Notes on sufficient conditions for a graph to be Hamiltonian

Michael Joseph Paul
School of Computer Science, Florida International University

Carmen Baytan Shershin
Ransom-Everglades School

Anthony Connors Shershin
Mathematics Department, Florida International University

Follow this and additional works at: http://digitalcommons.fiu.edu/cs_fac

Recommended Citation

This work is brought to you for free and open access by the College of Engineering and Computing at FIU Digital Commons. It has been accepted for inclusion in School of Computing and Information Sciences by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.
NOTES ON SUFFICIENT CONDITIONS FOR A GRAPH TO BE HAMILTONIAN

MICHAEL JOSEPH PAUL

School of Computer Science
Florida International University
Miami, Florida 33199

CARMEN BAYTAN SHERSHIN

Mathematics Department
Ransom-Everglades School
Coconut Grove, Florida 33133

and

ANTHONY CONNORS SHERSHIN

Mathematics Department
Florida International University
Miami, Florida 33199

(Received October 1, 1990 and in revised form December 8, 1990)

ABSTRACT. The first part of this paper deals with an extension of Dirac’s Theorem to
directed graphs. It is related to a result often referred to as the Ghouila-Houri
Theorem. Here we show that the requirement of being strongly connected in the hypothesis
of the Ghouila-Houri Theorem is redundant.

The Second part of the paper shows that a condition on the number of edges for a
graph to be hamiltonian implies Ore’s condition on the degrees of the vertices.

KEY WORDS AND PHRASES. hamilton cycle, directed graphs, Ghouila-Houri Theorem, strongly
connected digraphs, Dirac’s Theorem, Ore’s Theorem, edge condition.

1980 AMS SUBJECT CLASSIFICATION CODES. 05C45, 05C20.

1. EXTENDING DIRAC’S THEOREM TO DIRECTED GRAPHS

Establishing whether or not a graph is hamiltonian is nontrivial. Unfortunately,
oelegant (convenient) characterization of hamiltonian graphs exists, although several
necessary or sufficient conditions are known [1]. Sufficient conditions for a graph, or
digraph, to have a hamilton cycle usually take the form of implicitly requiring many
edges. One such digraph result was conjectured by C. Berge and was proved by M. Alain
Ghouila-Houri [2]. We shall refer to this as the G-H theorem. The hypothesis of this
theorem, in addition to requiring many arcs, also stipulates that the digraph be strongly
connected. One common variation of the G-H theorem extends Dirac’s well known sufficient
condition, for hamilton graphs, to directed graphs with the significant additional
condition that such digraphs be strongly connected. In the literature this variation has
sometimes been called Ghouila-Houri’s Theorem [3] even though it is only an immediate
corollary of the result stated in [2].

The terms used in this paper are consistent with those used by Chartrand [1]. Only
simple graphs and digraphs are considered (i.e. those with no loops, parallel edges or
parallel arcs).

In digraph D let $id(v)$ be the indegree of vertex v, $od(v)$ be the outdegree of v, and
p be the order (i.e., the number of vertices in D).
1.1 G-H Theorem. If D is a strongly connected simple digraph and if \(\text{id}(v) \geq \frac{p}{2} \) and \(\text{od}(v) \geq \frac{p}{2} \) for all vertices \(v \) in \(D \), then \(D \) has a hamilton cycle. [2]

To eliminate the redundancy in the hypothesis of the G-H Theorem, we prove that only weak connectivity need be established for the G-H theorem to hold (as opposed to strong connectivity).

1.2. Lemma. If \(D \) is a simple weakly connected digraph, and if for each vertex \(v \), \(\text{id}(v) \leq \frac{p}{2} \) and \(\text{od}(v) \leq \frac{p}{2} \), then \(D \) is strongly connected.

Proof. We shall establish the contrapositive. Suppose \(D \) is not strongly connected. Then there are vertices \(u \) and \(v \) such that there is no dipath from \(u \) to \(v \). Partition the vertices of \(D \) into two sets \(A \) and \(B \) where \(A \) contains \(v \) and all vertices which have a dipath to \(v \), and \(B \) contains all the vertices not in \(A \). Since \(u \) is in \(B \), both sets are nonempty.

Denote the cardinality of \(A \) and \(B \) by \(|A| \) and \(|B| \), respectively. Suppose \(|A| \leq |B| \).

Thus \(|A| \leq \frac{p}{2} \) and \(\text{id}(v) \) is at most \((\frac{p}{2})-1 \). Now suppose \(|A| > |B| \). This implies that \(|B| \leq (\frac{p}{2})-1 \). The vertex \(u \) cannot be adjacent to any vertex in \(A \) for, if so, it would be in \(A \). (Moreover, \(u \) cannot be adjacent to itself since \(D \) is simple.) Therefore, \(u \) can only be adjacent to the other vertices in \(B \); that is, \(\text{od}(u) < (\frac{p}{2})-1 \).

Thus we have proved that if \(D \) is not strongly connected, there is some vertex \(w \) such that either \(\text{id}(w) < \frac{p}{2} \) or \(\text{od}(w) < \frac{p}{2} \).

Consequently, Dirac's theorem does generalize in an easy, immediate fashion to digraphs. This result also follows from a stronger result due to Zhang Cun-Quan [4]. Moreover, since verifying that a digraph is strongly connected is nontrivial, this relaxation of the G-H Theorem becomes a useful tool to determine easily whether a digraph is hamiltonian or not.

The 1.2 Lemma is also significant in its own right because verifying that a digraph is strongly connected is an important matter. Indeed, this result, when the condition is satisfied, is easier to use when determining if a large graph is strongly connected than two other commonly used techniques: (a) computing the reachability matrix from the adjacency matrix and seeing whether or not it consists entirely of one's [5]; (b) using the depth-first search algorithm due to R.E. Tarjan [6].

We now state the refinement of (1.1) which follows immediately from it and (1.2).

1.3 Theorem. If \(D \) is a simple connected digraph and if for each vertex \(v \), \(\text{id}(v) \geq \frac{p}{2} \) and \(\text{od}(v) \geq \frac{p}{2} \), then \(D \) has a hamilton cycle.

Lastly, the original Ghoulia-Houri Theorem in [5] states that if \(D \) is strongly connected and if \(\text{id}(v) + \text{od}(v) \geq p \) for every vertex \(v \), then \(D \) has a hamilton cycle. However, this condition that the minimum total degree be at least \(p \) does not guarantee that \(D \) is strongly connected: Consider a digraph consisting of two complete symmetric digraphs \(D \) and \(K \), with \(|D| \) and \(|K| \) at least 2, such that \(D \) and \(K \) are joined completely by all possible arcs from the vertices of \(D \) to the vertices of \(K \). This example is mentioned in [7].

2. A FAMILIAR RESULT REVISITED.

Several sufficient conditions for a graph to be hamiltonian have been established.

The well known Dirac's condition and Ore's condition deal with the degree of the vertices of a graph. Another condition, less quoted, guarantees a hamilton cycle when there are "enough" edges [8]. Let \(G \) be a simple graph having \(p \) vertices and \(m \) edges. Each of the following is sufficient for a graph to be hamiltonian:

- **Dirac's condition**: For each vertex \(v \) of \(G \), \(\deg v \geq \frac{p}{2} \).
- **Ore's Condition**: For each pair of nonadjacent vertices \(u \) and \(v \) of \(G \), \(\deg u + \deg v \geq p \).
- **Edge condition**: The number of edges \(m \geq \left(\frac{1}{2} \right) (p-1)(p-2) + 2 \).

The purpose of this section is to show that the edge condition implies Ore's condition, to give simple examples to show that no implication exists between Dirac's condition and the edge condition, and to show that Ore's condition does not necessarily imply either Dirac's or the edge conditions:

The set diagram below (Figure 1) summarizes the relationships among hamilton graphs satisfying Ore's (O), Dirac's (D), and/or the edge condition (E).
2.1 Theorem. The edge condition implies Ore’s condition.

Proof. Let G be a simple graph satisfying the edge condition and let u and v be nonadjacent vertices. The maximum number of possible edges is \((1/2)(p-2)(p-3) + \deg u + \deg v\). Therefore we get \((1/2)(p-2)(p-3) + \deg u + \deg v \geq m \geq (1/2)(p-1)(p-2) + 2\). This yields \(\deg u + \deg v \geq (1/2)((p-1)(p-2) - (p-2)(p-3)) + 2 = p\). □

Every graph theory student learns that Dirac’s condition implies Ore’s condition but that the converse is not true. Now we will give simple examples to show that no implication exists between Dirac’s condition and the edge condition: A cycle of length four satisfies Dirac’s condition, but not the edge condition; the graph of order 5 consisting of a vertex of degree 2 joining it to any two vertices of \(K_4\), satisfies the edge condition but not Dirac’s; a complete graph of order \(\geq 3\) satisfies both Dirac’s and the edge condition. Finally, Figure 2 gives an example of a graph that satisfies Ore’s condition (O) but does not satisfy Dirac’s (D) nor the edge conditions (E).

![Venn diagram summarizing the relationships among hamilton graphs satisfying Ore’s, Dirac’s, and Edge conditions.](image)

Figure 2 A graph in the set O - (D \cup E)

ACKNOWLEDGEMENT. The authors thank the referee for suggesting the graph pictured in Figure 2.

REFERENCES

The Scientific World Journal

- Impact Factor 1.730
- 28 Days Fast Track Peer Review
- All Subject Areas of Science
- Submit at http://www.tswj.com