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GW_Q, DA RCHG, GW_RCHG,  PERC) recorded a decrease in amount as they depend 

on the amount of water infiltrating and penetrating to the shallow and deep aquifer which 

was slightly reduced because of the reduction in forest which increased the conversion of 

precipitation to runoff in both watersheds.  This shows that the amount of water in the 

system more than anything determines the amounts that will be distributed among the 

different pathways of the water balance components. 

 

4.2.4.2.2 Complete Deforestation 

 

   

Figure 4-49. Amala RFE Complete Deforestation  
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Figure 4-50. Nyangores RFE Complete Deforestation  
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increased with an increase in water amount in the river channel because there was more 

water to be lost. SEDYLD also increased because of the loss of forest cover and 

increased surface runoff. Total water yield to the stream reach also increased as a result 

of the increased runoff which had percentages of 12% (Amala) and (20%) Nyangores. 

  Evapotranspiration decreased in the Nyangores watershed and this was seen to have 

been caused by reduction of forest cover specifically evergreen forest that is a large 

source of transpiration and evaporation of rainfall intercepted by the canopy. 

 There was a decrease in the other water balance components. REVAP decreases because 

of the absence of forest cover which significantly reduced the amount of deep rooted 

plants in the watershed that could remove water from the shallow aquifer. The LATQ, 

GW_Q, DA_RCHG, GW_RCHG and PERC all recorded a decrease in amount due to a 

decrease in the amount of water making its way to the shallow and deep aquifer as 

groundwater recharge. 

 

4.2.4.2.3 Replacement of Forest by Agriculture 

  Replacement of forest land by agriculture is a common trend within the study area and 

is seen to be one of the major causes of extreme high and low river flows and increased 

sediment load in the Nyangores and Amala Rivers. 
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From the monthly hydrographs for the land use change scenarios above, it is clear that all 

the scenarios result in reduced monthly discharge in both the Amala and Nyangores 

rivers. In terms of the type of land use change and its effect, the monthly averages are 

consistent with the daily hydrographs where the conversion of forest land to agricultural 

land would have the most impact on the watersheds by reducing the output of both Amala 

and Nyangores rivers the most. 
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Table 4-12 Percent Changes in the Annual Averages of Amala Basin Water Balance Components for Land Use-Climate 
Change Scenarios 

 

 AM PD AM CD AM FA 
AM PD 
PR-10 
TM+5 

AM PD 
PR-20 
TM+5 

AM CD 
PR-10 
TM+5 

AM CD 
PR-20 
TM+5 

AM FA 
PR-10 
TM+5 

AM FA 
PR-20 
TM+5 

PRECIP (mm) 0.00 -9.91 -20.00 0.00 -9.91 -20.00 0.00 -9.91 -20.00 

SURQ (mm) 3.15 -27.00 -51.39 12.40 -19.36 -45.38 13.70 -20.00 -47.15 

LATQ (mm) -2.55 -21.98 -37.71 -2.70 -19.50 -34.74 0.80 -17.90 -34.13 

GW_Q (mm) -6.28 -33.22 -53.73 -3.54 -27.94 -48.25 -10.51 -35.82 -55.77 

REVAP (mm) -2.51 -16.93 -31.74 -2.73 -15.03 -29.31 -4.02 -17.08 -32.27 

DA_RCHG (mm) -6.03 -32.13 -52.28 -3.60 -27.35 -47.28 -10.07 -34.56 -54.19 

GW_ RCHG (mm) -5.99 -32.12 -52.29 -3.59 -27.32 -47.28 -10.02 -34.56 -54.21 

WYLD (mm) -3.88 -31.14 -52.27 0.25 -25.47 -46.82 -4.28 -31.18 -52.56 

PERC (mm) -5.95 -31.19 -50.79 -3.93 -26.94 -46.39 -10.41 -34.00 -52.96 

ET (mm) 2.57 3.30 -0.05 0.24 -0.02 -3.23 3.05 3.45 0.20 

PET (mm) 0.00 3.14 3.14 0.00 3.14 3.14 0.00 3.14 3.14 

TLOSS (mm) 10.83 -9.13 -29.51 14.86 -5.10 -25.48 38.00 12.95 -13.16 

SEDYLD (T/HA) 15.72 -19.79 -49.43 14.38 -24.31 -52.79 55.02 5.51 -34.59 

 

PD=Partial Deforestation, CD=Complete Deforestation, FA=Forest replaced by Agriculture, AM=Amala Watershed 
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Table 4-13 Percent Changes in the Annual Averages of Nyangores Basin Water Balance Components for Land Use-
Climate Change Scenarios 

 

 NY PD NY CD NY FA 
NY PD 
PR-10 
TM+5 

NY PD 
PR-20 
TM+5 

NY CD 
PR-10 
TM+5 

NY CD 
PR-20 
TM+5 

NY FA 
PR-

10TM+5 

NY FA 
PR-20 
TM+5 

PRECIP (mm) 0.00 -9.92 -19.98 0.00 -9.92 -19.98 0.00 -9.92 -19.98 

SURQ (mm) 6.94 -24.08 -48.85 20.58 -13.61 -41.47 31.49 -5.99 -36.31 

LATQ (mm) -1.56 -20.65 -35.94 -0.66 -17.55 -32.60 -14.91 -30.31 -43.44 

GW_Q (mm) -4.16 -30.49 -49.05 -0.75 -24.38 -43.01 -9.39 -33.28 -51.00 

REVAP (mm) -1.84 -12.76 -26.76 -0.89 -10.03 -23.28 -2.80 -12.76 -27.37 

DA_RCHG 
(mm) -4.04 -29.68 -48.09 -0.75 -23.79 -42.21 -9.06 -32.33 -50.00 

GW_ RCHG 
(mm) -4.06 -29.71 -48.12 -0.79 -23.78 -42.21 -9.09 -32.35 -49.99 

WYLD (mm) -2.00 -28.50 -47.85 2.93 -21.96 -41.88 -3.00 -28.49 -47.98 

PERC (mm) -4.22 -29.92 -48.36 -1.10 -24.07 -42.49 -9.71 -32.91 -50.50 

ET (mm) 1.64 3.46 0.23 -1.93 -1.33 -4.20 2.46 3.50 0.35 

PET (mm) 0.00 3.15 3.15 0.00 3.15 3.15 0.00 3.15 3.15 

TLOSS (mm) 9.90 -10.15 -29.21 23.76 1.49 -19.80 45.30 20.30 -4.46 

SEDYLD 
(T/HA) 22.39 -12.37 -42.73 11.90 -22.78 -50.15 41.48 1.19 -33.21 

 

NY=Nyangores Watershed 
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Table 4-14 Ratio of Water Balance Components to Precipitation for the Amala Basin Land Use-Climate Change 
Scenarios 

 

 AM RFE AM PD AM CD AM FA 
AM PD 
PR-10 
TM+5 

AM CD 
PR-10 
TM+5 

AM FA 
PR-10 
TM+5 

AM PD 
PR-20 
TM+5 

AM CD 
PR-20 
TM+5 

AM FA 
PR-20 
TM+5 

PREC (mm) 1 1 1 1 1 1 1 1 1 1 

SURQ (mm) 0.085 0.088 0.096 0.097 0.069 0.076 0.076 0.052 0.058 0.056 

LATQ (mm) 0.026 0.025 0.025 0.026 0.023 0.023 0.024 0.020 0.021 0.021 

GW_Q (mm) 0.236 0.221 0.228 0.211 0.175 0.189 0.168 0.137 0.153 0.131 

REVAP (mm) 0.013 0.013 0.013 0.013 0.012 0.012 0.012 0.011 0.012 0.011 

DP AQ RCHRG 
(mm) 0.013 0.013 0.013 0.012 0.010 0.011 0.010 0.008 0.009 0.008 

TOTAL AQ 
RCHRG (mm) 0.269 0.253 0.260 0.242 0.203 0.217 0.196 0.161 0.177 0.154 

WYLD (mm) 0.343 0.330 0.344 0.328 0.262 0.284 0.262 0.205 0.228 0.203 

PERC (mm) 0.287 0.270 0.276 0.257 0.219 0.233 0.210 0.177 0.192 0.169 

ET (mm) 0.582 0.597 0.583 0.600 0.667 0.646 0.668 0.727 0.704 0.729 

PET (mm) 1.160 1.160 1.160 1.160 1.328 1.328 1.328 1.496 1.496 1.496 

TLOSS (mm) 0.005 0.005 0.005 0.006 0.005 0.005 0.006 0.004 0.004 0.005 

SED (T/HA) 0.003 0.003 0.003 0.004 0.002 0.002 0.003 0.002 0.002 0.002 
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Table 4-15 Ratio of Water Balance Components to Precipitation for the Nyangores Basin Land Use-Climate Change 
Scenarios 

 

 NY DEF NY PD NY CD NY FA 
NY PD 
PR-10 
TM+5 

NY CD 
PR-10 
TM+5 

NY FA 
PR-10 
TM+5 

NY PD 
PR-20 
TM+5 

NY CD 
PR-20 
TM+5 

NY FA 
PR-20 
TM+5 

PREC (mm) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

SURQ (mm) 0.072 0.077 0.087 0.094 0.061 0.069 0.075 0.046 0.053 0.057 

LATQ (mm) 0.040 0.040 0.040 0.034 0.036 0.037 0.031 0.032 0.034 0.029 

GW_Q (mm) 0.285 0.273 0.282 0.258 0.220 0.239 0.211 0.181 0.203 0.174 

REVAP (mm) 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.012 0.013 0.012 

DP AQ RCHRG 
(mm) 0.016 0.015 0.016 0.014 0.012 0.013 0.012 0.010 0.011 0.010 

TOTAL AQ 
RCHRG (mm) 0.316 0.303 0.313 0.287 0.246 0.267 0.237 0.205 0.228 0.197 

WYLD (mm) 0.393 0.385 0.405 0.381 0.312 0.341 0.312 0.256 0.286 0.256 

PERC (mm) 0.315 0.301 0.311 0.284 0.245 0.265 0.234 0.203 0.226 0.195 

ET (mm) 0.567 0.576 0.556 0.581 0.651 0.621 0.651 0.710 0.679 0.711 

PET (mm) 1.075 1.075 1.075 1.075 1.230 1.230 1.230 1.385 1.385 1.385 

TLOSS (mm) 0.004 0.004 0.005 0.005 0.004 0.004 0.005 0.003 0.004 0.004 

SED (T/HA) 0.005 0.006 0.005 0.006 0.004 0.004 0.005 0.003 0.003 0.004 
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4.2.4.2.4 Combination of Land use and Climate Change Scenarios 

The shown hydrographs display the discharge outputs of the land use-climate change 

scenarios which are actually more realistic scenarios in terms of future projections of 

land use change and climate change.  The most plausible land use scenarios in the 

case of the Upper Mara basin are the three covered in this study with the complete 

deforestation being the least likely to happen among the three. Among the climate 

change the most plausible scenarios are the combinations of temperature increase and 

precipitation increase as projected by the IPCC though precipitation reduction is a 

more often occurrence in the study area as of today and therefore were included in the 

scenarios analysis. 

 

 

Figure 4-57. Amala Daily Discharge for Land Use-Climate Change Scenarios 
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Figure 4-58.  Amala Monthly Discharge for Land Use-Climate Change Scenarios 

   

 

Figure 4-59. Nyangores Daily Discharge for Land Use-Climate Change Scenarios 
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Figure 4-60. Nyangores Monthly Discharge for Land Use-Climate Change Scenarios 
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Figure 4-61 Percent Changes for water balance components in Amala Land Use-Climate 

Change Scenarios 

 

For the percent changes in water balance components, the figures 4-61 and 4-62 display 

the variation in the water balance components across different land uses. From the tables 

4-12 and 4-13 above, the different land use scenarios affect the water balance 

components differently and where these differences are most pronounced are in the 

surface runoff and groundwater recharge as earlier discussed. 
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Figure 4-62 Percent Changes for water balance components in Nyangores Land Use-

Climate Change Scenarios 
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5.0 CONCLUSIONS  

      It is undeniable that land use and climate change have an effect on the hydrology of 

the upper Mara River basin. The different scenarios have shown the potential effects 

climate and land use change or transitions will have on the flow of the Mara tributaries. 

This study however did not take into account the effect of better land and soil 

management practices on these watersheds will have in the face of these changes. The 

implementation of better management practices may completely alter the effect these 

changes may have on the natural system either positively or negatively. The natural 

system may respond differently in ways we have no knowledge of and therefore it is safe 

to say that this study examines the potential and not actual impacts of these land use and 

climate changes on the water flux of these two tributaries. 

  This study was able to achieve the objectives for which it was designed to a reasonably 

high degree of success. With regards to mapping land use/ land cover, the expert 

classifier was able to classify the image at a high accuracy of 84% and this was able to 

achieve an accurate map of the highly variable study area using far less time and effort 

than conventional algorithms such as a maximum likelihood classification would have 

taken. This method is useful in situations where a trip to the field to obtain ground 

reference data cannot be made as was in the case of this study. The recursive partitioning 

step and cross validation method is an exceptional way of classifying spectral imagery 

and this methodology should be further developed to aid in classification of similar areas 

with highly variable land cover.  

  From the performance of the models it can inferred that the set-up and calibration of a 

semi-distributed hydrological model such as SWAT in a large watershed with variable 
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land cover, soils and topography is a feasible task and will yield satisfactory results given 

reliable data and  proper attention to manual or automatic calibration. The calibration and 

validation of these models further revealed that the RFE models consistently performed 

better than the rain gauge models in this study. This is because only two rain gauge 

stations were used to provide rainfall data for the whole watershed and there lacks a 

dense ground network of stations that are able to capture the spatial variability or rainfall 

events such as localized storm cells that may measure between 1 and 15 kilometers in 

diameter. The RFE data were able to capture the spatial variability of the rainfall in the 

watersheds resulting in acceptable simulations of the river flow and water balance 

components. The validation of the models however was not satisfactory and this can be 

attributed to the parameter values obtained in the calibration process not being good 

enough for performing further simulations. 

   This study revealed that land use and climate change scenarios will significantly impact 

the water flux in the upper Mara River. The climate change scenarios revealed that the 

variation of precipitation has the greatest impact on the amount of discharge, sediment 

yield, surface runoff (a reduction of 20% in precipitation will reduce the surface runoff 

by half its amount in both the Amala and Nyangores watersheds) and generally to the 

water balance components in the watersheds. As seen in Tables 4-10, 4-11, 4-14 and 4-

15, the ratio of the water balance components to precipitation reduces drastically with the 

reduction of precipitation. This is expected as precipitation is the main driving force of 

the hydrological cycle and any change in the amount will be directly reflected in the flow 

of the Mara River. Temperature increase impacts the discharge less directly than decrease 

in precipitation but nonetheless has an impact by increasing evapotranspiration and plant 
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production which will ultimately affect land cover in the long-term. More realistic 

climate change simulations that combined precipitation reduction and temperature 

increase had the most effect on the discharge and water balance components with a 

reduction in river discharge in both wet and dry seasons, reduction in total water yield, 

groundwater discharge, surface runoff and groundwater contribution to the river channel. 

As previous studies that have found precipitation and slope to be the main factors 

affecting streamflow in small watersheds, the model results show that Amala and 

Nyangores are no different and imply that climate change alone will have profound 

effects on the upper Mara River flow and the human and wildlife inhabitants of the Mara 

River basin. 

  The simulation of land use scenarios showed the impact that land use change will have 

on the discharge of the Amala and Nyangores rivers and water balance components. In 

these land use-climate change combined scenarios, there is a reduced amount of 

groundwater recharge, surface runoff, and total water yield to the stream meaning the 

water balance will be significantly affected by the reduction of precipitation, increased 

temperature and altered land cover. The long term effects are not well known at this point 

and a simulation of long term effects may turn out entirely different results. 

  The model simulations predict that the upper Mara River flow will be significantly 

affected in the face of the climate and land use change scenarios posing difficulties in 

adaptation to the altered flow regimes of the Amala and Nyangores rivers. It is therefore 

prudent to work towards establishing and maintaining adequate minimum flows that 

would mitigate the effects of reduced baseflows and put in place measures to maintain 

adequate sustained river flows to the benefit of the stakeholders of the Mara River basin. 



158 
 

6.0 RECOMMENDATIONS 

  From the encouraging performance of the RFE rainfall data in the simulation of the 

water balance and discharge of the Amala and Nyangores rivers in this study, additional 

studies into the feasibility of RFE data should be carried out in order to further validate it 

and develop methodologies to seamlessly integrate it into hydrological and other resource 

related studies.  

  Consistent land use/land cover classification/ mapping coupled with predictive land use 

transition models should be carried out in order to quantify and characterize true land 

use/land cover changes. This will help establish trends and enable resource managers to 

project realistic change scenarios helpful for natural resource management in the Mara 

River basin. From the study, the only land use change scenarios explored were those that 

were already perceived to have a negative effect on the water output of the Amala and 

Nyangores, further work should be done to identify land use changes or land uses with a 

positive effect on the hydrology of the Mara system which managers and stakeholders 

can work to establish at a minimum cost to the stakeholder and the environment. 

  Additional research is needed to improve and extend the findings of this study. An 

increased spatial and temporal collection of river discharge and sediment data will enable 

researchers and water resource managers to better understand the characteristics of the 

Mara River.  There is need to 1) quantify these impacts at a river basin scale and 2) 

consider in more detail the interactions between surface and groundwater in order to 

properly simulate the water balance of the watershed. 

   The research questions that emerge from this study are: Is there land use/land cover 

change occurring in the Mara River basin or is it a combination of plant phenological 
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cycles and land management land practices? Is land use change by itself a major cause of 

erratic and reduced flows or is the amount of precipitation the major cause? Is there good 

land use change and if there is what are these land use types? There are many issues in 

the Mara River basin that are a constant source of conflict the major two being forest 

conservation and land use practices. Further research into proper water and land 

management practices and conservation practices would go a long way in integrated 

water resource management and also in protecting and ensuring the integrity of the Mara 

River ecosystem for all the stakeholders who depend on it for their livelihood. Building 

further on the already existing research work carried out in the Mara Basin will be most 

beneficial to the residents of the Mara River basin. 

  An important question however, is to what extent can these changes be quantified and 

how likely is it that these changes will occur? It is therefore important to have a good 

sense or picture of the current and potential land use transitions that may occur within the 

upper Mara River basin and their effects on the water output of the upper Mara 

tributaries.  Results from this study will add to the existing knowledge base of the Mara 

River basin and will be an important piece in efforts to manage water and other valuable 

natural resources in similar watersheds worldwide. 
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APPENDIX 

APPENDIX 1: Kenya’s Internal Water Resources 
 

 
Internal Renewable Water Resources 
(IRWR),1977-2001, in cubic km 

Kenya Sub-Saharan 
Africa 

Surface water produced internally 17 3,812 
Groundwater recharge 3 1,549 
Overlap (shared by groundwater 
and surface water) 

0 1,468 

Total internal renewable water resources 
(surface water + groundwater - overlap) 

20 3,901 

Per capita IRWR, 2001 (cubic meters) 633 5,705 
Natural Renewable Water Resources(includes flows from other 
countries) 
Total, 1977-2001 (cubic km) 30 X 
Per capita, 2002 (cubic meters per 
person) 

947 X 

Annual river flows:   
From other countries (cubic km) 10 X 
To other countries (cubic km) X X 
Water Withdrawals 
Year of withdrawal data 1990  
Total withdrawals (cubic km) 2.0 X 
Withdrawals per capita (cubic m) 87 X 
Withdrawals as a percentage of actual 
renewable water resources 

9.2% X 

Withdrawals by sector (as a percent of 
total) {a} 

  

Agriculture 76% X 
Industry 4% X 
Domestic 20% X 

 
 

Source: WRI, 2003 
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Appendix 2: Tanzania’s Internal Water resources 
 
 

Internal Renewable Water Resources 
(IRWR),1977-2001, in cubic km 

Tanzania Sub-Saharan 
Africa 

Surface water produced internally 80 3,812 
Groundwater recharge 30 1,549 
Overlap (shared by groundwater 
and surface water) 

28 1,468 

Total internal renewable water resources 
(surface water + groundwater - overlap) 

82 3,901 

Per capita IRWR, 2001 (cubic meters) 2,227 5,705 
Natural Renewable Water Resources 
(includes flows from other countries) 
Total, 1977-2001 (cubic km) 91 X 
Per capita, 2002 (cubic meters per 
person) 

2,472 X 

Annual river flows:   
From other countries (cubic km) X X 
To other countries (cubic km) X X 
Water Withdrawals 
Year of withdrawal data 1994  
Total withdrawals (cubic km) 1.2 X 
Withdrawals per capita (cubic m) 39 X 
Withdrawals as a percentage of actual 
renewable water resources 

1.6 X 

Withdrawals by sector (as a percent of 
total) {a} 

  

Agriculture 89% X 
Industry 2% X 
Domestic 9% X 

 
 
Source: WRI, 2003 

 
 
 
 
 
 
 


