiles were evaporated and the residue was partitioned (NaHCO$_3$/H$_2$O/CHCl$_3$). The organic layer was washed (brine), dried (Na$_2$SO$_4$), evaporated, and chromatographed (50 → 90% EtOAc/hexane) to give 67b (82 mg, 51%, 9'R/S ~ 1:1) and dimer 73 (14 mg, 11%) as a less polar byproduct. 67b: 1H NMR δ 1.12 ("dt", $J = 2.5, 7.1$ Hz, 3, CH$_3$), 1.25 (s, 3, CH$_3$), 1.48 (s, 3, CH$_3$), 1.52-2.02 (m, 4H, 7',7", 8',8"), 4.06 ("dq", $J = 3.0, 7.1$ Hz, 2, CH$_2$), 4.54 ("dt", $J = 2.9, 7.4$ Hz, 1, H4'), 4.62 (t, $J = 7.4$ Hz, 0.5, H9'), 4.63 (t, $J = 7.4$ Hz, 0.5, H9'), 4.81-4.86 (m, 1, H3'), 5.39-5.43 (m, 1, H2'), 5.43 (dd, $J = 7.1, 16.2$ Hz, 1, H5'), 5.56 ("dt", $J = 7.3, 16.4$ Hz, 1, H6'), 6.00 (s, 1, H1'), 6.59 ("t", $J = 7.2$ Hz, 1, NH), 7.24-7.30 (m, 2, Ph), 7.32-7.40 (m, 3, Ph), 7.43-7.49 (m, 1, Ph), 7.62-7.67 (m, 2, Ph), 7.87-7.90 (m, 2, Ph), 7.96 (s, 0.5, H2), 7.97 (s, 0.5, H2), 8.66 (s, 0.5, H8), 8.67 (s, 0.5, H8), 9.00 (br s, 1, NH); 13C NMR δ 14.2 (CH$_3$), 25.4
(CH₃), 27.1 (CH₃), 28.0 (C7) 31.66 & 31.75 (C8'), 52.01 & 52.13 (C9'), 61.7 (CH₂), 84.2 (C2'), 84.49 & 84.54 (C3'), 88.04 & 88.09 (C4'), 90.78 & 90.85 (C1'), 114.5 (CMe₂), 123.64 & 123.70 (C5'), 127.0 (Ph), 127.7 (C5), 127.9 (Ph), 128.6 (Ph), 128.8 (Ph), 131.8 (Ph), 132.8 (Ph), 133.5 (C6'), 133.84 (C4), 133.94 (C6), 142.27 & 142.32 (C2), 151.4(C8), 167.0 (Bz), 172.34 (Bz), 172.38 (C10'); MS m/z 641 (100%, MH⁺). HRMS calcd. for C₃₄H₃₆N₆O₇ (M + Li⁺) 647.2806, found 647.2809.

Dimer 73 [Diethyl 2,9-bis(benzamido)dec-5-enedioate] separated as a mixture of two isomers (~9:1). The major isomer had: ¹H NMR δ 1.22 ("dt", J = 1.2, 7.1 Hz, 6, 2 x CH₃), 1.70-1.85 (m, 2, H3/8), 1.90-2.15 (m, 6, H3',4,4'/7,7',8'), 4.16 (q, J = 7.0 Hz, 4, 2 x CH₂), 4.67-4.76 (m, 2, H2/9), 5.40 ("t", J = 3.4 Hz, 2, H5/6), 6.62 (d, J = 7.6 Hz, 2, 2 x NH), 7.35-7.44 (m, 6, Ph), 7.71-7.73 (m, 4, Ph); ¹³CNMR δ 14.6 (CH₃), 28.8 (C4/7), 32.7 (C3/8), 52.6 (C2/9), 61.9 (CH₂), 127.4 (Ph), 128.9 (C5/6), 130.3 (Ph), 132.1 (Ph), 134.4 (Ph), 167.3 (CO), 172.9 (C1/10); MS m/z 495 (100%, MH⁺). HRMS calcd for C₂₈H₃₄N₂O₆ (M + Li⁺) 501.2577, found 501.2573.

Ethyl 1,5,6,7,8,9-Hexadeoxy-9(R/S)-benzamido-1-(6-N,N-dibenzoyladenin-9-yl)-2,3-O-isopropylidene-β-D-ribo-dec-5(E)-enofuranuronate (67c). Treatment of 61b (92 mg, 0.18 mmol) with 65 (47 mg, 0.18 mmol) by procedure A [column chromatography (30 → 50 % EtOAc/hexanes)] gave 67c (80 mg, 60%, 9'R/S ~ 1:1) and 73 (16 mg, 18%). 67c: ¹H NMR δ 1.20 (t, J = 7.2 Hz, 3, CH₃), 1.32 (s, 3, CH₃), 1.53 (s, 3, CH₃), 1.54-1.69 (m, 2, H8',8''), 1.81-2.10 (m, 2, H7',7''), 4.14 (q, J = 7.1 Hz, 2, CH₂), 4.63 ("dt", J = 3.1, 7.0 Hz, 1, H4'), 4.69 (t, J = 7.6 Hz, 0.5, H9'), 4.70 (t, J = 7.6 Hz, 0.5, H9''), 4.88 ("dt", J = 3.2, 6.3 Hz, 1, H3'), 5.42-5.49 (m, 1, H2'), 5.50 (dd, J = 7.2, 15.9 Hz, 1, H5'), 5.59-5.68 (m, 1, H6'), 6.06 (s, 1, H1''), 6.70 ("t", J = 6.2 Hz, 1, NH), 7.25-7.45 (m, 9,
Ph), 7.68-7.80 (m, 6, Ph), 8.08 (s, 0.5, H2), 8.09 (s, 0.5, H2), 8.58 (s, 0.5, H8), 8.61 (s, 0.5, H8); 13CNMR δ 14.2 (CH$_3$), 25.3 (CH$_3$), 27.0 (CH$_3$), 28.2 (C7'), 31.7 & 31.9 (C8'), 52.09 & 52.20 (C9'), 61.6 (CH$_2$), 84.1 (C2'), 84.4 (C3'), 87.8 & 87.9 (C4'), 90.8 (C1'), 114.6 (CMe$_2$), 127.1 (C5'), 128.6 (Ph), 128.7 (Ph), 128.8 (C5), 129.5 (Ph), 131.7 (Ph), 133.0 (Ph), 134.0 (C6'), 152.0 (C4), 152.3 (C2), 152.5 (C6), 167.10, 167.13, 172.28 (Bz), 172.32 (C10'); MS m/z 745 (100%, MH$^+$). HRMS calcd. for C$_{41}$H$_{40}$N$_6$O$_8$ (M + H$^+$) 745.2986, found 745.2990.

Ethyl 1,5,6,7,8,9-Hexadeoxy-9(R/S)-tert-butoxycarbonylamino-1-(6-N-benzoyladenin-9-yl)-2,3-O-isopropylidene-β-D-ribo-dec-5(E)-enofuranuronate (68b).

Treatment of 61a (36 mg, 0.09 mmol) with 66 (23 mg, 0.09 mmol) by procedure A [column chromatography (20 → 50% EtOAc/hexanes)] gave 68b (35 mg, 61%, 9'R/S ~ 1:1): 1H NMR δ 1.18 (t, $J = 6.9$ Hz, 3, CH$_3$), 1.34 (s, 3, CH$_3$), 1.35 (s, 9, Boc), 1.46-1.53 (m, 1, H8\"), 1.56 (s, 3, CH$_3$), 1.68-1.78 (m, 1, H8'), 1.92-2.03 (m, 2, H7',7\"), 4.10 ("dq", $J = 2, 2, 7.1$ Hz, CH$_2$), 4.15-4.20 (m, 1, H9'), 4.60-4.65 (m, 1, H4'), 4.92 (dd, $J = 3.3, 6.2$ Hz, 1, H3\'), 4.95-5.00 (m, 1, NH), 5.48 (br d, $J = 7.7$ Hz, 1, H2\'), 5.50 (dd, $J = 7.2, 16.1$ Hz, 1, H5\'), 5.62 (dt, $J = 6.7, 15.9$ Hz, 1, H6\'), 6.08 (br s, 1, H1'), 7.45 (t, $J = 7.2$ Hz, 2, Ph), 7.54 (t, $J = 7.3$ Hz, 1, Ph), 7.95 (d, $J = 7.4$ Hz, 2, Ph), 8.04 (br s, 1, H2), 8.76 (s, 0.5, H8), 8.77 (s, 0.5, H8), 9.03 (br s, 1, NH); MS m/z 637 (100%, MH$^+$). HRMS calcd. for C$_{32}$H$_{40}$N$_6$O$_8$ (M + Li$^+$) 643.3068, found 643.3076. Anal. Calcd. for C$_{32}$H$_{40}$N$_6$O$_8$ (636.29): C, 60.37; H, 6.33; N, 13.20. Found: C, 60.02; H, 6.54; N, 12.88.

Ethyl 1,5,6,7,8,9-Hexadeoxy-9(R/S)-tert-butoxycarbonylamino-1-(6-N,N-dibenzoyladenin-9-yl)-2,3-O-isopropylidene-β-D-ribo-dec-5(E)-enofuranuronate (68c-R/S).

Treatment of 61b (200 mg, 0.4 mmol) with 66 (103 mg, 0.4 mmol) by
procedure A [column chromatography (30 → 50% EtOAc/hexanes)] gave 68c-R/S (224 mg, 76%, 9'R/S ~ 1:1): UV max 270 nm (ε 15 000, sh), 250 nm (ε 19 000), min 227 nm (ε 12 800); ¹H NMR δ 1.23 (t, J = 7.1 Hz, 3, CH₃), 1.39 (s, 3, CH₃), 1.42 (s, 9, Boc), 1.61 (s, 3, CH₃), 1.58-1.65 (m, 1, H8'), 1.78-1.84 (m, 1, H8''), 2.00-2.09 (m, 2, H7',7''), 4.15 (q, J = 7.1 Hz, 2, CH₂), 4.20-4.28 (m, 1, H9'), 4.62-4.69 (m, 1, H4'), 4.95 (dd, J = 3.6, 6.2 Hz, 1, H3'), 5.07 ('t', J = 8.5 Hz, 1, NH), 5.43-5.50 (m, 1, H2''), 5.58 (dd, J = 7.3, 15.2 Hz, 1, H5'), 5.73 (dt, J = 6.5, 15.2 Hz, 1, H6'), 6.120 (d, J = 2.1 Hz, 0.5, H1'), 6.122 (d, J = 2.1 Hz, 0.5, H1''), 7.35 (t, J = 7.6 Hz, 4, Ph), 7.49 (t, J = 7.4 Hz, 2, Ph), 7.85 (d, J = 7.1 Hz, 4, Ph), 8.147 (s, 0.5, H2), 8.149 (s, 0.5, H2), 8.68 (s, 1, H8); ¹³C NMR δ 14.2 (CH₃), 25.3 (CH₃), 27.1 (CH₃), 28.0 (C7'), 28.3 (Boc), 31.76 & 31.80 (C8'), 52.9 (C9'), 61.3 (CH₂), 80.2 (Boc), 84.16 & 84.19 (C2'), 84.33 & 84.37 (C3'), 87.83 & 87.91 (C4'), 90.58 & 90.67 (C1'), 114.7 (CMe₂), 127.47 & 127.51 (C5'), 128.0 (C5), 128.7 (Ph), 129.4 (Ph), 133.0 (Ph), 134.0 (Ph), 134.30 & 134.31 (C6'), 144.0 (C8), 152.0 (C4), 152.3 (C2), 152.4 (C6), 155.3 (Boc), 172.2 (Bz), 172.50 & 172.57 (C10'); MS m/z 741 (100%, MH⁺). HRMS (FAB⁺) calcd for C₃₉H₄₄N₆O₉ (M + H⁺) 741.3248, found 741.3243.

Ethyl 1,5,6,7,8,9-Hexadeoxy-9(R)-tert-butoxycarbonylamino-1-(6-N,N-dibenzoyladenin-9-yl)-2,3-O-isopropylidene-β-D-ribo-dec-5(E)-enofuranuronate (68c-R). Metathesis of 61b (25 mg, 0.05 mmol) with 66-R (13 mg, 0.05 mmol) by procedure A [column chromatography (30 → 50% EtOAc/hexanes)] gave 68c-R (28.5 mg, 77%): ¹H NMR δ 1.23 (t, J = 7.1 Hz, 3, CH₃), 1.39 (s, 3, CH₃), 1.42 (s, 9, Boc), 1.61 (s, 3, CH₃), 1.58-1.65 (m, 1, H8'), 1.78-1.84 (m, 1, H8''), 2.00-2.09 (m, 2, H7',7''), 4.15 (q, J = 7.1 Hz, 2, CH₂), 4.20-4.28 (m, 1, H9'), 4.66 (dd, J = 3.4, 7.3 Hz, 1, H4'), 4.95 (dd, J = 3.6, 6.2 Hz, 1, H3'), 5.05 (br d, J = 8.4 Hz, 1, NH), 5.47 (dd, J = 2.2, 6.3 Hz,
1, H2'), 5.58 (dd, J = 7.3, 15.1 Hz, 1, H5'), 5.73 (dt, J = 6.5, 15.3 Hz, 1, H6'), 6.12 (d, J = 2.1 Hz, 1, H1'), 7.35 (t, J = 7.6 Hz, 4, Ph), 7.49 (t, J = 7.4 Hz, 2, Ph), 7.85 (d, J = 7.1 Hz, 4, Ph), 8.14 (s, 1, H2), 8.68 (s, 1, H8); 13C NMR δ 14.2 (CH3), 25.3 (CH3), 27.1 (CH3), 28.0 (C7'), 28.3 (Boc), 31.80 (C8'), 52.9 (C9'), 61.3 (CH2), 80.2 (Boc), 84.19 (C2'), 84.37 (C3'), 87.91 (C4'), 90.67 (C1'), 114.7 (CMe2), 127.51 (C5'), 128.0 (C5), 128.7 (Ph), 129.4 (Ph), 133.0 (Ph), 134.0 (Ph), 134.31 (C6') 144.0 (C8), 152.0 (C4), 152.3 (C2), 152.4 (C6), 155.3 (Boc), 172.2 (Bz), 172.57 (C10'); MS m/z 741 (100%, MH+). HRMS (FAB+) calcd for C39H44N6O9 (M + H+) 741.3248, found 741.3246.

Methyl 2-N-(tert-Butoxycarbonylo)-2-aminohex-5-enoate (75-S).

Diazomethane129 was added to a solution of 74-S (120 mg, 0.52 mmol) in EtOH (2 mL) at ambient temperature. After 30 min (reaction was monitored by LC/MS), the volatiles were evaporated to give 75-S112 (118 mg, 93%) as an oily residue: 1H NMR δ 1.37 (s, 9, t-Bu), 1.59-1.69 (m, 1, H3), 1.78-1.91 (m, 1, H3'), 2.00-2.10 (m, 2, H4,4'), 3.67 (s, 3, OCH3), 4.22 ("q", J = 7.9 Hz, 1, H2), 4.93 (br d, J = 10.2, 1, H6'), 4.97 (dq, J = 17.1, 1.5 Hz, 1, H6), 4.99 (br s, 1, NH), 5.83 (ddt, J = 17.0, 10.2, 6.7 Hz, 1, H5), 13C NMR δ 27.3 (Boc), 28.4 (C4), 30.9 (C3), 51.2 (OCH3), 51.9 (C2), 78.8 (Boc), 114.6 (C6), 135.9 (C5), 154.3 (CO), 172.3 (C1); MS m/z 244 (100% MH+).

Methyl 1,5,6,7,8,9-Hexadeoxy-9(S)-tert-butoxycarbonylamino-1-(6-N,N-dibenzoyladenin-9-yl)-2,3-O-isopropylidene-β-D-ribo-dec-5(E)-eno-furanuronate (77-S).

Metathesis of 61b (200 mg, 0.39 mmol) with 75-S (95 mg, 0.39 mmol) by procedure A [column chromatography (30 → 50% EtOAc/hexanes)] gave 77-S (218 mg, 77%): 1H NMR δ 1.40 (s, 3, CH3), 1.44 (s, 9, t-Bu), 1.61 (s, 3, CH3), 1.56-1.63 (m, 1, H8"), 1.75-1.86 (m, 1, H8"), 2.00-2.11 (m, 2, H7',7") 3.71 (s, 3, OMe), 4.27 ("q", J = 6.7 Hz, 1, H9),
4.67 (dd, \(J = 6.8, 3.1 \) Hz, 1, H4'), 4.95 (dd, \(J = 6.2, 3.5 \) Hz, 1, H3'), 5.11 (br d, \(J = 8.4 \) Hz, 1, NH), 5.50 (dd, \(J = 6.4, 2.0 \) Hz, 1, H2'), 5.54 (dd, \(J = 15.3, 7.2 \) Hz, 1, H5'), 5.68 (dt, \(J = 15.0, 6.4 \) Hz, 1, H6'), 6.15 (d, \(J = 1.9 \) Hz, 1, H1'), 7.35 (t, \(J = 7.9 \) Hz, 4, Ph), 7.48 (t, \(J = 7.4 \) Hz, 2, Ph), 7.85 (d, \(J = 7.1 \) Hz, 4, Ph), 8.17 (s, 1, H2), 8.69 (s, 1, H8); \(^{13}\)C NMR \(\delta \) 25.3 (CH3), 27.1 (CH3), 27.9 (C7'), 28.3 (Boc), 31.7 (C8'), 52.3 (OMe), 52.9 (C9'), 79.9 (Boc), 84.1 (C2'), 84.3 (C3'), 87.8 (C4'), 90.5 (C1'), 114.7 (CMe2), 127.5 (C5'), 128.0 (C5), 128.7 (Ph), 129.4 (Ph), 133.0 (Ph), 133.9 (Ph), 134.1 (C6'), 144.1 (C8), 152.0 (C4), 152.3 (C2), 152.4 (C6), 155.3 (Boc), 172.2 (CO), 172.9 (C10'); MS \(m/z \) 727 (100%, MH\(^+\)). HRMS calcd for C\(_{38}\)H\(_{42}\)N\(_6\)O\(_9\) (M + H\(^+\)) 727.3092, found 727.3099.

Methyl 1,5,6,7,8,9-Hexadeoxy-9(S)-tert-butoxycarbonylamino-1-(adenin-9-yl)-2,3-O-isopropylidene-\(\beta \)-D-ribo-dec-5(E)-enofuranuronate (69-S). Procedure B:

Saturated (~0 °C) NH\(_3\)/MeOH (3 mL) was added to a solution of 77-S (210 mg, 0.29 mmol) in MeOH (3 mL) at 5 °C, and the resulting mixture was stirred for 48 h at 0 °C. Volatiles were evaporated and the residue was column chromatographed (50 → 95% EtOAc/hexanes) to give 69-S (136 mg, 91%): \(^1\)H NMR \(\delta \) 1.35 (s, 3, CH3), 1.37 (s, 9, Boc), 1.55 (s, 3, CH3), 1.52-1.60 (m, 1, H8''), 1.69-1.80 (m, 1, H8''), 1.90-2.00 (m, 2, H7',7''), 3.65 (s, 3, OMe), 4.20 ("q", \(J = 7.0 \) Hz, 1, H9'), 4.56 (dd, \(J = 3.4, 7.1 \) Hz, 1, H4'), 4.89 (dd, \(J = 3.4, 6.1 \) Hz, 1, H3'), 5.05 (br d, \(J = 8.1 \) Hz, 1, NH), 5.44 (d, \(J = 6.0 \) Hz, 1, H2'), 5.33 (dd, \(J = 7.2, 15.3 \) Hz, 1, H5'), 5.61 (dt, \(J = 15.3, 6.2 \) Hz, 1, H6'), 6.01 (d, \(J = 1.9 \) Hz, 1, H1'), 6.35 (br s, 2, NH2), 7.83 (s, 1, H2), 8.29 (s, 1, H8); \(^{13}\)C NMR \(\delta \) 25.3 (CH3), 27.1 (CH3), 27.9 (C7'), 28.3 (Boc), 31.7 (C8'), 52.3 (OMe), 52.9 (C9'), 79.9 (Boc), 84.2 (C2'), 84.5 (C3'), 87.8 (C4'), 90.4 (C1'), 114.5 (CMe2), 120.3 (C5), 127.8 (C5'), 133.7 (C6'), 140.0 (C8), 149.9 (C4), 152.5 (C2), 155.2 (Boc), 155.3 (C6), 173.1 (C10');
MS m/z 519 (100%, MH⁺). HRMS calcd for C_{24}H_{34}N_{6}O_{7} (M + H⁺) 519.2567, found 519.2564.

**Methyl 9(S)-Amino-1,5,6,7,8,9-hexadeoxy-1-(adenin-9-yl)-β-D-ribo-dec-5(E)-enofuranuronate (71a-S). Procedure C: A solution of 69-S (130 mg, 0.25 mmol) in CF₃CO₂H/H₂O (9:1, 3 mL) was stirred at 0 °C for 30 min. Volatiles were evaporated and the residue was coevaporated (3 × toluene), and purified on RP-HPLC column [CH₃CN/H₂O (10:90) for 15 min followed by gradient 10 → 25% CH₃CN/H₂O for 35 min at 2 mL/min] to give 71a-S (85 mg, 90%; t_R 24 min): UV max 260 nm (ε 14 700), min 227 nm (ε 3 250); ¹H NMR (MeOH-d₄) δ 1.65-1.78 (m, 1, H8"), 1.79-1.89 (m, 1, H8'), 2.07-2.18 (m, 2, H7',7") 3.61 (t, J = 6.3 Hz, 1, H9'), 3.66 (s, 3, OMe), 4.13 (t, J = 5.1 Hz, 1, H3'), 4.32 (t, J = 5.3 Hz, 1, H4'), 4.64 (t, J = 4.6 Hz, 1, H2'), 5.70-5.73 (m, 2, H5',6'), 5.89 (d, J = 4.4 Hz, 1, H1'), 8.11 (s, 1, H2), 8.13 (s, 1, H8); ¹³C NMR (MeOH-d₄) δ 28.9 (C7'), 33.3 (C8'), 52.9 (OMe), 54.0 (C9'), 75.03 (C2'), 75.66 (C3'), 86.29 (C4'), 90.2 (C1'), 120.6 (C5), 130.4 (C5'), 134.1 (C6'), 141.3 (C8), 150.6 (C4), 153.9 (C2), 157.3 (C6), 174.7 (C10'); MS m/z 379 (100%, MH⁺). HRMS calcd. for C₁₆H₂₂N₆O₅ (M + H⁺) 379.1730, found 379.1724.

**Methyl 9(R/S)-Amino-1,5,6,7,8,9-hexadeoxy-1-(adenin-9-yl)-β-D-ribo-dec-5(E)-enofuranuronate (71a) and Ethyl 9(R/S)-Amino-1,5,6,7,8,9-hexadeoxy-1-(adenin-9-yl)-β-D-ribo-dec-5(E)-enofuranuronate (71b). Step a (Debenzoylation): Treatment of 68c-R/S (100 mg, 0.13 mmol) with NH₃/MeOH (3 mL) by procedure B gave mixture of 69 and 70 (~3:2; 63 mg, ~92%, 9'R/S ~ 1:1): MS m/z 519 (100%, MH⁺; 69), 533 (80%, MH⁺; 70); HRMS calcd for 69 C_{24}H_{34}N_{6}O_{7} (M + H⁺), 519.2567, found 519.2562; calcd for 70 C_{25}H_{36}N_{6}O_{7} (M + H⁺) 533.2724, found 533.2718. **Step b (Acid
deprotection): Treatment of the above material 69/70 (63 mg) with CF$_3$CO$_2$H/H$_2$O (9:1, 4 mL) by procedure C gave 71a (23 mg, 47% from 68c; t_R 23 min) and 71b (15 mg, 29%; t_R 25 min). 71a: 1H NMR (MeOH-d_4) δ 1.65-1.95 (m, 2, H8',8''), 2.07-2.22 (m, 2, H7',7''), 3.59-3.65 (m, 1, H9'), 3.66 (s, 3, OMe), 4.13 (t, J = 5.1 Hz, 1, H3'), 4.30-4.39 (m, 1, H4'), 4.64 (t, J = 4.6 Hz, 1, H2'), 5.70-5.74 (m, 2, H5',6'), 5.89 (d, J = 4.4 Hz, 1, H1'), 8.11 (br s, 1, H2), 8.13 (s, 1, H8); 13C NMR (MeOH-d_4) δ 28.9 (C7'), 33.3 (C8'), 52.9 (OMe), 54.0 (C9'), 75.03 & 75.10 (C2'), 75.66 & 75.68 (C3'), 86.29 & 86.35 (C4'), 90.2 (Cl'), 120.6 (C5), 130.4 (C5'), 134.1 (C6'), 141.3 (C8), 150.6 (C4), 153.9 (C2), 157.3 (C6), 174.7 (C10'); HRMS calcd. for C$_{16}$H$_{22}$N$_6$O$_5$ (M + H$^+$) 379.1730, found 379.1724. Anal. Calcd. for C$_{16}$H$_{22}$N$_6$O$_5$ (378.38): C, 50.79; H, 5.86; N, 22.21. Found: C, 51.11; H, 6.20; N, 21.85. 71b: UV max 260 nm (ε 13 900), min 228 nm (ε 3600); 1H NMR (MeOH-d_4) δ 1.22 (t, J = 7.2 Hz, 3, CH$_3$), 1.81-1.96 (m, 2, H8',H8''), 2.10-2.21 (m, 2, H7',7''), 3.88 (t, J = 6.4 Hz, 1, H9'), 4.15-4.21 (m, 3, H3', CH$_2$), 4.33 ("t", J = 5.1 Hz, 1, H4'), 4.64-4.67 (m, 1, H2'), 5.68-5.76 (m, 2, H5',6''), 5.90 (d, J = 4.2 Hz, 1, H1'), 8.11 (s, 1, H2), 8.13 (br s, 1, H8); 13C NMR (MeOH-d_4) δ 14.3 (CH$_3$), 28.5 (C7'), 31.2 (C8'), 53.4 (C9'), 63.5 (CH$_2$), 74.89 & 74.94 (C2'), 75.6 (C3'), 86.09 & 86.14 (C4'), 90.33 & 90.37 (C1'), 120.7 (C5), 130.98 & 131.00 (C5'), 133.09 & 133.25 (C6'), 141.4 (C8), 150.6 (C4), 153.9 (C2), 157.4 (C6), 170.8 (C10'). HRMS calc. for C$_{17}$H$_{24}$N$_6$O$_5$ (M + H$^+$) 393.1886, found 393.1881. Anal. Calcd. for C$_{17}$H$_{24}$N$_6$O$_5$ (392.18): C, 52.03; H, 6.16; N, 21.42. Found: C, 52.32; H, 6.54; N, 20.99.

9(R/S)-Amino-1,5,6,7,8,9-hexadeoxy-1-(adenin-9-yl)-β-D-ribo-dec-5(E)-enofuranuronic acid (72). Procedure D. NaOH/H$_2$O (1M, 0.5 mL) was added to a solution of 71b (25 mg, 0.06 mmol) in MeOH (4 mL) and stirring was continued at
ambient temperature overnight. The resulting mixture was neutralized with AcOH to pH ~7. Volatiles were evaporated and the residue was purified by RP-HPLC [CH$_3$CN/H$_2$O (5:95), t_R 15 min] to give 72 (17 mg, 80%). 1H NMR (MeOH-d$_4$) δ 1.87-1.95 (m, 1, H8'), 1.96-2.05 (m, 1, H8''), 2.22-2.30 (m, 2, H7',7''), 3.53 (dd, $J = 2.4$, 6.1 Hz, 0.5, H9'), 3.55 (dd, $J = 2.4$, 6.1 Hz, 0.5, H9''), 4.24 (t, $J = 5.2$, 0.5, H3''), 4.26 (t, $J = 5.2$, 0.5, H3''), 4.42 (t, $J = 5.9$ Hz, 1, H4'), 4.74 (t, $J = 4.6$ Hz, 1, H2''), 5.85 (ddd, $J = 1.8$, 6.0, 15.7 Hz, 1, H6'), 5.81 (dd, $J = 6.3$, 15.7 Hz, 1, H5'), 6.02 (d, $J = 4.3$ Hz, 1, H1'), 8.23 (s, 1, H2), 8.26 (s, 0.5, H8), 8.27 (s, 0.5, H8); MS m/z 365 (100%, MH$^+$). HRMS calcd. for C$_{15}$H$_{20}$N$_6$O$_5$ (M + H$^+$) 365.1573 found 365.1568

Note: Treatment of 71a (15 mg, 0.04 mmol) with NaOH (1M, 0.4 mL) by procedure D also gave 72 (11.8 mg, 82%).

9(R/S)-Amino-5-bromo-1,5,6,7,8,9-hexadeoxy-1-(adenin-9-yl)-β-D-ribo-dec-5(Z)-enofuranuronic acid (82). **Procedure E:** *Step a* (Bromination): Pyridinium tribromide (40 mg, 0.12 mmol) was added to a solution of 68c-R/S (62 mg, 0.083 mmol) in dioxane and the resulting mixture was stirred at ambient temperature for 8 h. Volatiles were evaporated and the residue was partitioned (NaHCO$_3$/H$_2$O/EtOAc). The organic layer was washed (brine), dried (Na$_2$SO$_4$) and evaporated to give crude 78 of sufficient purity for direct use in next step: MS m/z 903 (55%, MH$^+[{\text{^{81}}Br}_2]$), 901 (100%, MH$^+[{\text{^{81}/^{79}}Br}_2]$), 899 (50%, MH$^+[{\text{^{79}}Br}_2]$). *Step b* (Dehydrobromination): DBU (0.3 mL) was added to a solution of the crude 78 in dried THF (3 mL) and the resulting mixture was stirred at room temperature overnight. Volatiles were evaporated and the residue was partitioned (NaHCO$_3$/H$_2$O/EtOAc). The organic layer was washed (brine), dried (Na$_2$SO$_4$), evaporated and chromatographed (30 → 90% EtOAc/Hexane) to give 79b {48
mg, 70% from 68c; MS m/z 821 (100%, MH⁺[81Br], 819 (95%, MH⁺[79Br]) and the corresponding N⁶ monobenzoylated product 79a {12 mg, 20% from 68c; MS m/z 717 (100%, MH⁺[81Br]), 715 (95%, MH⁺[79Br]). Step c (Debenzoylation): Treatment of 79b and the N⁶ monobenzoylated material 79a from step b with NH₃/MeOH at 0 °C by procedure B (24 h) gave 80 as a ~1:1 mixture of methyl and ethyl esters of sufficient purity for direct use in next step: MS m/z 599 (100%, MH⁺[81Br]), 597 (99%, MH⁺[79Br]) for 80 (R = Me) and 613 (97%, MH⁺[81Br]), 611 (95%, MH⁺[79Br]) for 80 (R = Et). Step d (Acid deprotection): Treatment of 80 with CF₃CO₂H/H₂O (9:1, 3 mL) by procedure C gave 81 (33 mg, tᵣ 22 min) as ~1:1 mixture of methyl and ethyl esters: MS m/z 459 (99%, MH⁺[81Br]), 457 (100%, MH⁺[79Br]) for 81 (R = Me) and 473 (86%, MH⁺[81Br]), 471 (83%, MH⁺[79Br]) for 81 (R = Et). Step e (Saponification): Treatment of 81 (33 mg) with NaOH (0.5 mL, 1M) by procedure D gave 82 (20 mg, 54% overall yield from 68c; tᵣ 19 min): UV max 259 nm (ε 14 100), min 227 nm (ε 4 100); ¹H NMR (MeOH-d₄) δ 1.86 -2.09 (m, 2, H8',8''), 2.39-2.49 (m, 2, H7',7''), 3.58-3.61 (m, 1, H9'), 4.52 ('q', J = 5.7 Hz, 1, H3'), 4.67-4.70 (m, 1, H2'), 4.98 (d, J = 6.7 Hz, 0.5, H4'), 5.01 (d, J = 6.4 Hz, 0.5, H4'), 6.11 (d, J = 2.9 Hz, 1, H1'), 6.40 (t, J = 7.6 Hz, 1, H6'), 8.23 (s, 1, H2), 8.39 (s, 0.5, H8), 8.40 (s, 0.5, H8); ¹³C NMR (MeOH-d₄) δ 26.7 & 26.9 (C7'), 32.06 (C8'), 55.35 & 55.42 (C9'), 74.15 & 74.33 (C3'), 75.43 & 75.48 (C2'), 81.35 & 81.52 (C4'), 90.00 & 90.29 (C1'), 120.1 (C5), 125.13 & 125.15 (C5'), 138.7 (C6'), 140.72 & 140.79 (C8), 150.57 & 150.63 (C4), 154.0 (C2), 157.4 (C6), 174.0 (C10'); MS m/z 445 (100%, MH⁺[81Br]), 443 (98%, MH⁺[79Br]). HRMS calcd for C₁₅H₁₉⁷⁹BrN₆O₅ (M + H⁺) 443.0678, found 443.0673.
Diethyl fluoro(phenylsulfonyl)methylphosphonate. Step a: Oxidation. A solution of oxone (20.11 g, 32.7 mmol, 50% reagent) in deionized-H₂O (150 mL) was added slowly to a diethyl (phenylthiomethyl)phosphonate (2.00 g, 7.9 mmol) dissolved in MeOH (40 mL) at 0 °C. A white precipitate was formed immediately and the heterogeneous reaction was left stirring at ambient temperature for 4 h. The volatiles were evaporated and the residue was partitioned between H₂O/CHCl₃ to give diethyl (phenylsulfonyl)methylphosphonate (2.10 g, 92%). Step b: Fluorination. LHMDS (1M, 9.16 mL, 9.16 mmol) was added dropwise to a stirred solution of diethyl (phenylsulfonyl)methylphosphonate (2.10 g, 7.32 mmol) in dried THF (25 mL) under N₂ at −78 °C. After 30 min Selectfluor (3.90 g, 11.0 mmol) was added and the heterogeneous reaction mixture was stirred for 5 min. DMF (15 mL) was added and the resulting yellow solution was allowed to warm to 0 °C and stirring was continued for 3.0 h. CHCl₃ (10 mL) and saturated NH₄Cl/H₂O (10 mL) were added and the volatiles were evaporated. The residue was partitioned (NaHCO₃/H₂O//CHCl₃) and the organic layer was washed (brine), dried (Na₂SO₄), evaporated and chromatographed (90:10 EtOAc/hexanes) to give diethyl fluoro(phenylsulfonyl)methyl phosphonate¹³⁰ (1.9 g, 85%).

(E/Z)-1-Fluoro-2-phenyl-1-(phenylsulfonyl)ethene (84a). Procedure F. LHMDS (1.0 M/THF, 2.0 mL, 2.0 mmol) was added dropwise to a stirred solution of diethyl fluoro(phenylsulfonyl)methylphosphonate (0.5 g, 1.61 mmol) in dried THF (8 mL) under N₂ at −78 °C. After 30 min, 83a (0.18 mL, 0.19 g, 1.77 mmol) was added and the resulting yellow solution was allowed to warm to -30 °C over 1.5 h. Saturated NH₄Cl/H₂O (~ 1 mL) was added, volatiles were evaporated and the residue was
partitioned (NaHCO$_3$/H$_2$O//CHCl$_3$). The organic layer was washed (brine), dried (Na$_2$SO$_4$), evaporated and chromatographed (CHCl$_3$) to give 84a (E/Z, 95:5; 0.36 g, 85%). Crystallization of the crude product (without chromatography) from MeOH also afforded 84a (E/Z, 95:5).

(E/Z)-1-Fluoro-4-(phenylsulfonyl)-1-butene (84b). Subjection of 83b (0.23 mL, 0.24 g, 1.77 mmol) to procedure F gave 84b (E/Z, 71:29; 0.42 g, 90%).

(E/Z)-1-Fluoro-3-benzyloxy-1-(phenylsulfonyl)-1-propene (84c). Subjection of 83c (0.1 mL, 0.10 g, 0.71 mmol) to procedure F, gave 84c (E/Z, 63:37; 0.18 g, 92%): H NMR δ 4.24 (m, 2, H3, E), 4.54 (s, 2, Bz) (E), 4.60 (s, 2, Bz) (Z), 4.68 (m, 2, H3), (Z), 6.03 (dt, J = 21.9, 4.9 Hz, 1, H2) (Z), 6.40 (dt, J = 32.7, 5.0 Hz, 1, H2) (E), 7.30- 7.45 (m, 5, Ph), 7.58 (t, J = 5.7 Hz, 2, Ph), 7.70-7.76 (m, 1, Ph), 7.95 (t, J = 7.8 Hz, 2, Ph); C NMR δ: 62.78 (d, J_{C-F} = 3.1 Hz, CH$_2$, C3, Z), 63.39 (d, J_{C-F} = 6.1 Hz, CH$_2$, C3, E), 128.31 (CH, Ph, E), 128.40 (CH, Ph), 128.47 (CH, Ph), 128.78 (CH, Ph), 128.87 (CH, Ph), 128.97 (CH, Ph), 129.17 (CH, Ph), 129.986 (CH, Ph), 135.11 (CH, Ph), 135.25 (CH, Ph), 137.45 (CH, Ph), 137.66 (CH, Ph), 137.97 (CH, Ph), 138.08 (CH, Ph), 151.57 (d, J_{C-F} = 292.7 Hz, CF, C1, Z), 153.93 (d, J_{C-F} = 299.7, CF, C1, E); F NMR δ -114.91 (d, J = 22.6 Hz, 0.37F, Z), -123.42 (d, J = 33.9 Hz, 0.63F, E); GC-MS m/z 306 [2%, M$^+$; t_R = 25.27 min (Z) and 25.86 min (E)]. HRMS(AP-ESI) Calcd for C$_{16}$H$_{15}$FO$_3$S (M+H$^+$): 307.0804; Found: 307.0801

(E/Z)-1-Fluoro-2-phenyl-1-(phenylsulfonyl)-1-propene (84d). Subjection of 83d (0.21 mL, 0.21 g, 1.77 mmol) to procedure F, gave 84d (E/Z, 42:58; 0.37 g, 90%). Column chromatography (hexane/EtOAc, 85:15) gave fractions enriched in each isomers.

88
(E/Z)-1-Fluoro-2-phenyl-1-(tributyltin)ethene (85a). Procedure G. Argon was bubbled through a solution of 84a (E/Z, 95:5; 490 mg, 1.87 mmol) in anhydrous benzene (10 mL) for 15 min. Bu₃SnH (0.5 mL, 544 mg, 1.87 mmol) and AIBN (76.7 mg, 0.46 mmol) were added and degassing of oxygen was continued for another 10 min. The solution was then heated (85 °C, oil bath) for 2h [additional AIBN (38 mg, 0.23 mmol) and Bu₃SnH (1.87 mmol, 0.5 mL) in degassed benzene (2 mL) was injected through a septum via a precision syringe pump or periodically by manual injection over the 2 h period]. The volatiles were evaporated and the residue was chromatographed (hexane) to give 85a (E/Z, 95:5; 740 mg, 96%).

(E/Z)-1-Fluoro-4-phenyl-1-(tributyltin)-1-butene (85b). Treatment of 84b (E/Z, 71:29; 690 mg, 2.37 mmol) with Bu₃SnH (0.636 mL, 689 mg, 2.37 mmol) and AIBN (97 mg, 0.59 mmol) by procedure G gave 85b (E/Z, 86:14; 976 mg, 93%): 19F NMR δ -99.36 (d, $J = 37.6$ Hz, dd, $J_{Sn-F} = 263$ Hz, 0.14F, Z), -102.9 (d, $J = 52.7$ Hz, dd, $J_{Sn-F} = 229$ Hz, 0.86 Hz, E).

Note: Careful separation on column chromatography (hexane) gave partially separated isomers of 85b(E) (450 mg, 43%) followed by 85b (E/Z, 15:85; 520 mg, 50%).

(E/Z)-1-Fluoro-3-benzyloxy-1-(tributyltin)-1-propene (85c). Treatment of 84c (E/Z, 63:37; 252 mg, 0.87 mmol) with Bu₃SnH (0.23 mL, 252 mg, 0.87 mmol) and AIBN (71 mg, 0.43 mmol) by procedure G gave 85c (E/Z, 77:23; 352 mg, 92%): 1H NMR δ 0.90-0.97 (m, 9H, Bu), 1.00-1.03 (m, 6H, Bu), 1.29 (q, $J = 14.7$ Hz, 6H, Bu), 1.50-1.61 (m, 6H, Bu), 3.91 (d, $J = 7.47$ Hz, 2, H3, Z), 4.20 (d, $J = 6.61$ Hz, 2, H3, E), 4.50 (s, 2, CH₂, E/Z), 5.05 (dt, $J = 6.8$, 46.64 Hz, 1, H2, E), 6.05 (dt, $J = 3.2$, 39.5 Hz, 1, H2, Z), 7.30-7.40 (m, 10, Ph); 19F NMR δ -92.71 (dd, $J_{Sn-F} = 240.9$ Hz, 16%, Z), -93.03 (d, $J =
35.4 Hz, 84%, 0.23F, Z), -97.94 (dd, J_{Sn-F} = 233.4 Hz, 16%, E); -98.25 (d, J = 53.5 Hz, 84% 0.77F, E); GC-MS m/z 399 [18%, M^+Bu^{[120]}Sn]; t_R = 25.59 min (Z) and 26.18 min (E). HRMS(AP-ESI) Calcd for C_{22}H_{37}FO^{120}Sn (M+Na+):479.1748; Found:479.1747.

(E/Z)-1-Fluoro-2-phenyl-1-(tributyltin)-1-propene (85d). Treatment of 84d (E/Z, 48:52; 380 mg, 1.38 mmol) with Bu_3SnH (0.37 mL, 400 mg, 1.38 mmol) and AIBN (56 mg, 0.34 mmol) by procedure G gave 85d (E/Z, 45:55; 555 mg, 95%)

(E/Z)-1-Fluoro-1-iodo-2-phenylethene (86a). Procedure H. A solution of NIS (273 mg, 1.22 mmol) in CH_2Cl_2 (5 mL) was added to 85a (E/Z, 95:5; 400 mg, 0.97 mmol) dissolved in CH_2Cl_2 (5 mL) at -20 °C. The reaction mixture was allowed to warm to 0 °C over 30 min and NaHSO_3 (~0.5 mL) was added to decolorize the reaction mixture. Volatiles were evaporated and the residue was partitioned (NaHCO_3/H_2O//CH_2Cl_2). The organic layer was washed (brine), dried (Na_2SO_4), evaporated and chromatographed (hexane → 15% EtOAc/hexane) to give 86a (E/Z, 95:5; 229 mg, 95%): ^19F NMR δ -60.02 (d, J = 18.4 Hz, 0.05F, Z), -62.90 (d, J = 36.9 Hz, 0.95F, E).

(E/Z)-1-Fluoro-1-iodo-4-phenyl-1-butene (86b). Treatment of 85b (E/Z, 86:14; 380 mg, 0.87 mmol) with NIS (0.25 g, 1.10 mmol) by procedure H gave 86b (E/Z, 78:22; 221 mg, 94%). ^19F NMR δ -66.26 (d, J = 16.9 Hz, 0.22F, Z), -70.21 (d, J = 34.6 Hz, 0.78F, E).

Analogous treatment of 85b (E) (450 mg, 1.02 mmol) gave 86b(E) (252 mg, 91%).

Analogous treatment of 85b (E/Z, 15:85; 520 mg, 1.18 mmol) gave 86b (E/Z, 15:85; 295 mg, 92%).
(E/Z)-3-Benzyl oxy-1-fluoro-1-iodo-1-propene (86c). Treatment of 85c (E/Z, 77:23; 400 mg, 0.88 mmol) with NIS (246 mg, 1.09 mmol) by procedure H gave 86c (E/Z, 67:33; 236 mg, 0.80 mmol, 92%). 1H NMR δ 3.91 (dd, $J = 1.9, 7.1$ Hz, 2, H3, Z), 4.01 (dd, $J = 2.9, 7.1$ Hz, 2, H3, E), 4.42 (s, 2, CH$_2$O, E), 4.43 (s, 2, CH$_2$O, Z), 5.44 (dt, $J = 7.1, 34.0$ Hz, 1, H2, E), 5.67 (dt, $J = 7.1, 16.1$ Hz, 1, H2, Z), 7.21-7.30 (m, 5, Ph). 13C NMR δ: 63.62 (d, $J_{C-F} = 4.8$ Hz, CH$_2$, C3, Z), 68.80 (d, $J_{C-F} = 7.1$ Hz, CH$_2$, C3, E), 72.29 (CH$_2$, O/E), 115.19 (d, $J_{C-F} = 12.4$ Hz, C, C1, E/Z), 120.19 (d, $J_{C-F} = 7.5$ Hz, CH, C2, E/Z), 127.83 (CH, Ph, E/Z), 128.45 (CH, Ph, E/Z), 137.71 (CH, Ph, E/Z). 19F NMR δ: -59.92 (dt, $J = 2.1, 16.3$ Hz, Z), -65.18 (dt, $J = 2.7, 33.9$ Hz). GC-MS m/z 292 [2%, M$^+$; t_R = 15.09 min (Z) and 15.48 min (E)]. Anal. Calcd. for C$_{10}$H$_8$FIO (291.97): C, 41.12; H, 3.45; Found: C, 41.56; H, 3.87.

(E/Z)-1-Fluoro-1-iodo-2-phenylethene (86d). Treatment of 85d (E/Z, 45:55; 450 mg, 1.06 mmol) with NIS (300 mg, 1.32 mmol) by procedure H gave 86d (E/Z, 49:51; 263 mg, 95%). 1H NMR δ: 2.18 (d, $J = 3.7$ Hz, 1, H3, E), 2.21 (d, $J = 4.6$ Hz, 1, H3, Z), 7.28 (m, 2H, Ph), 7.31 (m, 2H, Ph), 7.36-7.45 (m, 6H, Ph). 19F NMR δ -68.27 Hz (s, E), -68.81 (s, Z); GC-MS m/z 262 [100%, M$^+$; t_R = 10.96 min (Z) and 12.31 min (E)]. HRMS Calcd. for C$_9$H$_8$FI (M$^+$): 261.9655; Found: 261.9662.

(E/Z)-1-Bromo-1-fluoro-2-phenylethene (87a). Treatment of 85a (E/Z, 95:5; 800 mg, 1.95 mmol) with NBS (430 mg, 2.43 mmol) by procedure H (using NBS instead of NIS) gave 87a134 (E/Z, 93:7; 390 mg, 100%): 1H NMR δ 6.00 (d, $J = 32.9$ Hz, 0.93, H2, E), 6.70 (d, $J = 15.1$ Hz, 0.07, H2, Z), 7.20 (t, $J = 7.3$ Hz, 2, Ph), 7.30 (t, $J = 7.8$ Hz, 1, Ph), 7.45 (d, $J = 7.4$ Hz, 2, Ph); 19F NMR δ -69.5 (d, $J = 32.7$ Hz; 0.93F, E), -65.5 (d, $J = 15.1$ Hz, 0.07F, Z).
(E/Z)-1-Fluoro-1-bromo-3-benzyloxy-1-propene (87c). Treatment of 85c (E/Z, 77:23; 250 mg, 0.55 mmol) with NBS (122 mg, 0.68 mmol) by procedure H (using NBS instead of NIS) gave 87c (E/Z, 77:23; 125 mg, 93%): 1H NMR δ 3.97 (dd, $J = 1.9$, 7.1 Hz, 2, H3, Z), 4.00 (dd, $J = 2.6$, 7.3 Hz, 2, H3, E), 4.42 (s, CH$_2$O, 2, E), 4.43 (s, CH$_2$O, 2, Z), 5.19 (dt, $J = 7.3$, 30.5 Hz, 1, H2, E), 5.64 (dt, $J = 7.1$, 12.2 Hz, 1, H2, Z), 7.23-7.28 (m, 5, Ph). 13C NMR δ: 63.17 (CH$_2$, C3, E), 63.20 (CH$_2$, C3, Z), 66.30 (CH$_2$, C3, Z), 72.28 (CH$_2$O, E/Z), 107.33 (C, C1, E), 107.49 (C, C1, Z), 109.89 (CH, C2, Z), 110.00 (CH, C2, E), 127.83 (CH, Ph, E/Z), 128.46 (CH, Ph, E/Z), 129.69 (C, Ph, E/Z); 19F NMR δ -66.05 (dd, $J = 2.2$, 13.5 Hz, Z), -70.41 (dt, $J = 2.3$, 30.9 Hz, E). GC-MS m/z 245 [2%, M$^+$]; t_R = 13.11 min (Z) and 13.43 min (E). HRMS(AP-ESI) Calcd for C$_{10}$H$_{10}$BrFO (M+H$^+$): 244.9977; Found: 244.9970.

(E/Z)-1-Chloro-1-fluoro-2-phenylethene (88a). Compound 85a (E/Z, 95:5; 50 mg, 0.12 mmol) was dissolved in dried CH$_2$Cl$_2$ (5 mL) and the temperature was adjusted to -50°C. Chlorine gas was bubbled through the solution over 5 min. until a light yellow solution was obtained and the reaction mixture was allowed to warm to 0°C. Volatiles were evaporated and the residue was chromatographed (hexane → 5% EtOAc/hexane) to give 88a (E/Z, 93:7; 13 mg, 70%): 1H NMR δ 5.80 (d, $J = 31.0$ Hz, 1, H2, E), 6.30 (d, $J = 12.8$ Hz, 1, H2, Z), 7.20 (t, $J = 7.3$ Hz, 2, Bz), 7.30 (t, $J = 7.8$ Hz, 1, Bz), 7.45 (d, $J = 7.3$ Hz, 2, Bz); 19F NMR δ -74.0 (d, $J = 30.5$ Hz), -71.5 (d, $J = 12.8$ Hz).

Ethyl 5-Fluoro-6-phenyl-5(Z)-hexenoate (89a). Procedure I. 4-Ethoxy-4-oxobutylzinc bromide (0.5 M, 0.60 mL, 0.30 mmol) was added via syringe to a stirring solution of 86a (E/Z, 95:5; 50 mg, 0.20 mmol) in dried benzene (5 mL) containing Pd(PPh$_3$)$_4$ (23 mg, 0.02 mmol) under N$_2$. Additional Pd(PPh$_3$)$_4$ (10 mg, 0.009 mmol) and
4-ethoxy-4-oxobutylzinc bromide (0.270 mL, 0.135 mmol) were added to the reaction mixture over the 8 h period. Volatiles were evaporated and the residue was partitioned (NaHCO₃/H₂O/EtOAc). The organic layer was washed (brine), dried (Na₂SO₄), evaporated and chromatographed (hexane → 15% EtOAc/hexane) to give **89a(Z)** (33 mg, 70%; 73% based on E isomer): ^1^H NMR δ 1.26 (t, J = 7.1 Hz, 3, OEt, 3H), 1.95 (quint, J = 7.3 Hz, 2, H3), 2.40 (m, 4, H2, H4), 4.10 (q, J = 7.1 Hz, 2, OEt), 5.50 (d, J = 39.4 Hz, 1, H6), 7.15 (t, J = 7.2 Hz, 1, Ph), 7.30 (t, J = 7.4 Hz, 2, Ph), 7.40 (d, J = 7.4 Hz, Ph); ^13^C NMR δ 14.64 (OEt), 22.05 (C3), 32.34 (d, J_C-F = 26.9 Hz, C4), 33.55 (C2), 60.82 (OEt), 106.92 (d, J_C-F = 8.5 Hz, C6), 127.21 (Ph), 128.74 (Ph), 128.88 (Ph), 133.98 (Ph), 158.93 (d, J_C-F = 266.7 Hz, C5), 173.52 (CO); ^19^F NMR δ -102.2 (dt, J = 18.8 Hz, 41.4 Hz); MS m/z 237 (100%, MH⁺). Anal. Calcd. for C₄₄H₇₇FO₂ (236.12): C, 71.16; H, 7.25; Found: C, 70.80; H, 7.16.

Treatment (2 h) of **86a** (E/Z, 95:5; 50 mg, 0.20 mmol) with PdCl₂(dppb) (6.0 mg, 0.01 mmol) and 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 0.74 mL, 0.37 mmol) as described in procedure I gave **89a (Z)** (44 mg, 93%, 97% based on E isomer).

Treatment of **87a** (E/Z, 93:7; 50 mg, 0.25 mmol) with Pd(PPh₃)₄ (23 mg, 0.25 mmol) and 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 0.74 mL, 0.37 mmol) as described in procedure I gave **89a (Z)** (41 mg, 70 %, 75% based on E isomer).

Treatment of **88a** (E/Z, 93:7; 120 mg, 0.77 mmol) with Pd(PPh₃)₄ (77 mg, 0.06 mmol) and 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 2.30 mL, 1.15 mmol) as described in procedure I gave **89a (Z)** (145 mg, 80%; 86% based on E isomer).

Ethyl 5-Fluoro-8-phenyl-5(Z)-octenoate (89b). Treatment of **86b** (E/Z, 78:22; 50 mg, 0.18 mmol) with Pd(PPh₃)₄ (20 mg, 0.018 mmol) and 4-ethoxy-4-oxobutylzinc
bromide (0.5 M, 0.54 mL, 0.27 mmol) in dried benzene (5 mL) as described in procedure I [additional Pd(PPh$_3$)$_4$ (10 mg, 0.009 mmol) and 4-ethoxy-4-oxobutylzinc bromide (0.270 mL, 0.135 mmol) were added to the reaction mixture over the 24 h period] gave 89b(Z) (29 mg, 60%; 78% based on E isomer only): 1HNMR δ 1.25 (t, J = 7.3 Hz, 3, OEt), 1.79 (quint, J = 7.3 Hz, 2, H3), 2.15 (dt, J = 7.2, 18.2 Hz, 2, H4), 2.28 (t, J = 7.5 Hz, 2, H2), 2.41 (m, 2, H7), 2.65 (t, J = 7.8 Hz, 2, H8), 4.13 (q, J = 6.1 Hz, 2, OEt), 4.48 (dt, J = 7.3, 37.7 Hz, 1, H6), 7.20 (t, J = 7.3 Hz, 2, Ph), 7.30 (t, J = 7.9 Hz, 1, Ph), 7.45 (d, J = 7.4 Hz, 2, Ph); 13C NMR δ 14.63 (CH$_3$, OEt), 21.92 (CH$_2$, C3), 25.61 (d, J_{C-F} = 4.7 Hz, CH$_2$, C7), 31.50 (CH$_2$, C2), 33.50 (CH$_2$, C8), 36.09 (CH$_2$, C4), 60.69 (CH$_2$, OEt), 105.32 (d, J_{C-F} = 15.5 Hz, CH, C6), 126.25 (CH, Ph), 128.67 (CH, Ph), 128.81 (CH, Ph), 142.07 (C, Ph), 157.93 (d, J_{C-F} = 253.7 Hz, CF, C5), 173.60 (C1, CO); 19F NMR δ -110.1 (dt, J = 37.6, 15.1 Hz), MS m/z 265 (100, MH$^+$). HRMS (AP-ESI) Calcd for C$_{16}$H$_{21}$FO$_2$ (M+Li$^+$): 271.0938; Found: 271.0940.

Analogous treatment (12 h) of 86b (E) (15 mg, 0.054 mmol) produced only 89b(Z) (11.9 mg, 88%; 98% quantitative yield based on GC/MS).

Analogous treatment (24 h) of 86b (E/Z, 15:85; 15 mg, 0.054 mmol) showed (GC/MS, 19F NMR) a conversion of the E isomer into 89b (Z) (~14%) and slowly decomposition of 86b(Z) but formation of 89b(E) was not detected.

Analogous treatment (8 h) of 86b (E/Z, 84:16; 25 mg, 0.09 mmol) with PdCl$_2$(dppb) (5% molar) and 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 0.28 mL, 0.14 mmol) gave 89b(Z) (19.5 mg, 82%; 98% based on E isomer).

Ethyl 5-Fluoro-6-phenyl-5(Z)-heptenoate (89d). Treatment of 86d (E/Z, 49:51; 55 mg, 0.21 mmol) with Pd(PPh$_3$)$_4$ (24 mg, 0.02 mmol) and 4-ethoxy-4-oxobutylzinc
bromide (0.5 M, 0.60 mL, 0.30 mmol) as described in procedure I (reaction was heated at 60 °C for 24 h) gave 89d(Z) (23 mg, 45%; 94% based on E isomer): 1H NMR δ 1.26 (t, $J = 7.1$ Hz, 3, OEt), 1.56 (s, 3, H7), 1.92-2.10 (m, 2, H3), 2.40 (dt, $J = 7.1$, 14.4 Hz, 2, H4), 2.49 (t, $J = 7.2$ Hz, 2, H2), 4.14 (q, $J = 7.1$ Hz, 2, OEt), 7.25-7.35 (m, 3, Ph), 7.36-7.45 (m, 2, Ph); 13C NMR δ 14.63 (CH$_3$, OEt), 17.59 (d, $J = 4.5$ Hz, CH$_3$ C7), 22.25 (CH$_2$, C3), 28.84 (d, $J = 29.11$ Hz, CH$_2$, C4), 33.59 (CH$_2$, C2), 60.76 (CH$_2$, OEt), 113.50 (d, $J_{C,F} = 15.5$ Hz, C, C6), 127.08 (CH, Ph), 128.39 (CH, Ph), 128.55 (CH, Ph), 138.80 (C, Ph), 154.5 (d, $J_{C,F} = 253.5$ Hz, C, C5), 173.62 (CO, C1); 19F NMR δ -108.19 (t, $J = 22.6$ Hz).

HRMS (AP-ESI) Calcd. for C$_{15}$H$_{19}$FO$_2$ (M+Na$^+$): 273.1266; Found: 273.1293.

Analogous treatment (8 h) of 86d (E/Z, 49:51; 15 mg, 0.06 mmol) with PdCl$_2$(dppb) (5% molar) and 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 0.18 mL, 0.09 mmol) gave in addition to 89d(Z) a new product tentatively assigned as 89d(E). 19F NMR δ -107.82 ("tq", $J = 22.6$, 2.1 Hz, 0.84F), -109.91 ("tq", $J = 22.5$, 3.4 Hz, 0.16F); GC-MS m/z 250 [8%, M$^+$; $t_R = 17.20$ min (E) and 18.74 min (Z)].

(Z)-2-Fluoro-1-phenyl-1,6-heptadiene (90a). Treatment of 86a (E/Z, 95:5; 75 mg, 0.30 mmol) with Pd(PPh$_3$)$_4$ (17 mg, 0.015 mmol) and 4-pentenylzinc bromide (0.5 M, 0.9 mL, 0.45 mmol) as described in procedure I gave 90a(Z) (37 mg, 65%; 69% based on E isomer): 1H NMR δ 1.70 (q, $J = 7.5$ Hz, 2, H4), 2.15 (quint, $J = 6.8$ Hz, 2, H5), 2.32 (dt, $J = 7.7$ Hz, 15.4 Hz, 2, H3), 5.03 (dd, $J = 1.3$, 10.2 Hz, 1, Ha7), 5.04 (dd, $J = 1.7$, 17.3 Hz, 1, Hb7), 5.45 (d, $J = 39.5$ Hz, 1, H1), 5.81 (ddt, $J = 7.1$, 10.2, 17.0 Hz), 7.2 (t, $J = 7.78$ Hz, 1, Ph), 7.32 (d, $J = 7.3$ Hz, 2, Ph), 7.5 (d, $J = 8.15$ Hz, 2, Ph); 13C NMR δ: 25.91 (CH$_2$, C4), 32.71 (CH$_2$, C5), 33.29 (CH$_2$, C3), 106.2 (d, $J_{C,F} = 28.6$ Hz, CH, C1), 115.69 (CH$_2$, C7), 127.08 (CH, Ph), 128.56 (CH, Ph), 129.74 (CH, Ph), 134.26 (C, Ph),
138.40 (CH, C6), 159.93 (d, $J_{C-F} = 266.6$ Hz, C2); 19F NMR δ -101.45 (dt, $J = 18.8, 41.3$ Hz); GC-MS m/z 190 [25%, M^+; $t_R = 13.97$ min (Z)]. Anal. Calcd. for C$_{13}$H$_{15}$F (190.26): C, 82.07, H, 7.95. Found: C, 82.41, H, 8.15.

Also 2,3-difluoro-1,4-diphenyl-1,3-butadiene131 (6 mg, 8%) was isolated during chromatography as a less polar compound: 19F NMR δ -127.95 (dd, $J = 14.6, 28.6$ Hz); GC-MS m/z 242 [100%, M^+; $t_R = 21.46$ min].

(Z)-6-Fluoro-9-phenyl-1,6-nondiene (90b). Treatment of 86b (E/Z, 78:22; 70 mg, 0.26 mmol) with Pd(PPh$_3$)$_4$ (15 mg, 0.013 mmol) and 4-pentenylzinc bromide (0.77 mL, 0.38 mmol) in dried benzene (5 mL) as described in procedure I [additional Pd(PPh$_3$)$_4$ (8 mg, 0.007 mmol) and 4-pentenylzinc bromide (0.4 mL, 0.2 mmol) were added to the reaction mixture] gave 90b(Z) (43 mg, 76%; 98% based on E isomer): 1H NMR δ 1.55 (q, $J = 7.7$ Hz, 2, H4), 2.04-2.20 (m, 4, H3, H5), 2.38 (dt, $J = 7.6, 15.0$ Hz, 2, H8), 2.65 (t, $J = 7.3$ Hz, 2, H9), 4.45 (dt, $J = 7.4, 37.9$ Hz, 1, H7), 4.65 – 5.05 (m, 1, H1), 5.75-5.85 (m, 1, H2), 7.18-7.25 (m, 3, Ph), 7.30-7.35 (m, 2, Ph); 13C NMR δ 23.04 (CH$_2$ C4), 25.75 (CH$_2$, C8), 31.5 (CH$_2$, C3), 33.18 (CH$_2$, C9), 36.19 (CH$_2$, C5), 104.64 (d, $J_{C-F} = 15.6$ Hz, CH, C7), 115.40 (CH$_2$, C1), 126.24 (CH, Ph), 128.68 (CH, Ph), 128.85 (CH, Ph), 138.58 (C, Ph), 142.18 (CH, C2), 158.76 (d, $J_{C-F} = 253.7$ Hz, CF C6); 19F NMR δ -109.65 (dt, $J = 15.0, 41.3$ Hz). MS m/z 219 (100%, MH$^+$). Anal. Calcd. for C$_{15}$H$_{19}$F (218.15): C, 82.53, H, 8.77. Found: C, 82.43, H, 8.80.

The 19F NMR of the crude reaction mixture in addition to 90bZ (0.73F) showed the presence of the E-isomer of 90b [-104.71 ppm (dt, $J = 22.6, 64.0$ Hz, 0.12F)] in addition to the by-product tentatively as (Z)-1-fluoro-4-phenyl-1-butene [19F NMR δ -
130.33 (dd, J = 41.4, 82.8 Hz, 0.03F) and (Z,Z)-4,5-difluoro-1,8-diphenyl-3,5-octadiene [-132.34 ppm (dd, J = 13.2, 26.3 Hz, 0.1OF)].

(E/Z)-6-Fluoro-8-benzyloxy-1,6-octadiene (90c). Treatment of 86c (E/Z, 67:33; 63 mg, 0.215 mmol) with PdCl₂(dppb) (5% molar) and 4-pentenylzinc bromide (0.5 M, 0.86 mL, 0.43 mmol) as described in procedure I [55°C for 8 h] gave 90c (E/Z, 80:20, 46 mg, 86%).

\[\delta (\text{H}) = 1.55 (\text{quint, } J = 7.4 \text{ Hz, } 2, \text{H}4, \text{E/Z}), 1.98-2.04 (m, 2, \text{H}5, \text{E/Z}), 2.08-2.19 (m, 2, \text{H}3, \text{E/Z}), 3.87 (d, J = 7.8 \text{ Hz, } 0.4, \text{OCH}_2, \text{Z}), 4.02 (d, J = 7.1 \text{ Hz, } 1.6, \text{OCH}_2, \text{E}), 4.41 (s, 2, \text{CH}_2\text{O, E/Z}), 4.66 (dt, J = 7.2, 36.7 \text{ Hz, } 0.8, \text{H}1, \text{E}), 4.88-4.97 (m, 2, \text{H}7, \text{E/Z}), 5.17 (dt, J = 7.8, 20.52 \text{ Hz, } 0.2, \text{H}1, \text{Z}), 5.65-5.75 (m, 1, \text{H}6, \text{E/Z}), 7.20-7.27 (m, 5, \text{Ph, E/Z});\]

\[\delta (\text{C}) = 25.13 (\text{CH}_2, \text{C}4, \text{E}), 25.45 (\text{CH}_2, \text{C}4, \text{Z}), 31.13 (\text{CH}_2, \text{C}5, \text{E}), 31.40 (\text{CH}_2, \text{C}5, \text{Z}), 32.82 (\text{CH}_2, \text{C}3, \text{E/Z}), 62.70 (\text{OCH}_2, \text{Z}), 62.77 (\text{OCH}_2, \text{E}), 71.86 (\text{CH}_2\text{O, Z}), 72.06 (\text{CH}_2\text{O, E}), 102.31 (d), \]

\[J_{\text{C-F}} = 13.79 \text{ Hz, CH, C}1, \text{Z}), 102.82 (d, J_{\text{C-F}} = 22.85 \text{ Hz, CH, C}1, \text{E}), 115.19 (\text{CH}_2, \text{C}7, \text{E/Z}), 127.58 (\text{CH, Ph, E/Z}), 127.82 (\text{CH, Ph, E/Z}), 128.36 (\text{CH, Ph, E/Z}), 137.85 (\text{C, Ph, E/Z}), 138.34 (\text{CH, C}6, \text{E/Z}), 160.93 (d, J_{\text{C-F}} = 259.1 \text{ Hz, CF, C}2, \text{E}), 162.62 (d, J_{\text{C-F}} = 254.8 \text{ Hz, CF, C}2, \text{Z});\]

\[\delta (\text{F}) = -98.05 (q, J = 22.8 \text{ Hz, } 1, \text{Z}), -104.21 (dt, J = 17.31, 36.74 \text{ Hz, } 5, \text{E});\]

\[\text{GC-MS } m/z 235 [1\%, M^+; t_R = 16.95 \text{ min (Z) and } 17.57 \text{ min (E)}].\]

HRMS Calcd. for C₁₅H₁₉FO (M+H⁺) 235.1498; Found: 235.1490.

Treatment of 86c (E/Z, 75:25, 20 mg, 0.07 mmol) with Pd(PPh₃)₄ (5% molar) and 4-pentenylzinc bromide (0.5 M, 0.28 mL, 0.14 mmol) as described in procedure I (48 h) gave 90c (56%).

\[\delta (\text{F}) = -104.56 (dt, J = 15.05, 37.6 \text{ Hz}) \text{ in addition to unchanged 86c (43\%, E/Z, } \sim 44: 56).\]
Treatment of 87c (E/Z, 77:23, 45 mg, 0.18 mmol) with PdCl₂(dppb) (5% molar) and 4-pentenylzinc bromide (0.5 M, 0.7 mL, 0.36 mmol) as described in procedure I gave 90c (E/Z, 80:20; 36 mg, 84%).

(Z)-6-Fluoro-7-phenyl-1,6-octadiene (90d). Treatment of 86d (E/Z, 49:51; 65 mg, 0.25 mmol) with Pd(PPh₃)₄ (14.3 mg, 0.012 mmol) and 4-pentenylzinc bromide (0.5 M, 0.75 mL, 0.38 mmol) as described in procedure I [55 °C for 4 h] gave 90d(Z) (23 mg, 45%; 92% based on E isomer): ¹H NMR δ 1.68 (quint, J = 7.9 Hz, 2, H₄), 1.95 (s, 3, H₈), 2.12-2.20 (m, 2, H₃), 2.38 (dt, J = 7.1, 23.6 Hz, 2, H₅), 4.98 (dd, J = 8.0, 10.2 Hz, 2, H₁), 5.78-5.90 (m, 1, H₂), 7.15-7.38 (m, 5, Ph); ¹³C NMR δ 17.72 (CH₃, C₈), 26.16 (CH₂, C₄), 31.38 (CH₂, C₅), 33.41 (CH₂, C₃), 110.08 (C, C₇), 115.51 (CH₂, C₁) 126.99 (CH, Ph), 128.40 (CH, Ph), 128.54 (CH, Ph), 138.61 (C, Ph), 139.02 (CH, C₂), 154.82 (d, J_C-F = 255.6 Hz, CF, C₆); ¹⁹F NMR δ -108.10 (t, J = 23.1 Hz); GC-MS m/z 204 [5%, M⁺; tᵣ = 14.59 min, Z]. Anal. Calcd. for C₁₄H₁₇FO₂ (204.28): C, 82.31; H, 8.39. Found: C, 82.56; H, 8.78.

Assessment of the reaction progress by GC-MS and ¹⁹F NMR showed the gradual conversion of the 86d(E) isomer into 90d(Z) [2 h (6%), 8 h (35%), 16 h (60%), 24 h (92%)] while 86d(Z) isomer remained unchanged.

2-Fluoro-1-phenyl-4-[2-(1,3-dioxolanyl)]-1(Z)-butene (91a). Treatment of 86a (E/Z, 95:5; 25 mg, 0.10 mmol) with Pd(PPh₃)₄ (10 mg, 0.01 mL) and 2-[2-(1,3-dioxolanyl)ethylzinc bromide (0.5 M, 0.4 mL, 0.2 mmol) as described in procedure I [additional Pd(PPh₃)₄ (20 mg, 0.02 mmol) and 2-[2-(1,3-dioxolanyl)ethylzinc bromide (0.8 mL, 0.4 mmol) were added to the reaction mixture over the 24 h period] gave 91a (Z) (20 mg, 90%; 94% based on E isomer): ¹H NMR δ 1.96 (dt, J = 4.6, 11.1 Hz, 2, H₄),
2.45 (dt, $J = 7.6$, 17.8 Hz, 2, H3), 3.85 (t, $J = 5.4$ Hz, 2, CH$_2$ dioxolanyl) 3.92 (t, $J = 5.0$ Hz, 2, CH$_2$ dioxolanyl), 4.95 (t, $J = 4.5$ Hz, 1, H5), 5.50 (d, $J = 39.3$ Hz, 1, H1), 7.20 (t, $J = 7.4$ Hz, 2, Ph), 7.30 (t, $J = 7.8$ Hz, 1, Ph), 7.45 (d, $J = 7.3$ Hz, 2, Ph); 13C NMR δ 27.82 (d, $J_{C-F} = 27.8$ Hz, CH$_2$, C3), 31.03 (CH$_2$, C4), 65.45 (CH$_2$, 2 \times CH$_2$ from dioxolanyl), 103.74 (CH, C1), 106.37 (CH, C5), 127.16 (CH, Ph), 128.66 (CH, Ph), 128.81 (CH, Ph), 134.08 (C, Ph), 159.25 (d, $J_{C-F} = 266.2$ Hz, CF, C2); GC-MS m/z 222 [10%, M$^+$; $t_R = 18.19$ min, Z]. HRMS (AP-ESI) Calcd for C$_{13}$H$_{15}$FO$_2$ (M+Li$^+$): 229.1216. Found: 229.1207.

Effect of the Pd catalysts on the efficiency of coupling: Progress of the reactions was monitored by 19F NMR GC-MS and yields are based on 19F NMR and GC-MS of the crude reaction mixtures.

Treatment of 86a (E/Z, 95:5, 25 mg, 0.10 mmol) with Pd(Ph$_3$P)$_4$ (5% molar) and 2-[2-(1,3-dioxolanyl)ethylzinc bromide (0.5 M, 0.4 mL, 0.2 mmol) as described in procedure I [2h, 50 $^\circ$C] gave 91a (11%) and unchanged 86a (E/Z, 95:5, 85%).

Treatment of 86a (E/Z, 95:5, 25 mg, 0.10 mmol) with PdCl$_2$(dppf) (5% molar) and 2-[2-(1,3-dioxolanyl)ethylzinc bromide (0.5 M, 0.4 mL, 0.2 mmol) as described in procedure I [2h, 50 $^\circ$C] gave 91a (8%), unchanged 86a (E/Z, 95:5, 85%) and reduction product (6%).

Treatment of 86a (E/Z, 95:5, 25 mg, 0.10 mmol) with Pd(OAc)$_2$ (5% molar) and 2-[2-(1,3- dioxolanyl)ethylzinc bromide (0.5 M, 0.4 mL, 0.2 mmol) as described in procedure I [3.5h, 50 $^\circ$C] gave 91a (95%).
Treatment of 86a (E/Z, 95:5, 25 mg, 0.10 mmol) with Pd(dba)$_3$ (5% molar) and 2-[2-(1,3- dioxolanyl)ethylzinc bromide (0.5 M, 0.4 mL, 0.2 mmol) as described in procedure I [2h, 50 °C] gave 91a (93%).

Treatment of 86a (E/Z, 95:5, 25 mg, 0.10 mmol) with PdCl$_2$(dppb) (5% molar) and 2-[2-(1,3- dioxolanyl)ethylzinc bromide (0.5 M, 0.4 mL, 0.2 mmol) as described in procedure I [2h, 50 °C] gave 91a (95%).

4-Fluoro-1-phenyl-6-[2-(1,3-dioxolanyl)]-3(Z)-hexene (91b). Treatment of 86b (E/Z, 78:22; 30 mg, 0.11 mmol) with Pd(PPh$_3$)$_4$ (7 mg, 0.005 mmol) and 2-[2-(1,3-dioxolanyl)ethylzinc bromide (0.5 M, 0.44 mL, 0.22 mmol) in dried benzene (5 mL) as described in procedure I [additional Pd(PPh$_3$)$_4$ (4 mg, 0.0028 mmol) and 2-[2-(1,3-dioxolanyl)ethylzinc bromide (0.5 M, 0.2 mL, 0.1 mmol) were added] gave 91b(Z) (20 mg, 74%; 94% based on E isomer): 1H NMR δ 1.80-1.91 (m, 2, H6), 2.22 (dt, J = 5.0, 17.3 Hz, 2, H5), 2.40 (q, J = 7.5 Hz, 2, H2), 2.63 (t, J = 7.9 Hz, 2, H1), 3.86 – 3.90 (m, 2, CH$_2$ dioxolanyl), 3.96-4.02 (m, 2, CH$_2$ dioxolanyl), 4.50 (dt, J = 7.4, 37.6 Hz, 1, H3), 4.86 (t, J = 4.6 Hz, 1, H7), 7.18-7.25 (m, 3, Ph), 7.28-7.35 (m, 2, Ph); 13C NMR δ: 25.60 (d, $J_{CF} = 4.9$ Hz, CH$_2$ C2), 26.76 (d, $J_{CF} = 28.8$ Hz, CH$_2$, C5) 31.02 (CH$_2$, C6), 36.08 (CH$_2$, C1), 65.26 (CH$_2$, 2x CH$_2$ dioxolanyl), 103.87 (CH, C7), 104.68 (d, $J_{CF} = 15.49$ Hz, CH, C3), 126.23 (CH, Ph), 128.66 (CH, Ph), 128.93 (CH, Ph), 142.11 (C, Ph), 158.24 (d, $J_{CF} = 253.2$ Hz, CF, C4); 19F NMR δ -109.37 (dt, J = 15.04, 37.6 Hz); GC-MS m/z 250 [1%, M$^+$; t$_R$ = 17.74 min, Z]. FAB-HRMS: Calcd for C$_{15}$H$_{19}$FO$_2$ (MH$^+$): 251.1448; Found: 251.1455.

Analogous treatment of 86b (E) (15 mg, 0.054 mmol) produced only 91b(Z) (89%, ~98% based on GC/MS).
Analogous treatment of **86b** (E/Z, 15:85; 15 mg, 0.055 mmol) showed a conversion of the E isomer into **91b(Z)** (~14%) and disappearance of **86b(Z)**, but no formation of **9b(E)** was detected (GC/MS, \(^{19}\)F NMR).

3-Fluoro-2-phenyl-5-[2-(1,3-dioxolanyl)]-2(Z)-pentene (91d). Treatment of **86d** (E/Z, 49:51; 30 mg, 0.11 mmol) with Pd(PPh\(_3\))\(_4\) (6.5 mg, 0.0057 mmol) and 2-[2-(1,3-dioxolanyl)ethylzinc bromide (0.45 mL, 0.23 mmol) as described in procedure I [60 \(^{\circ}\)C for 24 h; additional Pd(PPh\(_3\))\(_4\) (6 mg, 0.0055 mmol) and 2-[2-(1,3-dioxolanyl)ethylzinc bromide (0.45 mL, 0.23 mmol) were added to the reaction mixture over a 24 h period]) gave **91d(Z)** (12 mg, 46%; 90% based on E isomer): \(^1\)H NMR \(\delta\) 1.30 (s, 3, H1), 1.94-2.03 (m, 2, H4), 2.5 (dt, \(J = 8.1, 23.1\) Hz, 2, H5), 3.89-3.94 (m, 2, CH\(_2\) dioxolanyl), 3.95-4.05 (m, 2, CH\(_2\) dioxolanyl), 4.95 (t, \(J = 4.5\) Hz, 1, H6), 7.20-7.38 (m, 5, Ph); \(^{13}\)C NMR \(\delta\) 17.57 (CH\(_3\), C1), 24.25 (d, \(J_{C-F} = 29.2\) Hz, CH\(_2\), C4), 30.12 (CH\(_2\), C5), 65.42 (2x CH\(_2\) dioxolanyl), 103.95 (C, C2), 112.8 (CH, C6), 127.04 (CH, Ph), 128.40 (CH, Ph), 128.56 (CH, Ph), 138.88 (C, Ph), 153.8 (d, \(J_{C,F} = 255.8\) Hz, C, CF); \(^{19}\)F NMR \(\delta\) -108.75 (t, \(J = 22.6\) Hz). HRMS (ESI) Calcd for C\(_{14}\)H\(_{17}\)FO\(_2\) (M+ Li\(^+\)): 243.1373; Found: 243.1361.

3,3-Dimethyl-2-Fluoro-1-phenyl-1-butene (93a). Treatment of **86a** (E/Z, 95:5, 40 mg, 0.16 mmol) with PdCl\(_2\)(dppb) (5% molar) and tert-butylzinc bromide (0.5 M, 0.6 mL, 0.32 mmol) as described in procedure I [3 h, 50 \(^{\circ}\)C] gave **93a** (23 mg, 80%, 95% based on GC-MS and \(^{19}\)F NMR): \(^1\)H NMR \(\delta\) 1.15 (s, 9, t-Bu), 5.40 (d, \(J = 40.7\) Hz, H1), 7.17-7.41 (m, 5, Ph); \(^{19}\)F NMR \(\delta\) -109.47 (d, \(J = 40.7\) Hz); GC-MS m/z 178 [80%, M\(^+\); \(t_R = 10.78\) min]. HRMS Calcd. for C\(_{12}\)H\(_{15}\)F (M+H\(^+\)) 179.1237; Found: 179.1246.

Treatment of **86a** (E/Z, 95:5, 32 mg, 0.12 mmol) with tert-butylzinc bromide (0.5 M, 0.48 mL, 0.24 mmol) in the presence of Pd(Ph\(_3\)P)\(_4\) (5% molar) as described in procedure I [24
Treatment of 86a (E/Z, 95:5; 40 mg, 0.16 mmol) with tert-butylzinc bromide (0.5 M, 0.6 mL, 0.32 mmol) in the presence of Pd2(dba)3 (5% molar) as described in procedure I [12 h, 50 °C] gave 94 (35 mg, 45%) based on 19F NMR.

Coupling with secondary alkylzinc bromides:

Treatment of 86a (E/Z, 95:5; 18 mg, 0.07 mmol) with Pd2(dba) (5% molar) and 1-methylbutylzinc bromide (0.5 M, 0.29 mL, 0.14 mmol) as described in procedure I [3h, 50 °C] gave a mixture of 93b (50%) and 94 (12%) in addition to Z-β-fluorostyrene (26%): 19F NMR δ -109.34 (dd, J = 40.2, 22.9 Hz, 0.50F, 93b), -122.49 (dd, J = 82.5, 44.6 Hz, 0.26F, Z-β-fluorostyrene), -127.95 (“dd”, J = 28.6, 14.6 Hz, 0.24F, 94); GC-MS for 93b/94 had m/z 192 (65%, M+; tR = 14.08 min; 93b), 242 (100%, M+; tR = 21.46 min; 94)

Treatment (18 h, 65 °C) of 86a (E/Z, 95:5; 22 mg, 0.088 mmol) with 1-methylbutylzinc bromide (0.5 M, 0.35 mL, 0.17 mmol) in the presence of Pd(Ph3P)4 (5% molar) gave 93d [37%; 19F NMR δ -101.01 (dt, J = 18.8, 40.3 Hz)], 94 (19%) and Z-β-fluorostyrene (4%) as estimated based on the 19F NMR and GC-MS of the crude reaction mixture.

Treatment of 86a (E/Z, 95:5; 50 mg, 0.20 mmol) and 3-pentylzine bromide (0.5 M, 0.60 mL, 0.30 mmol) in the presence of Pd(Ph3P)4 (5% molar) as described in procedure I gave inseparable mixture of 93c and 93d (30/70): GC-MS m/z 192 (85%, M+; tR = 11.67 min, 93c), 192 (60%, M+; tR = 12.55; 93d). HRMS (AP-ESI) Calcd. for C13H17F (M+Li+): 199.1474; Found: 199.1478.
(Z)-Ethyl 5-Chloro-6-phenyl-5-hexenoate (98a). Procedure J. 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 1.45 mL, 0.722 mmol) was added via syringe to a stirring solution of 96a\(^{125}\) (50 mg, 0.29 mmol) in dried THF (3 mL) containing PdCl\(_2\)(dpdf) (24 mg, 0.029 mmol) under N\(_2\). The resulting mixture was heated at 65 °C overnight. Volatiles were evaporated and the residue was partitioned (NaHCO\(_3\)/H\(_2\)O/EtOAc). The organic layer was washed (brine), dried (Na\(_2\)SO\(_4\)), evaporated, and chromatographed (hexane → 10% EtOAc/hexane) to give 98a (47 mg, 65%) and 101a\(^{137}\) (14 mg, 22%).

Compound 98a had: \(^1\)H NMR \(\delta 1.16 \) (t, \(J = 7.1\) Hz, 3, OEt), 1.89 (quint, \(J = 7.1\) Hz, 2, H3), 2.27 (t, \(J = 7.4\) Hz, 2, H4), 2.45 (t, \(J = 7.1\) Hz, 2, H2), 4.04 (q, \(J = 7.1\) Hz, 2, OEt), 6.40 (s, 1, H6), 7.15 (t, \(J = 7.3\) Hz, 2, Ph), 7.25 (t, \(J = 7.9\) Hz, 1, Ph), 7.45 (d, \(J = 7.4\) Hz, 2, Ph). \(^{13}\)C NMR \(\delta: 14.05\) (CH\(_3\), OEt), 22.61 (CH2, C3), 31.56 (CH2, C2), 40.28 (CH2, C4), 60.34 (OEt, CH2), 125.25 (CH, C6), 127.55 (CH, Ph), 128.13 (CH, Ph), 128.98 (CH, Ph), 133.63 (C, C5), 134.97 (C, Ph), 174.10 (CO, C1). GC-MS \(m/z\) 252 (30%, M\(^+\)\(^{[35}\)Cl); \(t_R = 20.00\) min). HRMS (AP-ESI) Calcd for C\(_{14}\)H\(_{17}\)ClO\(_2\) (M+H\(^+\)): 253.0995; Found: 253.0989.

Analogous treatment (65 °C, 2h) of 96a (50 mg, 0.29 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 1.45 mL, 0.722 mmol) in dried THF (5 mL) in the presence of PdCl\(_2\)(dppb) (5% molar) gave 98a (39 mg, 53%), 100a (26 mg, 27%), 101a\(^{137}\) (10 mg, 15%).

Analogous treatment (65 °C, 2h) of 96a (50 mg, 0.29 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 1.45 mL, 0.722 mmol) in dried THF (5 mL) in the presence of Pd(PPh\(_3\))\(_4\) (5% molar) gave only the dialkylated byproduct 100a (68%) and 101a\(^{137}\) (28%).
(Z)-Ethyl 5-Chloro-6-(4-methoxyphenyl)-5-hexenoate (98b). Treatment (50 °C to 65 °C, overnight) of 96b (41 mg, 0.20 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 2 mL, 1.01 mmol) in the presence of PdCl$_2$(dppf) (5% molar) and DPEPhos (3% molar) in dried benzene (5 mL) as described in procedure J gave 98b(Z) (39.5 mg, 70%) and 100b (19 mg, 27%). Compound 98b had: 1H NMR δ 1.26 (t, J = 7.1 Hz, 3, OEt), 2.01 (quint, J = 7.3 Hz, 2, H3), 2.36 (t, J = 7.4 Hz, 2, H4), 2.52 (t, J = 7.2 Hz, 2, H2), 3.82 (s, 3, OMe), 4.13 (q, J = 7.1 Hz, 2, OEt), 6.43 (s, 1, H6), 6.88 (d, J = 8.8 Hz, 2, Ph), 7.57 (d, J = 8.7 Hz, 2, Ph). 13C NMR δ: 14.25 (CH$_3$, OEt), 22.80 (CH$_2$, C3), 32.84 (CH$_2$, C2), 40.28 (CH$_2$, C4), 55.21 (OMe), 60.34 (OEt, CH$_2$), 113.56 (CH, Ph), 124.67 (CH, C6), 127.55 (CH, Ph), 130.63 (CH, Ph), 131.63 (C5), 158.93 (Ph), 173.22 (CO, C1). GC-MS m/z 282 [25%, M$^+$ $^{[35}$Cl]; t_R = 23.50 min

Analogous treatment of 96b (35 mg, 0.17 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 0.57 mL, 0.28 mmol) in dried benzene (5 mL) in the presence of PdCl$_2$(dppb) (5% molar) and DPEPhos (3 %) as described in procedure J gave 98b (30 mg, 63%), 100b (17 mg, 27%) and 101b (4 mg, 10%).

Analogous treatment of 96b (45 mg, 0.22 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 0.57 mL, 0.28 mmol) in dried benzene (5 mL) in the presence of Pd(PPh$_3$)$_4$ (5% molar) and DPEPhos (3% molar) as described in procedure J gave 98b (34 mg, 55%), 100b (28 mg, 35%) and 101b (5.5 mg, 10%).

Analogous treatment of 96c (45 mg, 0.24 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 0.57 mL, 0.28 mmol) in dried benzene (5 mL) in the presence of PdCl$_2$(dppb) (5% molar) and DPEPhos (3% molar) as described in procedure J gave 100c (75 mg, 90%) and 101c (5.5 mg, 10%).
Treatment of 97a (50 mg, 0.19 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 0.57 mL, 0.28 mmol) in dried THF (5 mL) in the presence of PdCl₂(dppf) (21 mg, 0.025 mmol) as described in procedure J gave 100a (29 mg, 69 %) and 101a (18 mg, 28%).

Analogous treatment of 97a (50 mg, 0.19 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 0.57 mL, 0.28 mmol) in dried THF (5 mL) in the presence of PdCl₂(dppb) (5% molar) as described in procedure J (65 °C, overnight) gave 100a (47 mg, 75 %) and 101a (10 mg, 24%).

Analogous treatment of 97a (50 mg, 0.19 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 0.57 mL, 0.28 mmol) in dried THF (5 mL) in the presence of Pd(Ph₃P)₄ (29 mg, 0.025 mmol) gave 100a (38 mg, 60%) and 101a (16 mg 38%).

(Z)-Ethyl 5-Bromo-6-(4-methoxyphenyl)-5-hexenoate (99b). Treatment of 97b (40 mg, 0.13 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 2 mL) in the presence of PdCl₂(dppf) (5% molar) and DPEPhos (3% molar) in dried benzene (5 mL) as described in procedure J gave 99b(Z) (20 mg, 47%) and 100b (13 mg, 27 %). Compound 99b had: ¹H NMR δ 1.17 (t, J = 7.1 Hz, 3, OEt), 1.92 (quint, J = 7.3 Hz, 2, H3), 2.29 (t, J = 7.4 Hz, 2, H4), 2.57 (t, J = 7.4 Hz, 2, H2), 3.74 (s, 3, OMe), 4.06 (q, J = 7.1 Hz, 2, OEt), 6.61 (s, 1, H6), 6.80 (d, J = 8.8 Hz, 2, Ph), 7.47 (d, J = 8.7 Hz, 2, Ph). ¹³C NMR δ: 14.26 (CH₃, OEt), 23.49 (CH₂, C3), 32.72 (CH₂, C2), 42.34 (CH₂, C4), 55.26 (OMe), 60.39 (OEt, CH₂), 113.47 (CH, Ph), 124.54 (CH, C6), 127.83 (CH, Ph), 128.32 (C5), 131.63 (CH, Ph), 159.03 (Ph), 173.22 (CO, C1). GC-MS m/z 326 [2%, M⁺[79Br]; tᵣ = 23.50 min].
Analogous treatment of 97b (45 mg, 0.15 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 0.57 mL, 0.28 mmol) in dried benzene (5 mL) in the presence of PdCl$_2$(dppb) (5% molar) and DPEPhos (3%) as described in procedure J gave 100b (42 mg, 78%) and 101b (8 mg, 21%).

Analogous treatment of 97b (45 mg, 0.15 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 0.57 mL, 0.28 mmol) in dried benzene (5 mL) in the presence of Pd(PPh$_3$)$_4$ (5% molar) and DPEPhos (3%) as described in procedure J gave 99b (20 mg, 40%), 100b (32 mg, 59%).

Treatment of 97b (45 mg, 0.15 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 0.57 mL, 0.28 mmol) in dried benzene (5 mL) in the presence of Pd(PPh$_3$)$_4$ (5% molar) as described in procedure J gave only 100b (39 mg, 72%) and 101b (9.6 mg, 26%).

Treatment of 97c (50 mg, 0.18 mmol) with 4-ethoxy-4-oxobutylzinc bromide (0.5 M, 0.57 mL, 0.28 mmol) in dried benzene (5 mL) in the presence of PdCl$_2$(dppb) (5% molar) and DPEPhos (3%) as described in procedure J gave 100c (17 mg, 27%) and 101c (4 mg, 10%).

Ethyl 6-phenyl-5-(3-ethoxycarbonylpropyl)hexenoate (100a). Compound 100a had: 1H NMR δ 1.15 (t, $J = 7.1$ Hz, 3, OEt), 1.19 (t, $J = 7.1$ Hz, 3, OEt) 1.66-1.82 (m, 4, H3), 2.10-2.22 (m, 4, H4), 2.27 (t, $J = 7.4$ Hz, 4, H2), 3.98-4.09 (m, 4, OEt), 6.25 (s, 1, H6), 7.08-7.25 (m, 5, Ph); 13C NMR δ 14.56 (CH$_3$, OEt), 14.62 (CH$_3$, OEt), 23.69 (CH$_2$, C3), 23.77 (CH$_2$, C3’), 30.08 (CH$_2$, C4’), 34.18 (CH$_2$, C2), 34.47 (CH$_2$, C2’), 36.50 (CH$_2$, C4), 60.60 (OEt, CH$_2$), 60.62 (OEt, CH$_2$), 126.51 (CH, C6), 127.07 (CH, Ph), 128.98 (CH, Ph), 129.0 (CH, Ph), 138.47 (CH, Ph), 141.45 (C, C5), 173.71 (CO),
173.91(CO); GC-MS m/z 332 [35%, M+; t_R = 25.36 min]. Anal. Calcd. for C₂₀H₂₈FO₄ (332.20): C, 72.26; H, 8.49. Found: C, 71.92; H, 8.59.

Ethyl 6-(4-methoxyphenyl)-5-(3-ethoxycarbonylpropyl)hexenoate (100b). Compound 100b had: ¹H NMR δ: 1.20 (t, J = 7.1 Hz, 3, OEt), 1.26 (t, J = 7.1 Hz, 3, OEt), 1.77-1.85 (m, 4, H3), 2.18-2.28 (m, 4, H4), 2.36 (t, J = 7.4 Hz, 4, H2), 3.82 (s, 3, OMe), 4.08-4.18 (m, 4, OEt), 6.27 (s, 1, H6), 6.85 (d, J = 8.7 Hz, Ph), 7.12 (d, J = 8.4 Hz, Ph); ¹³C NMR δ: 14.22 (CH₃, OEt), 14.26 (CH₃, OEt), 23.33 (CH₂, C3), 23.38 (CH₂, C3’), 29.65 (CH₂, C4), 33.82 (CH₂, C2), 34.13 (CH₂, C2’), 36.21 (CH₂, C4), 55.24 (OMe, CH₃), 60.28 (OEt, CH₂), 113.56 (CH, Ph), 126.13 (CH, C6), 129.72 (CH, Ph), 130.62 (Ph), 139.78 (C, C5), 157.91 (C, Ph) 173.45 (CO), 173.66 (CO); GC-MS m/z 362 [50%, M+; t_R = 27.80 min].

Ethyl 6-phenyl-5-(3-ethoxycarbonylpropyl)heptenoate (100c). Compound 100c had: ¹H NMR δ: 1.12 (t, J = 7.1 Hz, OEt), 1.19 (t, J = 7.1 Hz, OEt), 1.51-1.56 (m, 4, H3), 1.51 (quint, J = 7.3 Hz, 2, H3), 1.71 (quint, J = 7.3 Hz, 2, H3’), 1.81 (t, J = 7.2 Hz, 2, H4), 1.87 (s, 3, CH₃), 2.00 (t, J = 7.1 Hz, 2, H4’), 2.12 (t, J = 7.1 Hz, 2, H2), 2.28 (t, J = 7.1 Hz, 2, H2’), 3.96 (q, J = 7.2 Hz, 2, OEt), 4.08 (q, J = 7.2 Hz, 2, OEt), 6.98-7.24 (m, 5, Ph). ¹³C NMR δ: 14.19 (CH₃, OEt), 14.28 (CH₃, OEt), 21.13 (CH₃, C7), 23.67 (CH₂, C3), 23.91 (CH₂, C3’), 30.19 (CH₂, C4), 31.95 (CH₂, C4’), 34.11 (CH₂, C2), 34.14 (CH₂, C2), 60.15 (CH₂, OEt), 60.31 (CH₂, OEt), 125.95 (C, C6), 128.06 (CH, Ph), 128.13 (CH, Ph), 133.33 (C, C5), 133.68 (CH, Ph), 145.05 (C, Ph), 173.55 (C1, CO), 173.64 (C1, CO). GC-MS m/z 346 [50%, M+; t_R = 25.15 min].
5. CONCLUSION

S-Adenosyl-L-homocysteine (AdoHcy) hydrolase is an intracellular enzyme which is crucial for the maintenance of biomethylation processes. The standard mechanistic sequence involves the oxidation of AdoHcy at C3' (“oxidative activity”) followed by elimination of L-homocysteine, Michael type addition of water (“hydrolytic activity”) and reduction of the 3'-keto adenosine intermediate to yield adenosine. The 6'-halo(homovinyl)adenosine analogues were found to be concentration and time dependent inactivators of AdoHcy hydrolase. They underwent hydration of the 5’,6’ double bond by the “hydrolytic activity” of the enzyme. To probe further “hydrolytic activity” of AdoHcy hydrolase, analogues of AdoHcy with the carbon-5’ and sulfur atoms replaced by a vinyl or halovinyl unit were designed and synthesized. Also, L-adenosine, the enantiomer of the natural substrate, was synthesized in order to examine the possibility of whether L-adenosine can act as (un)likely substrate and/or inhibitor of AdoHcy hydrolase.

The first targets were L-adenosine and its 5’-aldehyde oxime. Their synthesis started from L-xylose utilizing literature protocols. L-adenosine and its 5’-aldehyde oxime were evaluated for their ability to inhibit the activity of recombinant human placental AdoHcy hydrolase by incubating the enzyme with them at 200 μM for 20 min at 37 °C. The AdoHcy hydrolase activity was determined by assaying the enzyme’s ability to catalyze the conversion of Ado and Hcy to AdoHcy. Under these conditions, L-adenosine and its 5'-aldehyde oxime were found to be inactive as inhibitors of the AdoHcy hydrolase. Docking calculations showed that binding of L-Ado is not as specific as that of D-Ado for the AdoHcy hydrolase and that the binding energy of the D-Ado/enzyme complex is lower than that of the L-Ado/enzyme complex. These results
might explain why L-Ado and its analogues are inactive as inhibitors of AdoHcy hydrolase.

The second targets were AdoHcy analogues in which the sulfur and C5’ atoms in the S-adenosyl-L-homocysteine were replaced by the vinyl or halovinyl unit. These analogues should form a “stable” complex with the enzyme, which would interact with the enzyme to identify the major binding groups of the active site of AdoHcy that interact with Hcy moiety and participates in elimination and hydrolytic activity steps. These targets were synthesized employing a metathesis approach to construct a new C5’-C6’ double bond and Negishi Pd-catalyzed cross-coupling to build a new C6’-C7’ single bond.

Cross-metathesis of the protected 5’-deoxy-5’-methyleneadenosine analogue with racemic 2-amino-5-hexenoate (unnatural aminoacid) in the presence of Hoveyda-Grubb's catalyst followed by standard deprotections afforded 5’E isomer of the inseparable mixture of 9’R/S diastereomers. Metathesis of the chiral homoallylglycine [(2S)-amino-5-hexenoate] with 6-N-dibenzoyl protected 5’-deoxy-5’-methyleneadenosine precursor afforded the AdoHcy analogue with established stereochemistry (5’E, 9’S). Contrary to products obtained from racemic homoallylglycine, the 13C NMR spectra for products obtained from chiral homoallylglycine showed only a single set of peaks. 1H NMR also showed some spectral differences especially for H2 and H8 from the adenine base. The 5’-bromovinyl analogue was synthesized using the bromination-dehydrobromination strategy with pyridinium tribromide and DBU.
Since literature reports on the Pd-catalyzed monoalkylation of dihaloalkenes (Csp\(^2\)-Csp\(^3\) coupling) were scarce, we undertook model studies on Pd-catalyzed cross-coupling reactions between vinyl dihalides and alkyl organometallics. A series of 1-fluoro-1-haloalkenes was chosen as precursors to study Pd-catalyzed Negishi coupling with alkylzincs. It was found that 1-fluoro-1-haloalkenes underwent Pd-catalyzed Negishi cross-couplings with primary alkylzinc bromides to give multisubstituted fluoroalkenes. The alkylation was trans-selective giving pure Z-fluoroalkenes in most cases. The highest yields were obtained with Pd\(_2\)(dba)\(_3\) and PdCl\(_2\)(dppb) catalysts but the best stereochemical outcome was observed with less reactive Pd(PPh\(_3\))\(_4\). The tertiary alkylzincs also produced desired fluoroalkenes. Coupling of \(\beta,\beta\)-dichlorostyrene and \(\beta,\beta\)-dibromostyrene with alkylzinc reagents afforded the monohalo substituted olefins, but addition of DPEPhos ligands was found to be critical.

In summary, we have synthesized AdoHcy analogues in which the sulfur and C5' atoms in the S-adenosyl-L-homocysteine were replaced by the vinyl or halovinyl unit using a metathesis approach. We have also developed Pd-catalyzed Negishi cross-coupling of 1-fluoro-1-(iodo, or bromo, or chloro)alkenes with alkylzincs, thus providing stereoselective access to the internal fluoroalkenes.
Figure 11. List of chemical structures for chemicals

MFSTA: N-Methyl-N-(trimethylsilyl)-trifluoroacetamide

DCC: dicyclohexylcarbodiimide

BzCl: benzoyl chloride

dppb: 1,4-bis(diphenylphosphino)butane

(tBuO)₂CO: di-t-butylcarbonate
dpephos: bis(o-diphenylphosphanyl)phenylether

DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene
dba: dibenzylideneacetone

NBS: N-bromosuccinimide
NIS: N-iodosuccinimide

$\text{tBuPh}_2\text{SiCl}:\text{tert-butylchlorodiphenylsilane}$

THF: tetrahydrofuran

$\text{Ac}_2\text{O}:\text{Acetic anhydride}$

DMSO: dimethyl sulfoxide

$\text{triethyl orthoformate}$

TMSOTf: trimethylsilyl trifluoromethane sulfonate

p-toluenesulfonic acid

TFA: trifluoroacetic acid

Imidazole

Pyr: pyridine
REFERENCES

VITA

DANIELA ANDREI

Education

Ph.D. Candidate, Chemistry, Fall 2006, Florida International University.
Dissertation: “Synthesis of multi-substituted halo-olefins via Pd-catalyzed cross-coupling reactions. Applications in nucleoside chemistry”.
Advisor: Professor Stanislaw Wnuk.

M.S. Natural Products, “Gh. Asachi” Technical University, Iasi, Romania.

B.E. Biochemical Engineering, “Gh. Asachi” Technical University, Iasi, Romania.

Honors & Scholarships

- Outstanding Organic Chemistry Teaching Assistant Award (2005-2006)
- SoFLACS Graduate Travel Award, 2006
- Graduate Students Scholarly Forum, FIU, Spring 2006 – 1st place

Publications

Presentations at Conferences

Affiliations

American Chemical Society
South Florida American Chemical Society.