5-2013

Walk to School Route Planner for Miami Dade County, Florida

Zhaohui Fu
Florida International University, Fujen@fiu.edu

Boguan Guan
Florida International University

Henry Hochmair
University of Florida

Follow this and additional works at: http://digitalcommons.fiu.edu/gis

Part of the Geographic Information Sciences Commons

Recommended Citation
Fu, Zhaohui; Guan, Boguan; and Hochmair, Henry, "Walk to School Route Planner for Miami Dade County, Florida" (2013). GIS Center. 1.
http://digitalcommons.fiu.edu/gis/1

This work is brought to you for free and open access by the GIS Center at FIU Digital Commons. It has been accepted for inclusion in GIS Center by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.
Walk to School Route Planner for Miami Dade County, Florida

Zhaohui (Jennifer) Fu
Boguan (Keven) Guan
Florida International University, GIS Center

Dr. Henry Hochmair
University of Florida, Geomatics
Outline

• Project Background
 • Stakeholders and Partners
 • Purpose

• Demo

• Methodology
 • Data Preparation
 • Routing Criteria and algorithm
 • Web solutions (Google Maps API and ArcGIS Server Mesh-up)

• Future work -- validation of safe routes
 • Go Mobile
 • Validation of the network – User feedback
 • Expansion
Outline

• Project Background
 • Stakeholders and Partners
 • Purpose
Project Background

- SRTS is a new federal reimbursement program with the following goals:
 - encourage children in grades K-8, including those with disabilities, to walk and cycle to school;
 - make walking and cycling to school safer and more appealing;
 - facilitate projects that will improve safety and reduce traffic, fuel consumption, and air pollution in the vicinity of schools.

- Find more information at www.srtsfl.org
Project Background – Stakeholders and Partners

Advisory members

Funding agency

Project team
Project Background -- Objectives

- An Interactive web application
- Students and parents can enter the location of origin
- Default destination is the designated school within the school boundary of the chosen location
- Dynamically generates the safest route
Outline

• Project Background
 • Stakeholders and Partners
 • Purpose

• Demo
Live site: http://maps.fiu.edu/srts/
Outline

• Project Background
 • Stakeholders and Partners
 • Purpose

• Demo

• Methodology
 • Data Preparation
 • Routing criteria and algorithm
 • Web solutions (Google Maps API and ArcGIS Server Mesh-up)
Methodology – Data Preparation

<table>
<thead>
<tr>
<th>Data</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street network data</td>
<td>NAVTEQ NAVSTREETS</td>
</tr>
<tr>
<td>School locations</td>
<td>Miami Dade School Board</td>
</tr>
<tr>
<td>School Boundaries</td>
<td>Miami Dade School Board</td>
</tr>
<tr>
<td>Speed Limit</td>
<td>Miami Dade County GIS</td>
</tr>
<tr>
<td>Side Walk</td>
<td>Digitized by FIU GIS Lab</td>
</tr>
<tr>
<td>Cross Walk</td>
<td>Digitized by FIU GIS Lab</td>
</tr>
<tr>
<td>Traffic Lights</td>
<td>Miami Dade County GIS</td>
</tr>
</tbody>
</table>
Methodology – Data Preparation and Processing

- Sidewalks, Crosswalks – Digitize the sidewalks and crosswalks based on Google Maps and Google Street View.
- School Entries – Digitize the school entries based on Google Street View.
Methodology – Data Preparation and Processing

- Remove freeway segments from network layer
- Generate “Cross Point”
- Convert sidewalks information into an attribute
- Extract school zone flashing signal
- Manually adjust the location
- Remove “fake” junctions
- School Entries – Digitize the school entries
Methodology – Data Preparation and Processing
Methodology – Data Preparation and Processing

Side walks for the subject 13 school zones
Methodology – Data Preparation and Processing

Crosswalks for the subject 13 school zones
Methodology – Criteria and algorithm

Network contributors – Two ways to assign the impedance to a route network: Links and junctions

- Impedance to the links - Sidewalk, crosswalk, major street, inside the flashing school zone – the network will computed as cost distance in feet as follows (Pedestrian travel speed is estimated as 4ft/s as suggested by the Highway Capacity Manual)

\[
\text{Cost distance} = \frac{\text{Segment Length}}{1600} \times 5280 \times 1.3^{2-\text{Sidewalks}} \times 1.5^{1-\text{OnMajor}} \times 1.4^{\text{MaxCross}-\text{NumCross}} \times 1.6^{1-\text{InSchool}}
\]
Methodology – Criteria and algorithm

Network contributors – Two ways to assign the impedance to a route network: Links and junctions

- **Junction without traffic signal** - each junction will add one minute as cost time
- **Junction with traffic signal** – each traffic signal point adds 0.5 minutes as cost time

Cost distance = cost time * 4 ft/s
Methodology – Criteria and algorithm

Comparison of Shortest & Safe Routes

Safe route generated by safe route Model

Default shortest route generated by the network model
Methodology – Web Solution

Web Users

Client Application
- Desktop Browser
- Cell Phone Browser / App

Cloud APIs
- Google Search
- Google Analytic
- Google Maps

FIU Proxy Server

IIS Web Server
- Application Production Server

ArcGIS Server JavaScript APIs

ArcGIS Server
- Pedestrian Crashes
- Network Model
- School Zones
- School Entrances
- Sidewalks
- Crosswalks
- Traffic Signals

File Geo-Database
Methodology – Web Solution

- Fully enabled Google Search APIs
- Simple user interaction interface design for better user experience
- Printable map available
- ArcGIS Server integration
 1. School Zone layer
 2. School Entries
 3. Route from network model
Methodology – ArcGIS Server Integration
Outline

• Project Background
 • Stakeholders and Partners
 • Purpose
• Demo
• Methodology
 • Data Preparation
 • Routing Criteria and algorithm
 • Web solutions (Google Maps API and ArcGIS Server Mesh-up)
• Future work
 • Go Mobile
 • Validation of the network – User feedback
 • Expansion
Future Work -- Go Mobile

- Adapt the user interface of route planner for Web browsers on mobile devices, including side panels, school selection menu, location search box, map window, and routing directions;
- Convert location selection through mouse-clicks to selection drop pins for the tactile user interface.
- Pinpoint the user’s current location in the map window using the integrated positioning capabilities of the mobile device, such as GPS or WiFi;
- Provides step-by-step turn instructions along the route in real-time using the user’s current location in the network.
Future work -- User-feedback

- Leverage on the current parent and teacher network and outreach/education platform
- Conduct usability studies of the current Web based Walk to School Route Planner.
- Customized feedback functions for user interface and computed routes.
- Feedback function to report on observed conditions in the network, e.g. poor sidewalk condition
Future work -- Expansion

Expansion from 13 to 63 school zones
Thank you!
Any questions?