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ABSTRACT OF THE DISSERTATION

SERVERLESS ENABLED FRAMEWORK FOR MACHINE LEARNING

APPLICATIONS: ARCHITECTURE, SOLUTIONS, AND EVALUATIONS

by

Boyuan Guan

Florida International University, 2022

Miami, Florida

Professor Liting Hu, Major Professor

Over the past decade, the popularity of machine learning applications such as recom-

mendation systems, image recognition, real-time alerts, event detection, natural language

processing, and online streaming analytics has increased dramatically. However, there

is a long-tail problem has been identified for the ML application. The majority of ML

applications are concentrated in high-tech and high-profit areas while ML applications

are still difficult to reach for local and low-profit businesses. The two factors that cause

this slow growth are the domain problem barrier and the rigid infrastructure environment.

Since ML application development is different than the traditional software application

which consists of data steam feeding, data prepossessing, model training, evaluation, and

service update. Unlike traditional software application architecture which the data layer

is separate from the business layers, the data is involved in all the steps in the ML applica-

tion development process. In other words, domain knowledge is required for the overall

life cycle of ML application development. This requirement causes big overheads in the

workflow and thus, produces the barrier to the widespread of ML applications in local

low-profit businesses. On the other hand, the various types of ML applications and the

heterogeneous infrastructure environment make the ML application beyond the reach of

these local low-profit businesses. Compared to high-tech and high-profit companies, local

low-profit businesses can not afford an IT team to implement their ML applications. Pure
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cloud solution normally provides template-like services which are hard to adapt to their

own business workflow. Even if they are able to implement some low-complexity ML ap-

plications within an on-premise private cloud environment, the application performance

is hard to meet a production level stability.

In this dissertation, we present two frameworks: dpSmart and StraightLine aimed at

solving the domain-specific problem and heterogeneous infrastructure problem for the

ML application. dpSmart is a conceptual framework that provides an additional abstrac-

tion on top of the existing ML application development process. The purpose of the addi-

tional abstraction is to limit the domain-specific knowledge involvement to one single step

so that the rest of the steps can be standardized. Straightline is a from-development-to-

deployment multiple resources-ware machine learning application pipelines. It first sep-

arates the ML application development and deployment phase so that various ML appli-

cations can be served without affecting the deployment environment. StaightLine adapts

the docker container to provide flexibility for dynamic implementation among heteroge-

neous infrastructure environments. StraightLine also presents a placement algorithm to

maximize the ML application performance.

viii
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CHAPTER 1

INTRODUCTION

In this chapter, we first describe the motivations behind our work. Then, we define the

problems we are going to address in this thesis and also the contribution we present to

solve the problems. Finally, we outline the road map of this dissertation, which we de-

scribe in detail in the later chapters.

1.1 Motivation

Machine Learning (ML) has recently evolved from a small field of academic research

to an applied field. According to McKinsey’s global survey, ML application is largely

deployed in standard business processes and applications with nearly 25 percent year-

over-year growth [CCH19, KGS+21, PTAJ21, ZWH+21]. For Industry 4.0, devices and

machines across factories work on ML-based anomaly detection, edge robotics, or other

industry-related. For automatic vehicles, numerous ML-based applications, such as object

tracking, object detection, driving decision, and other autonomous driving-related appli-

cations emerge [Ins21]. However, even though the ML applications have been presented

in various industry fields and many of them are mature in production, Andrew Ng demon-

strates a long tail problem for the existing ML applications distribution in a recent TED

Talk [AIA]. The long tail problem as shown in Figure 1.1 indicates that the fast-grown

ML applications are concentrated in high-tech and high-profit industry fields like online

Ads and web searches. On the long tail end, the local brick-and-mortar businesses like

the t-shirt maker, or pizza stores showed a slow movement in the ML application imple-

mentation even though they needed ML applications to enhance their business model as

much as the high-profit businesses. How to empower any business with ML applications
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Existing Challenges

Domain Problem 

Abstraction Resource Provisioning
Flexibility in Hybrid 

Infrastructure

ML Application 

Performance Optimization

Academic Field

Applications

Heterogeneous Applications and Environment

Figure 1.1: A long-tail problem has been identified in the applied field of ML applications.
Even though the number of the ML applications are increased dramatically over the past
years, they are concentrated in high-tech and high-profit areas like online ADs and Web
Searches areas. We identified the challenges of this long-tail problem including Domain
Problem Abstraction, Resource Provisioning, Flexibility in Hybrid Infrastructure, and
ML Applications Performance Optimization.

and provide democratized access become a big dag between the academic research field

and the applied field.

In order to solve or at least remedy this challenge, we first closely analyzed the causes

of this problem. We identified two root causes that contribute to this phenomenon, the

domain-specific problem challenges and the heterogeneous applications and the environ-

mental challenges. The first one is a business model abstraction problem and the second

is a system design problem. In the following sections, we will elaborate on these two

challenges.

1.1.1 Domain Specific Problem Challenges

In real-life software system design and development processes, the domain-specific prob-

lem is normally considered as a critical challenge for the success of the overall system.

3



Domain-Specific Language (DSL) [MHS05] and Domain-specific modeling [KT00] are

proposed to solve the domain-specific problems in the traditional software design and

development process. However, the existing methods are not compatible with the ML

application development process. For example, if we need to design a sales system for

a bookstore, we need to define the data schema (e.g. book name, publisher, price, quan-

tities, etc.) and develop the function for query, order, and inventory management on top

of the data schema. When we need to develop a similar system for t-shirt sales, as long

as the data schema is modified to match with the new domain (e.g. t-shit name, brand,

price, quantities, etc.), the existing functionality should be carried on from the book sales

system and functioning. However, considering a similar situation in ML application de-

velopment for a book sales recommendation system and a t-shirt sales recommendation

system, even though it seems a similar comparison to the traditional software system, the

changes between the two systems are much more complicated. The vector, which is used

as the input for the model training, built for book recommendation can be the content of

the different books like the title, author, publisher, etc. but also can be from the readers

like the age, education, genders, etc. On the other hand, the vector build for the t-short

recommendations system can be the colors, sizes, materials, or the locations, weather, and

cultures. Two types of vectors can be various in both dimensions and the content values

and thus, the traditional data schemes method would not work. The model selection can

also be different depending on the different vectors. For example, Naive Bayes [WKM10]

can solve some tree-based statistical problems but Supported Vectors Machine (SVM) is

normally outperformed when for high dimensional conditions. The size of the training

data also makes a difference where deep learning is proved to be a better choice when

dealing with large training data sets.

The root cause that the domain-specific problem generates more complexity in ML

applications than the traditional software application is the difference between the devel-

4



opment procedure. In the traditional software development process, the data layer can

be abstracted independently while the ML application development process, as derived

from the data mining process, is highly dependent on almost all the steps. Therefore,

an ML application development framework that takes the domain-specific problem into

consideration is highly demanded.

1.1.2 Various Applications and Heterogeneous Environments Chal-

lenges

Another challenge that prevents ML applications to implement in small-scale businesses

is the various application types as well as the heterogeneous deployment environment of

the ML applications. For high-tech businesses, normally deal with a single type a sin-

gle group of similar ML applications which tie to their core business model while small

businesses tend to use different types of ML applications as supporting tools for their

business. For example, a business running an online ADs platform can host a whole IT

and data science team dedicated to supporting the Continuous Integration (CI) and Con-

tinuous Delivery (CD) [Bat19] of their online ADs model while a local pizza store can

benefit from recommendation system for online ordering [BCFPR21], pattern detection

for inventory management [dSdAG17], and computer vision for virtual customer services

[VKP22]. The heterogeneous deployment environment is the second main difference be-

tween ML application usage for high-tech businesses and small-scale businesses. Since

small-scale businesses tend to use multiple types of Ml applications on a flexible and

scattered pattern, they do not require, and normally cannot afford, an IT or data sci-

ence team to support their ML application solely but still expect these applications to

be functioning when the requests come. From the infrastructure perspective, small-scale

businesses normally host a mixed type of IT infrastructure including local computational

5



Overall Contributions

Domain Problem Abstraction

Resource Provisioning

Flexibility in Hybrid Infrastructure

ML Application Performance Optimization

Heterogeneous Applications and Environment

Build Vector from available 

dataset

Domain Knowledge Integration

Model Selection

Application Implementation

➢ Layer 1: Model Development Abstraction

➢ Layer 2: Multiple Implementation Deployment

➢ Layer 3: Real-time Resource Placement

Figure 1.2: The overall contribution of this dissertation is based on the two existing
challenges discussed in the previous section which consists of two parts: a generalized
methodology for domain-specific problem abstraction and the layered framework for Ml
applications implementation in heterogeneous environments.

resources, in-premise private cloud, and public cloud to minimize the operating cost.

Therefore, in order to solve these problems, we want to identify a paradigm that can

facilitate both the various ML application types and the heterogeneous implementation

environment to provide democratized access to small-scale businesses.

1.2 Proposed Methodology

As shown in 1.2, our contributions are split into two categories based on the two existing

problems identified in the last section. For the domain-specific problem, we proposed a

general methodology to provide a standard procedure for ML application development.

For the heterogeneous applications and environments problems, we proposed a serveless-

ready framework to allow various types of ML applications to be implement into hetero-

geneous infrastructure environments. We will discuss the novelty, comparison to state-of-

the-art, and our contribution to each category in the following subsections.
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1.2.1 Noverty

dpSmart - a generalized paradigm for domain-specific problem abstraction

In order to remedy the domain-specific program challenge, we looked into the existing

ML application development procedure to clarify how domain knowledge is involved.

According to the knowledge discovery and data mining (KDDM) process, [SOB10],

the standard ML application development process consists of the business understand-

ing phase, data understanding phase, the data preparation phase, model phase, evaluation

phase, and model deploy phase. As we mentioned in the previous section, the main chal-

lenge for the domain-specific challenge is caused that domain knowledge is required in

multiple steps in the traditional KDDM process. The practical problem caused by this

is that domain experts are needed in all these steps which causes a critical overhead in

the real-world workflow. For example, different technical teams like the database engi-

neer team, data analyst team, and data scientists team are working on Data Understanding

Phase, Data Preparation Phase, and Model Phase respectively while domain experts are

needed in all these three phases. There suppose to be minimal communication required

other than the technical documents between teams. However, involving domain experts

in these phases requires more communication overheads (e.g. meetings, additional docu-

ments, redesigns, and debugs). It also brings more chances to generate deficient designs

due to knowledge barriers between the domain experts and the technical teams. There-

fore, in the proposed paradigm as shown in Figure 1.3, we introduced a separate step for

Domain Knowledge Integration after the Input Vectors Generation and before the Model

Development. The benefit of having this abstraction process on top of the traditional

KDDM process is that domain experts are only needed in the Domain Knowledge Inte-

gration step and thus maximize the efficiency and minimize the communication overhead

and chance to generate biased designs.
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Figure 1.3: A conceptual mapping from the standard KDDM process to a Domain-
Specific ML Application Development Process. The process is defined as Input Vectors
Generation, Domain Knowledge Integration, Model Development, and Model Develop-
ment.

To the best of our knowledge, dpSmart is the first framework designed to solve the

domain-specific problem for ML application development. It focuses on limiting the

domain knowledge involvement into one single step so that the amount of overhead work

from the domain experts can be minimized. On the other hand, by removing the domain

knowledge dependency, the rest of the steps like vector generation, model development,

and model deployment can be standardized and thus, improve productivity.

StraightLine - a serverless enabled hybrid framework

The second problem we identified in this dissertation is the Ml application implementation

challenge. As shown in Figure 1.4, there are three questions that need to be answered in

order to solve the challenge: how to provide appropriate resources for different stages or

phases?, how to satisfy heterogeneous ML applications?, and how to adapt to the hybrid

infrastructure?. In this dissertation, we present StraightLine, a from-development-to-
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Figure 1.4: The ML application implementation challenge is caused by the various types
of ML applications, the heterogeneous infrastructure, and the placement problem.

deployment multiple resources-aware ML pipeline, to address the questions listed above.

The key innovation is that StraightLine incorporates the entire life cycle of ML applica-

tions and multiple computing resources into one pipeline.

The StraightLine is a from-development-to-deployment ML application pipeline that

enables cross-platform ML applications and hybrid infrastructure implementations. Straight-

Line leverages docker to containerize the stages in model development to offer plug-and-

go provisioning, and build up multiple computing platforms and cross-platform containers

for model deployment. The detailed contribution is listed below.

To the best of our knowledge, StraightLine is the first framework that covers the ML

application life cycle, considers the heterogeneous infrastructure environment, and pro-

vides dynamic placement. StraightLine provides two separate infrastructure envi-

ronments for ML application development and deployment so that various types ML

applications can be developed in their own environment while deployed in a uniform

environment for service deployment. StraightLline considers heterogeneous infras-

tructures as a pool of resources for ML application implementation. The ML ap-
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plications in StraightLine can be flexibly implemented in available resources like local

servers, on-premise cloud, public cloud, and serverless computing. StraightLine pro-

vides a dynamic placement for the application requests based on the condition of the

real-time resources.

1.2.2 Comparison to state-of-the-art

dpSmart - a generalized paradigm for domain-specific problem abstraction

dpSmart is designed to provide a practical framework for the overall development life

cycle of the ML application. The recent research mainly focuses on Domain-Specific

Language (DSL) and domain-specific modeling for the ML application. However, most

of these research [PDGQ05, CJL+08, ORS+08, WCR+11] are either aimed at providing

an interpretation of the data processing steps or solely focus on the model training step.

On the other hand, other types of research [TK16, Hes09] are purely focused on the

domain-specific business model which overlooks the actual ML application development

process.

StraightLine - a serverless enabled hybrid framework

The recent research on pipelines and framework are highly focused on the spot of the

ML application life cycle. Elshawi et al. presented a framework that includes the basic

clouding computing resource (e.g., storage, CPU, and memory), data streaming platforms

(e.g., Hadoop [had], Spark [ZCD+12], Flink [CKE+15]) and workflow environment (e.g.,

Spark [ZCD+12], Google ML [goo], TensorFlow [ABC+16], KeyStone ML [key]). The

proposed framework supports the ML application workflow from data management to

model training while it does not support ML application services [ESTT18].
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Wang et al. presented Rafiki, an ML analytics service system to provide the training

and inference service of ML models. However, Rafiki is limited to a 3-node cluster, so it

is not applicable to hybrid infrastructure [WWG+18].

Sánchez-Artigas et al. proposed a Serverless enabled ML system, MLLess, which

claims 15 times faster than serverful ML applications and successfully reduces the cost.

The paper compared the ML model training process in detail by using PyTorch and Py-

Wren on local data center and serverless environments respectively [SAS21]. However,

the experiment is based on the assumption that all the training environments use CPU

clusters since the GPU cluster is not supported by Lambda. This generates a critical bias

from the real-world applications since GPU cluster has become a fundamental require-

ment for ML applications.

Naranjo et al. proposed a serverless gateway for event-driven ML inference in multi-

ple clouds. This paper presented a framework that allows packaging the inference func-

tion as a RESTful API on both serverless and on-premise cloud [NRMB21]. However,

the paper focuses more on the feasibility of the proposed framework. The performance

difference between the on-premise and serverless resources is not discussed. The paper

also focuses on the inference function based on a pre-trained model. The model develop-

ment is overlooked even though an AWS Batch is included in the framework which can

provide GPU cluster support for the model training.

Shukla et al. proposed an anomaly detection application for Internet-of-Things (IoT)

devices over edge computing networks. The data is collected by IoT sensors and sent

to the edge for model training and deployment. For model inference, IoT devices send

data to edge for model inference and the edge sends the inference results to the cloud for

analytics [SS22]. However, the paper only focuses on a single edge-based environment

while ignoring the hybrid infrastructure.
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We can conclude that most of the works focus on one single stage or phases in the life

cycle of ML applications. Moreover, most of the works assume that the infrastructure for

ML applications is unified and monotonous. This serves as the motivation of this paper

to offer a from-development-to-deployment system for ML applications.

1.2.3 Contributions

dpSmart - a generalized paradigm for domain-specific problem abstraction

In this dissertation, we conduct a use case study by using the proposed paradigm: dpS-

mart, which applies a recommendation system in a digital library domain. The detailed

contributions for this specific domain problem are summarized below.

• Applying dpSmart paradigm provides a flexible framework that allows the digital

library can build its recommendation system purely from log data and metadata.

• Facilitate multiple popular recommenders and implement them into a real-world

Digital Repository System.

• Minimize the side effect (noisy recommendation) by applying a customizable group-

based recommendation strategy

• The experimental evaluation shows that by applying multi-process programming,

the model building time can be significantly reduced.

• The system usage statistics also indicate that during the evaluation time from Jan-

uary 2019 to February 2019, the Page Views have increased compared to 2018,

demonstrating the effectiveness of our proposed framework.
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StraightLine - a serverless enabled hybrid framework

The detailed contribution of the works in this dissertation related to StraightLine is listed

below.

• Straightline adapts a divide-and-conque fashion to supply two independent com-

putational environments for model development and model deployment respec-

tively so that multiple models can be developed with maximized performance as

well as lowered cost.

• Straightline leverages docker to containerize the stages in model development to

offer plug-and-go provisioning and build up multiple computing platforms and

cross-platform containers for model deployment.

• Straightline takes a hybrid infrastructure which includes the local server, on-premise

private cloud, and serverless computing as part of the design. The ML applica-

tion is capable of being placed in all these infrastructures.

• To consider the hybrid infrastructure, Straightline designs an online resource place-

ment algorithm to allocate computing resources for ML applications, using request

frequencies, request data sizes, and processing time as the input of the algorithm.

1.3 Summary and Roadmap

The rest of this dissertation is organized as follows. We introduce the background details

in Chapter 2, then we describe the dpSmart as an instance of the recommendation sys-

tem for the digital library domain in Chapter 3. We next show the design and details of

StraightLine as a from-development-to-deployment multiple resource-aware in Chapter

5. Finally, we conclude this dissertation in Chapter 6.

13



CHAPTER 2

BACKGROUND

In this section, we will discuss the background for the domain-specific ML applications as

well as the implementation environment for the ML applications. For the domain-specific

ML application, since there is no specific systemic research, we will go through several

recent pieces of research. For the implementation environment for the ML application,

we will discuss the model development abstraction, multiple infrastructure deployment,

and real-time resource placement respectively.

2.1 Domain Specific Problem for ML Application

Domain-specific ML applications are still in their infancy and are considered as the main

obstacles for Ml applications to implement in non-tech industries. In 2011, a Domain-

Specific Language (DSL), OpiML [SLB+11], for machine learning was proposed to solve

the problem. OpiML derives the DSL concept (e.g. HTML for web browsers) from tra-

ditional software development procedures to provide an abstraction layer so that different

models can be used for heterogeneous domains. However, as shown in Figure 2.1, the de-

velopment procedure is the main difference between ML application development and the

traditional software development procedure. OpiML failed to provide a practical frame-

work for the overall Ml application development cycle. Several other DSL-based kinds of

research [PDGQ05, CJL+08, ORS+08, WCR+11] have been published but failed for the

same reason. A recent research [GMGC22] provides a details procedure to design DSL

for the dataset. However, it is limited to the data processing step.

There are more research has been published recently for [TK16, Hes09] domain-

specific modeling. However, these types of research focus on more on the business model
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Figure 2.1: End-to-end machine learning workflow which consists of big data streaming
process, data processing, model training, model turning, and service updating.

abstraction which is hard for engineers to follow in the ML application development pro-

cess.

By reviewing recent literature on DSL for ML applications and domain-specific mod-

eling, we can conclude that all this research is either focused on the interpretation of

the data processing or the abstract of the model training process. A domain-specific ML

application development framework that supports the overall development cycle is in de-

mand.

2.2 Implementation for ML Application

Based on a commercial analysis report [Ins21], it indicates that the mainstream ML ap-

plications implementation is still on Cloud and On-premise. It is also an increasingly

popular concept for AI as a Service [ES20] which provides AI functions as services to the

end users. There are two obvious problems for the ML application lifecycle: Explicit re-
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source management and Over-provisioning. In the following sections, we will discuss

how serverless components can address these problems and improve the performance of

each type of implementation.

2.2.1 On-premises ML Applications

In an on-premises environment, resources are deployed internally and within an organi-

zation’s IT infrastructure. The end user is responsible for maintaining the solution and

all associated processes. Although the number of public cloud solutions has increased

significantly in recent years, almost half of the market share of ML applications is still

implemented on-premises, as the public cloud does not offer complete control and a high

level of security. The obvious disadvantage of on-premise implementation is the cost of

equipment and labor. Organizations that implement software on-premise always suffer

from the ongoing costs of server hardware, power consumption, and space. The estab-

lished approach of freeing up low-level VM resources, such as memory and CPUs, places

a significant burden on ML developers who face the challenge of dealing with additional

IT tasks in addition to their ML workloads.

2.2.2 Public Cloud ML Applicaitons

Companies that opt for a cloud computing model normally will go with a pay-as-you-go

pricing model, without incurring any maintenance and upkeep costs. The price adjusts ac-

cording to consumption. Considering that ML applications routinely perform a number of

different tasks during model training and place heavy demands on computing resources,

the cost savings of opting for a public cloud solution is enormous. However, the issue

of data ownership is one that many companies - and vendors - struggle with. Data and

encryption keys reside with your third-party provider. So if something unexpected hap-
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pens and there is an outage, you may not have access to that data. Security concerns

also remain the biggest barrier to public cloud computing. There have been many pub-

licly disclosed cloud security. From employee personal data, such as login credentials, to

intellectual property loss, the security threats are real.

2.2.3 Hybrid ML Applications

While the debate over an on-premises data center versus a cloud computing environment

is a real one that many organizations are currently having in their offices, the hybrid

cloud implementation has also caught on because it can flexibly combine public cloud

and private cloud resources, maximizing cost savings and productivity while minimizing

latency, data protection, and security issues. However, the hybrid cloud offers an either-or

solution based on the assumption that the existing application ML must have a decoupled

modular design that allows some modules to be allocated in the public cloud and some

modules in the on-premises data center.

2.2.4 Serverless as additional resource

In the application layer, a variety of services and applications are supported by a serverless

framework in the edge computing environment, such as event data processing, IoT data

monitoring, video transcoding, and so forth. By looking at some of the unique features

of the applications in the edge computing domain, it is quite obvious that the serverless

framework provides a complementary conceptual model to accommodate the needs of

edge computing applications which include:

• Providing a layer of abstraction to solve the un-controllable hardware on the edge

• Enabling rigid sandboxing for an untrusted environment
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• Providing a scalable and elastic model for processing unpredictable real-time data

at scale

• Maintaining the compute efficiency and small memory/storage footprints to operate

in a low resource environment to reduce the expense

Serverless has evolved significantly since its inception. Tools, both on the vendor side

and in the open-source space, have improved massively. In parallel, practitioners have

developed best practices and mental models for working in a serverless environment. All

of these advances will enable the rise of the serverless edge application environment.

Given the popularity of serverless edge computing, which is still in its infancy, there is

still much room for researchers and developers to explore.

We conduct a thorough review of the published paper related to the applications in

serverless from the year 2019 to year 2022 to summarize the state-of-the-art applications

in this specific framework. The applications are spread out in the domains of IoMT/Health

Care, Smart Cities/Smart Farms, Edge/Serverless Machine Learning, Industry 4.0, and

5G networks. Even though the research focus and the motivations are differed based on

the nature of the domain specifics, most of them have the machine learning component

which indicates that serverless computing is a great development environment for ML

applications.

The Internet of Medical Things (IoMT) and Health Care are one of the most pop-

ular domains that apply the serverless and edge computing framework. Since the main

challenge for IoMT is the requirement of the near-zero latency application on the edge,

the applications and research are mostly focused on this particular problem and providing

solutions from different aspects. A survey paper [AFK+22] was published in 2022 on

the topic of the utilization of mobile edge computing on the IoMT. Serverless comput-

ing is considered a significant booster to successfully implementing the 5G based Mo-

bile Edge Computing (MEC)-based model. There are also several papers that focus on
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real-world applications or case studies in IoMT. [BAS+21] and [WWL+21] explored the

Browser as Edge method to minimize the latency to implement TinyML machine learn-

ing model to help real-time data monitoring and face mask detection. In [NAC+22],

a new IoMT framework for real-time electroencephalography (EEG )signal monitoring

and analysis using an explainable artificial intelligence (XAI) technique is presented. As

real-timeliness is the key aspect of the growing perspective of the Internet of Things

(IoT), [RDD19] presents a novel dew computing architecture that provides in-depth anal-

ysis and validation of real-time scheduling in resource-constrained hardware platforms

through real-time message passing in presence of a cloud facilitator with a real-time con-

text. The case study in this paper was conducted under Lamda, the AWS serverless so-

lution. [APP20] provide a description of the key technologies and paradigms related to

healthcare 4.0 and discuss their main application scenarios; they also provide an analysis

of (iii) the benefits carried and the new interdisciplinary challenges.

Smart cities / Smart farms are another pioneered area to apply the serverless and

edge computing framework. Studies in this domain are focused more on the platform

and architecture design because the main challenge is how to seamlessly integrate hetero-

geneous data sources. Deployed the business solution through Serverless Function as a

Service (FaaS) is a key component in this design. A comprehensive survey [WWGV22]

of currently known projects and startups on blockchain-based transactive energy for the

cross-sector local community with buildings and electric vehicles will be published in

2022. Another paper [IAS22] presents an energy-efficient opportunistic model utilizing

the ant-based routing algorithms for LS-WSN SC waste management applications. Smart

farms, as a sub-model of the smart cities concept also drawn attention in the past several

years. [ASCG+20] presents a platform focused on the application of IoT, edge computing

in smart farming environments, designed to monitor the condition of dairy cattle and feed

grains in real-time and to ensure the traceability and sustainability of the various processes
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involved in production. in [PMD21], an optimized version of the Kappa architecture is

presented, enabling fast and efficient data management in agriculture.

Other research is also published in domains like general data interoperability, edge

machine learning, 5G network model, and online multimedia content from 2019 to

2022. [MLLI21] conducted a case study that focused on data interoperability. The study

revealed that by having both FaaS and BaaS, the serverless framework provides a flexible

middleware for existing IoT platforms that can significantly mitigate the data interoper-

ability problem. [BTK22] and [CFT+18] proposed a general approach of implementing

the machine learning model into an edge computing framework with serverless architec-

ture enabled and a case study for machine learning model implementation in a serverless

framework respectively. The performance and effectiveness are evaluated by exploiting

a holistic end-to-end image classifier, a famous machine learning use case in the MNIST

dataset. The proof of concept provides comprehensive assessments that prove the effec-

tiveness of latency reduction and distributed machine learning deployment. [DWW+22]

proposed a stateless design in the 5th generation core (5GC) network to solve the coupling

of protocol states and functions problem. Online multimedia content is also a trending

topic because of the data-intensive workloads. [SNP19] proposed a solution for collect-

ing, storing, managing, and accessing online media data.

The only research that we can identify for Ml application life cycle deployment is

a recent thesis [Tet22] in 2022 which presents a machine learning workflow model and

serverless deployment orchestration. However, the method is featured for technology-

independent modeling and only uses serverless computing for the implementation method.

The heterogeneous infrastructure condition is not considered.
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CHAPTER 3

DPSMART IN ACTION - A RECOMMENDATION SYSTEM FOR DIGITAL

LIBRARY DOMAIN

We proposed dpSmart as a framework to solve the domain-specific problem for ML ap-

plications. dpSmart is designed to limit domain knowledge involvement so that the devel-

opment procedure can be standardized. We apply this framework to a real-world domain,

a digital library, to demonstrate how we can follow the standard data mining procedure

and integrate the domain knowledge at the same time.

3.1 dpSmart: Recommendation System

Digital Repository Systems have been used in most modern digital library platforms.

Even so, Digital Repository Systems often suffer from problems such as low discover-

ability, poor usability, and high drop-off visit rates. With these problems, the majority

of the content in the digital library platforms may not be exposed to end users, while at

the same time, users are desperately looking for something which may not be returned

from the platforms. The recommendation systems for digital libraries were proposed to

solve these problems. However, most recommendation systems have been implemented

by directly adopting one specific type of recommenders like Collaborative-Filtering (CF),

Content-Based Filtering (CBF), Stereotyping, or hybrid recommenders. As such, they are

either (1) not able to accommodate the variation of the user groups, (2) require too much

labor, or (3) require intensive computational complexity.

In this paper, we design and implement a new recommendation system framework for

Digital Repository Systems, named dpSmart, which allows multiple recommenders to

work collaboratively on the same platform. In the proposed system, a user-group-based

recommendation strategy is applied to accommodate the requirements of the different
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types of users. A user recognition model is built, which can avoid the intensive labor of

the stereotyping recommender. We implemented the system prototype as a sub-system of

the FIU library site (http://dpanther.fiu.edu) and evaluated it on January 2019 and

February 2019. During this time, the Page Views have increased from 8,502 to 10,916

and 10,942 to 12,314 respectively, compared to 2018, demonstrating the effectiveness of

our proposed system.

A framework for serverless machine learning needs to meet three critical goals. First,

its API needs to support a wide range of ML tasks: dataset preprocessing, training, and

hyperparameter optimization. In order to ease the transition from existing ML systems,

such API should be developed in a high-level language such as Python. Second, to provide

storage for intermediate data and message passing between stateless workers, it needs to

provide a low-latency scalable data store with a rich interface. Third, to efficiently run

on resource-constrained lambdas, its worker runtime needs to be light-weight and high-

performance.

3.2 Introduction

Digital Repository Systems have been used in most modern digital library platforms,

which are used to store, archive, and index all of the digital assets in the library as well as

to serve those assets to clients and users of libraries over the Internet. Digital Repository

Systems have three long-existing issues including (1) the low discoverability of the con-

tent; (2) lack of assistance to explore the system, and (3) high drop-off visits. dPanther

[dPa] (http://dpanther.fiu.edu) is the Digital Repository Systems developed and

implemented by Florida International University (FIU) to host the digital assets includ-

ing digital archives and digital-born content and publications. The web server log of
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dPanther in 2019 shows that only 24.9% of the content has been discovered, 62.1%

intended search ended with a page review, and 58.8% resulted in drop-off visits.

In the past decade, many studies have been conducted to remedy these issues. The

most famous one is the recommendation systems [GMG01] [BLGN13] [BVdB08] [CGLL08]

[GP06]. Recommendation systems, as a subclass of information filtering systems, are

typically used to produce a list of recommended content from the hosting system by pre-

dicting the ”rating” or ”preference” of the users. They improve content discoverability,

provide guidance, and retain more users for the hosting system. However, most rec-

ommendation systems have been implemented by directly adopting one specific type

of recommender like Collaborative-Filtering (CF) [ERK+11], Content-Based Filtering

(CBF) [LDGS11], Stereotyping [LPWG14], or hybrid recommenders [Bur02]. As such,

they are either (1) not able to accommodate the variation of the user groups, (2) require

too much labor, or (3) require intensive computational complexity.

In this project, we design and implement a new recommendation system framework

for Digital Repository Systems, named dpSmart, which allows multiple recommenders to

work collaboratively on the same platform, including the Content-Based filtering (CBF)

[LDGS11], Collaborative Filtering (CF) [ERK+11], Global Relevance (GR), Query Sug-

gestion (QS)/Term Suggestion (TS) [BGLB16] and Location Based Filtering [LZX+08]

models. The users are grouped by a stereotyping model and different users are served by

different recommenders. The user vectors are built based on the user behaviors extracted

from the log data. By optimizing the algorithm with multi-processes programming fash-

ion and maximizing the server capacity, the model re-training time can be reduced signif-

icantly.

We implemented the system prototype as a sub-system of the FIU library site (http:

//dpanther.fiu.edu) and evaluated it on January 2019 and February 2019. During this

23

http://dpanther.fiu.edu
http://dpanther.fiu.edu


time, The Page Views have increased from 8,502 to 10,916 and from 10,942 to 12,314

respectively, compared to Page Views in 2018.

The technical contributions of this paper are as follows:

• We implement a stereotype-based recommendation system that can adapt to multi-

ple different recommenders.

• The proposed system avoids intensive labor and automates the process from the log

data extraction to model training.

• By using a stereotyping recommender, we avoid the need for personally identifiable

information user data and we reduce the noise recommendation.

• By implementing multi-process programming, the model re-training time can be

significantly reduced.

3.3 Related Work

3.3.1 Recommendation System in Digital Libraries

Due to the uncertainty of the content, the variation of patrons, and the unpredictable user

interactions with the library system, content-based recommendation systems have dom-

inated in digital library domain. C.Musto et al. [MNL+10] proposed a Content-Based

Recommender System for Digital Library for Cultural Heritage. S.Philip et al. [PSJ14]

proposed a Content-Based approach in paper recommendation systems for a digital li-

brary. However, the problem of a Content-Based recommender lies in that this type of

systems are not able to accommodate the variation of the clients and the user behav-

iors. Another type of recommendation system is customization and personalization for

the niche domain. A.F.Smeaton et al. [SC05] proposed a method to personalize a recom-

mendation system for a digital library platform. However, this type of system is very hard
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to generalize. In order to generalize and further potentially automatize the customization

and personalization process, the user recolonization [SMKL16] was proposed.

In the Research-Paper Recommendation Systems survey [BGLB16], 200 publications

have been reviewed and 62 different methodologies have been proposed. Among those

proposed methods, content-based filtering is in the top rank, and 55% of the methods

are either based on this or leveraged it. Collaborative Filtering ranked No.2 with 18%

of methods used. Graph-based recommender ranked No.3 with in 16% of methods used.

Other recommenders like stereotyping, item-centric, and hybrid recommendations are

mentioned in 11 of the publications.

3.3.2 User-group clustering for User Reorganization

Based on the designed framework, user modeling and user group recognition are key

functions to building a flexible recommendation system. Previous publications regard-

ing user modeling have also been reviewed. A recent dissertation from the University

of Cornell [Bee17] has been published to introduce Mind Mapping based user modeling

for research paper recommendation systems. Although the result is very promising, the

approach heavily relies on an open-source JAVA application for managing PDF files, an-

notations, and references with mind maps called Decear and required labeled user data.

Considering that lack of personally identifiable information, user behavior data is one of

the toughest challenges for the recommendation system in Digital Library Systems hosted

by public libraries, we switch the machine learning approach to an unsupervised learn-

ing method to recognize the user group. A good example can be found in [CZYL14],

which proposed a clustering-based method for the web services recommendation system.

Although the method proposed in [CZYL14] is in the web services recommendation do-

main, it provides a solution for the problem of lack of labeled user behavior information.
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Figure 3.1: Overall framework of dpSmart. dpSmart consists of four components: the
automatic web server log mining module, the user-group clustering module, the recom-
mendation strategy module, and the customized recommenders module. The automatic
web server log mining module first processes the log data into user vectors. Secondly, the
user-group clustering module runs the subspace clustering and maps the clusters into user
groups by using dominant features. Thirdly, the recommendation strategy module defines
the group preference against different recommenders for the stereotyping filter. Finally,
the customized recommenders module generates the final recommendations from specific
recommenders.

A more advanced subspace clustering-based method [NSRK14] was proposed in 2014 for

user group identification. This subspace-based clustering method has two main features:

prune non-promising features for subspace extension dimensions and fault tolerance.

3.3.3 Stereotyping Recommendation

Stereotyping has a long history for user modeling. Rich [Ric79] in 1979 initially de-

scribed how to build user models by using stereotypes. In 2007, additional research was
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conducted by Guy [Ric79] to implement Stereotyping Recommendation method in me-

dia systems. The performance of stereotyping Recommendation, by combining content-

based filtering and collaborative filtering, outperforms the regular Adhoc hybrid recom-

mendation system performance. As such, stereotyping recommendation has been consid-

ered as the recommender with the best performance. However, the drawbacks of Stereo-

typing recommenders, such as pigeonholing users and labor intensiveness, have signifi-

cantly limited the usage of stereotyping recommenders. These two drawbacks are directly

caused by the traditional way of manual processing process to identify user groups.

3.4 System Design

We design and implement a new recommendation system framework for Digital Repos-

itory Systems, named dpSmart, which allows multiple recommenders to work collabo-

ratively on the same platform. dpSmart has four major components: 1) the automatic

web server log mining module to generate user behavior data, 2) the user-group clus-

tering module for automatic user group recognition, 3) the recommendation strategy

module for stereotyping filter based on different user group, and 4) the customized rec-

ommenders module to implement into dPanther Digital Repository Systems.

Figure red3.1 shows the overall design of dpSmart. The workflow starts with gather-

ing and processing log data from an IIS web server. The automatic web server log mining

module is responsible for processing the data to generate the user vectors. Once the user

vectors are generated, the User-group clustering module runs the cluster and generates

the group of users. The recommendation strategy module then maps the generated clus-

ter to the corresponding user group and establishes the stereotyping filter. Based on the

stereotyping filter, the customized recommender modules can provide customized recom-
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mendations from embedded recommenders. The detailed design and implementation of

each module are discussed below.

3.4.1 Automatic Web Server Log Mining Module

We utilize two types of resources (i.e., the web server log and the database log) to analyze

user behaviors legally. Both types of log data are naturally generated whenever a web-

based application is published and very limited user information is stored. We generate

datasets through the following data preparation and processing methods, which can be

used directly to build user vectors.

The IIS logs are the primary resource for our system because they contain some key

information, including but not limited to:

• The client IP address

• The time of the activity

• The region of where the user comes from

• The type of activities the was interacting with the system

This information is used as dimensions for building the user vectors. The original

IIS log has a standard schema. Note that we assume that each IP on a particular date

represents a single user, so a user vector is generated from the combination of IP address

and the date from IIS logs, IP-date log.

We first process the raw IIS logs and make them more useful by filtering out logs

from bots, local access, scripts, style sheets, and another file loading. We then rebuild the

logs by combining the IP and date to create basic user logs that contain the IP activity

of the website on a single date. Next, we convert each IP-date log into an IP-date user

vector, and each user vector contains all the numeric item numbers they accessed using

28



the number of transactions. The basic user vector that we can build directly from the IIS

log is a vector containing two dimensions which are the number of entries accessed in the

database and the number of visits from this IP address.

Secondly, we start expanding the dimensions. Since the IP address contains the loca-

tion information, after geo-coding the IP address, two additional dimensions (latitude and

longitude) can be added to the vector to generate a fourth-dimensional vector. This base

vector can provide information about where a particular user came from, how often users

access our system, and whether the user has successfully accessed a particular item in the

system.

The dimensions can be expanded more by integrating the database query log. The

query log also records the contents of the query as well as the IP address. Since the search

action is a very strong indicator of the willingness of a particular user to find content in

the system, the number of searches made by a particular user is added as an additional

dimension of the user vector. In addition to the number of queries, the search content is

also very useful. One of the key terms that conveys the clearest information is the system

ID of the project in the database. Since the system ID is defined using a specific name

convention, it can be identified from the regular expression. Users who use the system ID

as a search term are likely to be internal users from our organization or academic users

from close partner organizations. Therefore, the system ID is added to the user vector as

another dimension. As shown in Figure 3.1 step 1, the generated six-dimensional user

vector is used as the basic user vector. However, the six dimensions are not sufficient to

build any reliable clustering results. Therefore, we must introduce the metadata of the

accessed project to expand the dimension.

Last but not least, the metadata of the record can provide a lot more dimensions. One

of the most unique features of a Digital Repository System or digital library system is that

all records in the system have prepared metadata that is stored in the metadata engine.
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With this feature, we can immediately increase the user vector’s dimensions to 50, 100,

or more by linking user behavior to metadata. For example, when visiting a particular

project, such as the Miami 1920 album, users may also be interested in other histori-

cal albums, or they may be interested in other projects by photographer Eva FitzGibbon

Drummond, or they may be interested in items in the same collection. In this case, with

Coral Gables Memory and Miami Metropolitan Archive, we need to carefully select the

metadata tags because we want to collect enough data to fit the cluster to our predefined

user groups, and we don’t want to introduce too many dimensions. So, after building the

basic user vector, we can further expand the dimension by introducing metadata informa-

tion in the metadata engine.

3.4.2 User-group clustering Module

Since we pre-define the target user group and recommendation strategy, for any active

users, as long as we can identify the user group to which the user belongs, we can dynam-

ically provide appropriate recommendations and minimize noise recommendations.

Ideally, if there are fixed metrics that distinguish users in these groups, we can simply

identify the user group based on the criteria. However, these user groups overlapped and

it is difficult to find a clear boundary between user behavior patterns among groups. as

shown in Figure red3.2, we use several dominant features to separate the user group. For

example, a very powerful indicator is the appearance of a system ID in a search term.

Most likely, the system ID is for internal users only. However, some academic users also

save the system-generated ID for quick access to their favorite projects. Another good

example is location information. If the location information is internal to the library,

then the access should be directed to the internal user group. However, many users of

the academic group also work in the library. The identification of the user group can
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be achieved by using an indicator from the log data. As shown in Figure 3.2, a sample

decision tree illustrates this point. Note that in order to use a tree-based classifier, we have

to find the tagged training data, which is not available in existing systems. Therefore,

clustering methods are applied in our research.

• Number of visits

• Search conducted

• Number of Items

• ID involved in search

• Location of the users

In the dpSmart framework, a subspace clustering method [NSRK14] is used to gen-

erate the user cluster. Based on a survey [KKZ09] published in 2009 for the algorithms

of subspace clustering are two major subspace algorithms: bottom-up versus top-down

approaches. We choose a topical top-down algorithm, PROCLUS [APW+99] for our

framework, since it allows us to define the number of clusters generated for the data set.

The software WEKA and a third-party package, Opensubspace v3.31 is used to generate

the user cluster.

3.4.3 Recommendation Strategy Module

Similar to other information management systems, Digital Repository Systems have pre-

defined target user groups. The target user groups can be divided into five groups, namely

the Library Internal Users, Digital Library Users, Local Academic Users, Active Web

Users, and Passive Users. The detailed definitions for each group are listed below:

1. Library Internal Users - the users from our internal organization like the develop-

ers, the librarians, the system administrators, and metadata creators.
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2. Academic Users - professional users who are familiar with Digital Repository Sys-

tems as well as the content inside the system. This user group mainly consists of

scholars/professors, undergraduate/graduate students, and researchers.

3. Digital Library Users - the users who are familiar with the structure and interface

of Digital Repository Systems. This type of user can retrieve information from the

system by following the metadata structure. They are normally not as focused on

one specific topic.

4. Active Web Users - users who are interested in using the system to conduct the

search and try to explore the content but have difficulty finding the right content or

are not able to access any content.

5. Passive Web Users - users who only “stop by” the landing page without doing

anything.

According to this grouping, we further develop a recommendation strategy as shown

in Figure 3.1 Step 3. The recommendation preference is marked in different types of

attitudes, the red heart if preferred, smile face if they don’t bother, and block sign if

they dislike. Internal users who are metadata creators, digital asset owners, and system

administrators, don’t want any type of content-based or collaborative filters. They are

keen to Query Suggestions, Term suggestions, and Location-based suggestions. Global

Relevance, which makes recommendations based on the system status like the popular

items or newly added items, is the preferred recommendation for Internal Users.

Academic users need a completely different recommendation strategy than internal

users. These users are very professional and well-trained in Digital Repository Systems

or Digital Library Systems, so they really reject irrelevant information. Therefore, global

relevance, QS/TS, and Location Based recommender should be blocked for them. A

Content-based recommender is the one they prefer and Collaborative filtering is not con-
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Figure 3.2: Sample Decision Tree to demonstrate how to identify the user groups by
using the dominant features. Three dominant features, Metadata, Search Terms, and ID-
involved are used for user group recognition. The green box demonstrates the recom-
menders’ selection for the different user groups.

sidered as noise recommendation. Digital Library Users are familiar with digital collec-

tion systems but do not have background knowledge of the content in the system, so it is

difficult for them to come up with a clear research area. Since these are the main target

users, our recommendations are hard to judge for this user group. For these two types of

users, we just hide collaborative filtering, since users in the two groups do not necessarily

have many similarities in preferred content.

3.4.4 Customized Recommenders Module

As mentioned before, we utilize the Content-based Filtering (CBF), Collaborative Fil-

tering (CF), Global Reference (GR), Query Suggestion (QS)/Term Suggestion (TS), and

Location-based Recommendation in the module. These five recommenders are imple-
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mented separately and coordinated according to the results of the stereotyping filter. The

details of the custom design are shown as below.

Content-based Filtering (CBF)

Based on the record curation process, there are two suitable models to create the item-

similarity model: (a) Jaccard [RV96], which is good at depicting similarities between

two sets and (b) Directed Graph [JW02], which is good at depicting the similarity of two

vectors. Zhou [ZZY+08] presented the challenge of eliminating noise and sparsity us-

ing Graph-based method, which is mainly caused by the metadata type and content. The

same problem may be more challenging in dPanther. A feature of dPanther as a Dig-

ital Repository System is that it provides a large collection of research articles, research

papers, engineer studies/reports, newspapers, government documents, music scores, and

many other types of historical documents. From this perspective, the Digital Repository

Systems actually provide services for multiple metadata types, which may be completely

different. As such, it is very difficult to build directed graphs for records because there are

many missing links when moving across different metadata types. Therefore, we choos to

establish a similarity model based on Jaccard similarity. Record vectors in the dPanther

system can be constructed by directly using metadata tags and values. By applying Jac-

card similarity, the similarity between items in dPanther can be calculated as follows:

S(a,b) =
|Aa∩Bb|
|Aa∪Bb|

(3.1)

• Where S is the Jaccard Similarity

• a, b are any two items in dPanther system

• A, B are the set of metadata fields and value of item a and b
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However, even if this provides default similarity between items in the dPanther

repository, the result does not accurately represent the actual relationship between the

items, because in the current method, all metadata fields in the collection are equally im-

portant, but actually, the metadata fields within the project set have an explicit priority.

For example, subject keywords in a set actually play a major role in calculating similarity.

If two items share one subject keyword, its impact on the similarity calculation should

be greater than the impact of sharing one publisher. Therefore, we modified the original

Jaccard method to accept weight data set. Thus, we have:

SW(a,b) =
|∑∞

n=1((An∩Bn)∗Wn)|
|∑∞

n=1((An∪Bn)∗Wn)|
(3.2)

• Where SW is the weighted Jaccard Similarity

• a, b are any two items in dPanther system

• A,B are any pair metadata field from n selection metadata data fields between item

a and b

• w is the weight assigned for a specific pair of one metadata field

By implementing the weighted Jaccard Similarity, we have to build a reliable mea-

surement system for the items’ content. For each individual item, we can have a corre-

sponding ranked similar item list. Then, the next major step is to design another method

to generate measurements for items from a user-similarity perspective.

Collaborative Filtering (CF) For public library systems, there are two main obstacles

to track user information: (a) The privacy policy limits user information and (b)lacks

rating motivation. The process of accessing digital collections is considered part of user

privacy (https://library.fiu.edu/using-the-library/patron-privacy-policy). Even if the sys-

tem has a user account function, the users’ account activities are not allowed to be used

for this type of research. Besides, unlike Amazon or Ebay, the preferences for the items
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are very individually based, thus it is hard to find a motivation for the users to provide

rating for the digital collections they have viewed in the system. What is more, even if the

rating is available, it may not necessarily be useful across the users’ groups. Therefore, in

the design of the dpSmart recommender, the only available resource to use is the weblog

which contains the IP addresses of the visits. In our research, we assume one IP address

on the same day represents a specific user. From the IP address, we can get an idea of the

region where the users came from, the time they visited the system, and the topics they

are interested in, and then associate the items with this information.

By considering the information from the user visits, we can take advantage of implicit

feedback alternatively. Implicit feedback strongly relates to the behaviors of users. There

are two ways to get implicit feedback. One way is based on whether users check on the

content of items in history. If so, we assume that users may like items and rate 1 as a score,

otherwise rate 0. In contrast, the other way is to count the number of visits for the same

item from one specific user. Since one ”hit” from the web server log does not necessarily

mean one visit from the client side, it may also indicate the user downloading the picture

from the item detail page, clicking the link from the client detail page, or playing the video

or audio from the detail page. Therefore, this count does not only indicate the actual visits

from the user but also provides the interest level of the user.

By considering the two implicit feedbacks, we can get the scores for user-item simi-

larity. The second step is to calculate the similarities between items. Assuming we have

two items i and j, if we get scores based on whether users check on contents, then the sim-

ilarities between i and j can be calculated using standard Cosine Similarity [LHM+14].

The basic Cosine Similarity is define as below:

S(i, j) =
|N(i)∩N( j)|
2
√
|N(i)||N( j)|

(3.3)
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• Where S is the cosine-based similarity

• N(i) and N(j) mean the total number of users who rate 1 for item i and item j,

respectively

By considering the counting of number of visits for the items, we come up with the

adjusted Cosine Similarity as:

S(i, j) =
∑u∈U(R(u,i)−Ru)(R(u, j)−Ru)

2
√

∑u∈U((R(u,i)−Ru)2) 2
√

∑u∈U((R(u, j)−Ru)2)
(3.4)

• Where S is the cosine-based similarity

• U stands for the group of users who rate both item i and item j

• R(u,i) or R(u, j) means the score for such the item by the user

• Ru is the average of the u-th user’s ratings

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 00

1 0 0

2 0 0

3 0 0

4 0 0
 1  P r o c e s s
 3  P r o c e s s e s
 5  P r o c e s s e s
 7  P r o c e s s e s

R e c o r d s

Ru
nn

ing
 Ti

me
 (s

)

M o r e  r e c o r d s  
s a v e  m o r e  t i m e .

(a) The Running Time Com-
parison.

0 2 0 4 0 6 0 8 0 1 0 0

1 0 0

2 0 0

3 0 0

4 0 0

CP
U U

tiliz
ati

on

T i m e  ( s )

 1  P r o c e s s
 3  P r o c e s s e s
 5  P r o c e s s e s
 7  P r o c e s s e s

7 - p r o c e s s e s  C P U
 u s a g e  d r o p s .

(b) The CPU Usage.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
5

1 0

1 5

2 0

2 5

3 0
Me

mo
ry 

Uti
liza

tio
n (

GB
)

T i m e  ( s )

 1  P r o c e s s
 3  P r o c e s s e s
 5  P r o c e s s e s
 7  P r o c e s s e s

5  a n d  7 - p r o c e s s e s
h a v e  t h e  s i m i l a r  u s a g e .

(c) The Memory Usage.

Figure 3.3: The running time latency, the CPU usage for 4,000 sample records, and the
memory usage for 4,000 sample records.

Global Relevance (GR)

The third method we proposed to use in the dPanther system is the Global Relevance

(GR) recommender. The original GR is simply defined as:
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Figure 3.4: The Average Usage of CPU, Memory and Virtual Memory by using 1-process,
3-processes, 5-processes, and 7-processes for the task of running 4000 records.

GRScore ∝ number o f hits o f the item (3.5)

However, the collections in dPanther are generally consistent with geo-registration

features, which appeal to users in specific regions rather than general interests. Therefore,

we introduce enhanced GR scores with the consideration of the contribution as follows:

GRu ∝ Ni where Li ∈ Lu (3.6)

• Where GR is the Global Reference Score

• u is the current user

• i is the item in dPanther system

• N is the number of hits of item i

• L is the location information
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Term Suggestion (TS)/Query Suggestion (QS)

The last method which we implemented is Term Suggestion (TS)/Query Suggestion (QS).

Since one of the major components is metadata search/query function, many unsuccessful

visits are caused by the search function failures. The suggestion function contains two

steps. Firstly, the system suggests the key word based on the users’ input. After a user hits

the search, the system conducts a similarity analysis between the input search term and

the subject key words from the metadata and then provides the suggestion. The similarity

of the term to the metadata is generated by using the Jaccard index as suggestion by

[LSM14]:

S(a,b) =
|DSa∩DSb|
|DSa∪DSb|

(3.7)

• Where S is the Similarity Score between the search term and the item subject key-

words

• a is the input search term

• b is the item in the system

• DS is the data set that consists of the key works
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Figure 3.5: The Page View Stats for the year from 2015 to 2018, from January to March
in year 2018, and from January to March in year 2019.
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Figure 3.6: The Bounce & Drop-off Rate for the year from 2015 to 2018, from January
to March in the year 2018, and from January to March in the year 2019.

3.5 Evaluations

We evaluate dpSmart from two different perspectives: computational complexity and the

actual impact to its hosting Digital Repository Systems dPanther. The experimental

evaluations answer the following questions:

• Whether the multiple-process programming algorithm improves the hosting Digital

Repository Systems performance?

• When it is integrated into the Digital Repository Systems, what are the benefits of

dpSmart regarding the page views, bounce & drop-off rate?

• How are the Digital Repository Systems usability like Avg. Time on Page, Avg.

Pageload, Avg. Direction Time, Avg. Server Response Time, and Avg. Page Over-

load Time improved by integrating dpSmart?
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3.5.1 Experiment Setup and Data Collection

Multi-process Programming Experiment

The experiments were conducted on a windows machine with four core CPU and 32

GB of memory. 4,000 metadata records are randomly selected from the database and

processed to generate the item vector. We conducted the experiment by running the CB

filtering algorithm against the 4,000 records by using 1-process, 3-processes, 5-processes,

and 7-processes respectively. The algorithm run time, CPU Usage, and Memory Usage

are collected.

System Data Collection

For the system evaluation, since dPanther is an existing production system, we focus on

the real system statistics to evaluate if the recommendation module has a positive impact

on the hosting system. Common performance metrics include Page View, Unique Page

View, Average Time on Page, Bounce Rate, Drop-off Rate, Avg.Time on Page, Avg. Page

Load Time, Avg. Direction Time, and Avg. Page Overload Time is collected for the evalu-

ation. There are some milestones for the evaluation. The first module implemented in the

system is the Customized Recommenders Module, which was published for production

in January 2016. The Automatic Web Server Log Mining Module, User-group cluster-

ing Module, and Recommendation Strategy Module are related to each other. Therefore,

these three modules were implemented all at once in January 2019. In addition, we also

applied the optimized multiple processes programming so that we could rebuild the model

more frequently. In order to evaluate the impact of these three modules, we compared the

system statistics from January, February, and March of the year 2018 and year 2019. We

rebuilt the model every week in the month of January and February and left the model as
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is in March. The statistics for this period are also analyzed for the system changes after

the new implementation.

3.5.2 Multi-process Programming Evaluation

As shown in Figure red3.3a, the total run time for the 4,000 record process has been

reduced from 365 seconds to 137 seconds for 1 process to 3 processes and further reduced

to 98 seconds after increasing to 5 processes. But the total run time is only reduced from

98 seconds to 97 seconds after we increased it to 7 processes. The figure also indicates

that the more records processed, the more time is saved.

The CPU and Memory Usage over time in Figure red3.3b and Figure red3.3c also

indicates that 5 processes approach best utilized the resources. Figure red3.4 also reveals

that the average CPU Usage and Memory Usage reduced from 81.5% to 78.7% and 0.47%

to 0.45% respectively.

3.5.3 Impact to the Hosting Digital Repository Systems

In Figure red3.5a, the page views and Unique Page Views have increased from 87,168 to

190,665 and 55,311 to 119,783 respectively from the year 2015 to the year 2016. This

figure also reveals that both Page View and Unique Page View dropped in the year 2017

from 190,665 to 120,837 and 119,783 to 84,936, respectively. The reason may lie in

that the model wasn’t recalculated while new content and log data were generated. After

recalculating the recommenders multiple times in the year 2018, we can see that the

number increases again from 120,837 to 164,969 and 84,936 to 112,972 respectively.

In Figure red3.7, the Avg. Time on Page also indicates that in 2015, users spent more

time on average on a page, which is most likely from internal or academic users. When
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the recommenders work and attract more general/layman users, the Avg. Time on Page

dropped accordingly.

Figure red3.6a shows the Bounce Rate and Drop-off Rate trend from the year 2015

to the year 2018. Similar to the Page View statistics, both Bounce Rate and Drop-off

Rate show a reverse proportional relation to the recommenders module. Even though this

is not as clear as the Page View statistic, it still shows that an updated recommenders

module can help to reduce the Drop-off rate. However, as shown in Figure red3.6b and

Figure red3.6c, the same trend cannot be confirmed after implementing the Automatic

Web Server Log Mining Modules, User-group clustering Module, and Recommendation

Strategy Module. This is mainly because the stereotyping recommender is more used to

enhance the recommendation quality and reduce the recommendation noise. It does not

necessarily have a direct impact on the Bounce Rate and Drop-off Rate.

From Figure red3.7 and Figure red3.8, we can verify that the system usability does

not decrease a lot compared to the year 2018. The Avg. Page Load Time, Avg. Direction

Time, Avg. Server Response Time and Avg. Page Overload Time is increased compared

to the year 2018, but still much lower than in the year 2016 and year 2017. Secondly, the

Page View in Figure red3.5b and Figure red3.5c also increased in January and February

in the year 2019 from 8,502 to 10,916 and from 10,942 to 12,314 respectively. The Page

View has decreased in March from 15,239 to 12,450 compared to the year 2018 which

caused by the out of dated model.

In summary, dpSmart has remedied the computational complexity problem by im-

plementing the multi-process programming. The system statistics also confirmed that

dpSmart effectively increased the Page Views of the hosting system by implementing the

customized recommenders.
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Figure 3.7: The system usability statistics from 2015 to 2018.
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Figure 3.8: The system usability statistics from Jan. to Mar., 2019.
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3.6 Conclusion

In this paper, we design and implement a flexible group-based recommendation frame-

work, called dpSmart, and integrate it into a real-world Digital Repository System dPanther

(http://dpanther.fiu.edu). The goal of dpSmart is to address the limitations of the

digital repository system which include low discoverability, poor usability, and high drop-

off visit rates. dpSmart provides the capability of automatic user vector generation from

log data, clustering-based user group identification, flexible recommendation strategy,

and multiple recommenders integration. The proposed system also suggests several cus-

tomizing methods to customize the specific recommendation algorithms for the specific

system. The experimental evaluation shows that by applying multi-process programming,

the model-building time can be significantly reduced. The system usage statistics also in-

dicate that during the evaluation time from January 2019 to February 2019, the Page

Views have increased from 8,502 to 10,916 and 10,942 to 12,314 respectively, compared

to 2018, demonstrating the effectiveness of our proposed framework.
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CHAPTER 4

STRAIGHTLINE: FROM-DEVELOPMENT-TO-DEPLOYMENT MULTIPLE

RESOURCES-AWARE MACHINE LEARNING APPLICATION PIPELINE

4.1 Introduction

ML has recently evolved from a small field of academic research to an applied field.

According to McKinsey’s global survey, ML is largely deployed in standard business

processes and applications with nearly 25 percent year-over-year growth [CCH19]. For

Industry 4.0, devices and machines across factories work on ML-based anomaly de-

tection, edge robotics, or other industry-related applications [IBM21, HLL+19]. For

automatic vehicles, numerous ML-based applications, such as object tracking, object

detection, driving decision, and other autonomous driving-related applications emerge

[KGS+21, PTAJ21, ZWH+21].

The life cycle of ML applications can be categorized into two stages: Model develop-

ment and Model deployment. In model development, ML application developers need to

go over three major phases: (i) data management: preparing data that is needed to build

a ML model; (ii) model training: model selection and training (iii) model verification: to

ensure the model adheres to certain functional and performance requirements. In model

deployment, developers need to consider two major phases: (i) infrastructure building:

building the infrastructure to run the ML model; (ii) model implementation: implement-

ing the ML model itself in a form that can be consumed and supported. In different

phases and stages, the requirements of resources are different. However, most of research

focuses on one single stage or phase in the life cycle of ML applications. Few studies

focus on from-development-to-deployment ML application pipeline. We face significant

challenges in developing such a pipeline.
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The first challenge is: how to provision appropriate resources for different stages

or phases? In model training, GPU are indispensable to accelerate training process,

whereas in model verification it is appropriate to allocate light-weight GPU resources

to execute model inference. However, modern ML development systems, such as DB-

Pal [WUG+20], Gpipe [HCB+19] and deployment system, such as MLflow [ZCD+18],

MLCapsule [HZG+21], and other ML application-specific systems [KKS+19, RSR+21,

CVZA20, MIW22, GXG+22], aim at optimizing one single stage or phase in the life

cycle of ML applications. The second challenge is: how to satisfy heterogeneous ML

applications? Since more and more ML models will be embedded in business processes

and applications, different ML applications adhere to different computing environments

and resources. However, existing studies assume that all ML models can be run and im-

plemented in a unified environment [ZZL+22, ZWZ+21, CROS21, APYS20, ZYY+20,

GKA+20], where the model inference is assumed to be done in one single and simple

computing environment. In real-world industrial environments, it is intractable to have

one permanent computing unit to serve all the ML applications. The third challenge is:

how to adapt to the hybrid infrastructure? In real-world industrial deployment of ML ap-

plications, the infrastructure usually consists of different computing resources. However,

existing works focus on one single computing resource, such as serverless computing

[JCXL21, MD22], RESTFUL API [VVMH20, MLB+21, JLH+21]. In this case, some

ML applications will face severe problems in satisfying the requirements of latency and

response time if run with one single computing resource.

In this paper, we present StraightLine, a from-development-to-deployment multiple

resources-aware ML pipeline, to address the challenges listed above. The key innovation

is that StraightLine incorporates entire life cycle of ML applications and multiple com-

puting resources into one pipeline. In sharp contrast to existing development and deploy-

ment systems, StraightLine offers from-development-to-deployment and multi-resource
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implementation and placement, thereby greatly narrow the engineering gap between de-

velopment and deployment.

We make the following contributions in the paper.

First, we study the existing development and deploy systems and discuss their lim-

itations in the from-development-to-deployment and multi-resource design. To our best

knowledge, we are the first to explore the possibility of the from-development-to-deployment

and multi-resource design (Section 4.3).

Second, we design a novel model development abstraction to containerize the phases

in model development. The main advantage of the containerization is that the provisioned

resources for different phases can be done only when the execution of phases is started.

There is no to provision the resources in advance. This design allows StraightLine to be

adaptive to different requirements in different phases (Section 4.3).

Third, we offer different approaches to implementing ML applications, from RESTful

APIs, serverless applications, and Docker containers. We also design an online placement

algorithm to determine the placement of different ML applications in order to minimize

latency and response time. This allows StraightLine to be adaptive to heterogeneous ML

applications and hybrid infrastructure (Section 4.3).

Finally, we demonstrate StraightLine’s training time in model development, session

length, response time, and failure rate in model deployment (Section 4.4).

The rest of the paper is organized as follows: Section 4.2 summarizes the background

and motivation of this paper. Section 4.3 elaborates the design of StraightLine. Section

4.4 reports the experiment results of StraightLine. Lastly, section 4.5 concludes this paper

and discusses the future work.
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4.2 Background and Literature Review

In this section, we first summarize the life cycle of ML applications in 4.2.1, and then

review existing ML applications systems to understand the gap between development and

deployment of ML applications in Section 4.2.2.

4.2.1 Background

Figure 4.1 shows the life cycle of ML applications. Model development and model de-

ployment are two major stages. Model development. Model development consists of the

following three phases: (i) data management, (ii) model learning and (iii) model verifi-

cation [ACP21]. Data is an integral part of any ML applications. The overall predictive

performance of ML applications largely depends on the training and test data as much

as on the learning algorithms. The process of producing quality datasets is usually the

very first stage in any production ML pipeline. Since data management and collection

lack a standard approach and measurement, it is assumed that the data management can

be implemented as a data pipeline by big data generators, such as sensors, log collec-

tors, and transaction data collectors. Model learning is the phase of model development

that draws the most attention within the ML community. Generally speaking, model is

selected to be used to prove the concept of the proposed ML solution and get the end-to-

end setup in place [WDD+19]. Then, the chosen model is fed with a collected dataset in

order to learn certain patterns or representations of the data in the hybrid infrastructure

of in-house data center, local servers, or docker containers. Lastly, model verification is

regarded as a fundamental step to ensures the quality of the product and reduces main-

tenance costs. ML models are expected to generalize well to unseen data, demonstrate

reasonable performance on edge cases and overall robustness, as well as reach specified

functional requirements [PUL20].
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Model deployment. Model deployment consists of two major phases: (i) infras-

tructure building and (ii) model implementation. In real-world industrial environments,

the software infrastructure is hybrid, which includes in-house data centers, local servers,

docker containers, serverless platforms (e.g., AWS Lambda [Amab]), to provide lower

inference latency and response time. Such a hybrid infrastructure offers a variety of ML

services and implementations in a collaborative fashion, whereas model implementation

mainly focuses on how the ML applications are implemented in and incorporated into

the infrastructure to shorten latency or response time. Traditionally, a trained ML model

can serve as a RESTful API [SAM15] or a lightweight web server, Flask [fla]. More-

over, enterprise-level solutions and open-source solutions, such as Microsoft’s ML.NET

[mln] and Deep Java Library [DJL] are also available. For small or middle-size com-

panies, the on-demand cloud computing ML platforms, such as AWS ML [AWS] and

Azure ML REST API [mic] are also the options for ML implementations. Recently,

Docker containers [And15] and serverless computing [BCC+17] offer more portable op-

tions since ML applications usually require different operating systems, ML application

runtime (e.g., TensorFlow [ABC+16], PyTorch [PGM+19], PyWren [JPV+17], etc.), and

language environment like Python, Java, or R. Docker containers and serverless com-

puting offer plug-and-go computing services since they can connect target environments

automatically.

4.2.2 Existing ML Application Pipelines

Elshawi et al. presented a framework that includes the basic clouding computing resource

(e.g., storage, CPU, and memory), data streaming platforms (e.g., Hadoop [had], Spark

[ZCD+12], Flink [CKE+15]) and workflow environment (e.g., Spark [ZCD+12], Google

ML [goo], TensorFlow [ABC+16], KeyStone ML [key]). The proposed framework sup-
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ports the ML application workflow from data management to model training while it does

not support ML application services [ESTT18].

Wang et al. presented Rafiki, an ML analytics service system to provide the training

and inference service of ML models. Howerver, Rafiki is limited to 3-node cluster so it is

not applicable to hybrid infrastructure [WWG+18].

Sánchez-Artigas et al. proposed a Serverless enabled ML system, MLLess, which

claims 15 times faster than serverful ML application and successfully reduces the cost.

The paper compared the ML model training process in detail by using PyTorth and Py-

Wren on local data center and serverless environment respectively [SAS21]. However, the

experiment is based on the assumption that all the training environments use CPU clusters

since the GPU cluster is not supported by Lambda. This generates a critical bias from the

real world applications since GPU cluster has become a fundamental requirement for ML

applications.

Naranjo et al. proposed a serverless gateway for event-driven ML inference in multi-

ple clouds. This paper presented a framework that allows to package the inference func-

tion as a RESTful API on both serverless and on-premise cloud [NRMB21]. However, the

paper focuses more on the feasibility of the proposed the framework. The performance

difference between the on-premise and serverless resources is not discussed. The paper

also focuses on the inference function based on pre-trained model. The model develop-

ment is overlooked even an AWS Batch is included in the framework which can provide

GPU cluster support for the model training.

Shukla et al. proposed an anomaly detection application in for Internet-of-Things

(IoT) devices over edge computing networks. The data is collected by IoT sensors and

sent to the edge for model training and deployment. For model inference, IoT devices

send data to edge for model inference and the edge sends the inference results to the cloud
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for analytics [SS22]. However, the paper only focuses on single edge-based environment

while ignoring the hybrid infrastructure.

Most of works focus on one single stages or phases in the life cycle of ML appli-

cations. Moreover, most of works assume that the infrastructure for ML applications is

unified and monotonous. This serves as the motivation of this paper to offer a from-

development-to-deployment system for ML applications.

4.3 Design

4.3.1 Overview

StraightLine aims to achieve the following goals:

• From-development-to-deployment design. It defines clear modules in the life cycle

of ML applications.

• Adaptability. It designs multiple implementations adaptive to heterogeneous ML

applications.

• Low latency. It achieves low latency for ML applications in the hybrid infrastruc-

ture.

As shown in Figure 4.2, StraightLine consists of three layers: model development

abstraction, multiple implementation deployment, real-time resource placement.

Layer 1: Model development abstraction. All phases in model development are

containerized into multiple different containers based on available GPU resources. For the

phases of data management and model training, we build up powerful NVIDIA-Docker

[NVI] to offer plug-and-go provisioning instead of using a traditional GPU cluster. For

model verification, we build up a lightweight NVIDIA-Docker to verify the model per-
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formance. The final trained and verified ML models will be compressed and serve as the

implementational fundamentals for ML applications.

Layer 2: Multiple implementation deployment. Based on the compressed ML

models, we build up corresponding RESTful APIs, serverless applications, and Docker

containers. The key innovation is to leverage Docker containers to adapt to different

computing environments.

Layer 3: Real-time resource placement. Based on the different-scale requests from

ML applications and time-varying resources in the hybrid infrastructure, we design an

online resource placement algorithm to determine the optimal resource placement for

requested ML applications in order to minimize latency and response time.

4.3.2 Model Development Abstraction

The stage of model development usually demonstrates the requirements of high speed

I/O, powerful CPU processor, high memory, GPU-preferred yet not always-on environ-

ment. Moreover, this stage usually demands heavy computational resources for a very

long period of time so the stability is an important factor. For example, it takes the CPU

of Intel i9-7890 AT 10 hours to finish the training task with Xception [Cho17] on a small-

scale animal recognition dataset. Therefore, the challenge is how to provision appropri-

ate resources for different phases in model development? We need to allocate different

resources for different phases in model development, and when the allocated resources

should be released back to the infrastructure automatically after tasks finish.

To achieve plug-and-go and stable functionalities in model development, we con-

tainerize the phases with NVIDIA-Docker [NVI]. NVIDIA-Docker is a thin wrapper on

top of docker [NVI]. When creating a container using NVIDIA-Docker, we specify the in-

formation of the CUDA devices, volumes, and libraries in NVIDIA-Docker and it creates
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a container with this information. This allows us to have a plug-in GPU-aware container

to implement high-performance and stable model development. Moreover, when the run-

ning tasks finish, the provisioned resources will be released back to the infrastructure

automatically.

In practice, we specify more GPU resources in NVIDIA-Docker for data management

and model training, whereas specifying little GPU resources for model verification since

model inference is light weight compared to model training in terms of computation com-

plexity. After model development is completed, the trained model will be compressed as

a .h5 file and go through the stage of model deployment.

4.3.3 Multiple Implementation Deployment

StraightLine is designed for a hybrid infrastructure so the compressed model will be im-

plemented in three different ways: 1) local web server, 2) RESTful APIs, or 3) serverless

computing. However, it is possible that the hybrid infrastructure cannot offer a compati-

ble environment to many heterogeneous ML applications. Therefore, the challenge is how

to further improve the flexibility of the infrastructure? Each computing unit in the hybrid

infrastructure may run different operating systems, ML application runtime (e.g., Tensor-

Flow [ABC+16], PyTorch [PGM+19], PyWren [JPV+17], etc.), and language environ-

ments (e.g., Python, Java, or R). It is necessary to consider the implementation difficulty

resulted from software environment conflicts.

We further offer the implementation of containerized ML applications. As shown in

Figure 4.3, a containerized ML application only contains core information (e.g., model

weights, and inference requirements) and the target environment (e.g., ML application

runtime and language environment). Once a containerized ML application is trigger in

the infrastructure, it can connect to the specified target environment and resources. When
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the task is finished, the provisioned resources will be released back to the infrastructure.

Moreover, we can execute cross-platform ML implementation by specifying different tar-

get environments, such as different versions of Linux, Windows or serverless environ-

ments.

In practice, we use the Flask [fla] Python library to implement RESTful APIs of ML

implementation since most of machine learning library is built on Python. For serverless

computing, we use AMS Lambda [Amab] to implement ML applications.

4.3.4 Real-time Resource Placement

In the real-world industrial infrastructure, multiple computing resources are available.

Moreover, uncertainties, such as request frequency, and request data size, arise in running

ML applications. A vivid example is that a single image classification request can be done

by Flask API while a batch of 100 image classification simultaneous requests needs to be

sent to Amazon Lambda to handle. Therefore, the challenge is how to allocate appreciate

resources according to the requested ML applications?

To allocate resources for upcoming ML requests, we use web servers to collect two

different features: (i) request frequency, and (ii) request data size. Specifically, request

frequency represent how many requests are received in a particular period of time by the

server end. Request data sizes show the data sizes of the entire request. In practice, the

request frequency will be recorded in the web server log and the request data sizes can be

detected by the web server.

Suppose that there are a set of requests R in the waiting queue. Denote request id and

request data size of request r ∈ R, request frequency at time t by rid,rd, ft , respectively.

Also, let F and D denote the request frequency and request data size thresholds, respec-
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tively. To find the best possible implementation for the upcoming ML application, we

propose dynamic placing algorithm in Algorithm 1.

In line 5, we first investigate frequency and data size of the request. If current request

frequency is larger than the frequency threshold and data size is smaller than the data

size threshold, we implement the request with serverless computing. It is because the

web server should have born heavy load and small data sizes bring small communication

overhead to transmit request to serverless resources. Therefore, it is appropriate to offload

the request to serverless resources. In line 8, we consider deploy the request with large

data size in Docker since the requests with large data sizes usually tolerate longer response

time. For example, the analysis of high-resolution medical images can tolerate higher

response time. It is appropriate to put the requests in the queue of Docker. In line 11, we

implement the requests with Flask if the request has moderate data size and the current

request frequency is low. It is because such a request matches the characteristics of Flask:

faster but unable to process requests with too high request frequencies and data sizes. In

lines 14 and 17, only when the Flask is not available for more requests and the request

frequency is moderate, are the requests with moderate data sizes processed by Docker and

serverless, where docker is prioritized. The requests allocated with Docker container will

be run with RESTful APIs.

4.4 Evaluation

We evaluate StraightLine on a real hybrid infrastructure testbed. We explore its perfor-

mance for real-world ML application request. Our evaluation answers these questions:

• Does StraightLine reduce training time and achieve equivalent model accuracy to

CPU cluster?

• How does StraightLine perform in RESTful APIs, serverless computing, and docker?
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Algorithm 1: Dynamic Placing Algorithm
1 Input: A set of requests R, and each request r’s request id rid request frequency

at time t ft , request data size rd , frequency threshold F , data size threshold D,
available resources of Flask SF , and Docker SD.

2 Output: The placement K of the set of requests R.
3 K← /0 ;
4 for r ∈ R do
5 if ft > F and rd < D then
6 K← K∪{(rid,serverless)} ;

/* Run request r in serverless computing */

7 else
8 if rd > D then
9 K← K∪{(rid,docker)} ;

/* Run request r in docker */

10 else
11 if SF is not empty then
12 K← K∪{(rid,Flask)} ;

/* Run request r in Flask */

13 else
14 if SD is not empty then
15 K← K∪{(rid,docker)} ;

/* Run request r in docker */

16 else
17 K← K∪{(rid,serverless)} ;

/* Run request r in serverless computing */

18 end
19 end
20 end
21 end
22 end
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• Does online placement algorithm in StraightLine improve latency and response

time?

4.4.1 Setup

Real hardware. Table 4.1 specifies the real hardware for the experiments. For model

development, we simulate an in-house data center using a 2-node GPU-ready in-house

data center. Each node contains 36 cores of Intel(R) Core(TM) i9-7980XE CPU at 2.6Hz,

64GB of memory, and a NVIDIA GeFore GTX 1080 Ti GPU card with 11GB of dedicated

GPU memory. NVIDIA-Docker’s equipment is similar to the in-house data center but

only has 36 cores CPU, 64GB memory, and 1 GPU resource. For model deployment,

we build up a hybrid infrastructure that consists of a local web server with 12 cores of

Intel(R) Xeon(R) E-2176M CPU at 2.70GHz, 32GB of memory and serverless computing

of AWS Lambda [Amab] with us-east2 and 5GM memory.

Emulation deployment. For RESTful service, we use TensorFlow [ABC+16] as the

ML application runtime and Flask [fla] to expose it as the RESTful APIs. The web server

is the Internet Information Server (IIS)1 hosted on a Windows Server 2012. The WFastCgi

module2 is used to bridge the Flask API and the IIS server. The Flask application is setup

as a virtual site and the actual inference function is set as a route of the virtual site. We

set the CPU and memory share in the application pool as 100% so it can use up all the

resources. For the network, we set the connectionTiemout as 5 minutes, maxBandwidth

and maxConnections as 4GB, and maxURLSegments with 32 pieces.

For serverless computing, we use AWS Lambda [Amab] and AWS API Gateway

[Amaa] for the ML application serverless implementation. The applications are set up un-

der x86 64 architecture with python 3.9.1 environment. The inference function is coded

1https://www.iis.net/
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as the Lambda function and a route img classify is defined as a trigger in the API gate-

way. As AWS Lambda allows 128MB to 3GB for the provisioned memory, we set up two

experimental environments with 2GB and 3GB memory. The timeout is set as 50 seconds

which is the same as the local web server. The ML application is transferred as a docker

container and the runtime of the TensorFlow Keras is defined inside the DockerFile.

For docker containers, we follow the the Dockerfiles on NVIDIA official repository3

to launch different Linux systems. We build the docker environment inside the existing

Window server stack to mimic the real-world scenario. First, we use Windows Subsystem

for Linux (WSL2)4 to set up a virtual environment in the existing Windows server. After

the WSL2 successfully installed, we can setup the docker environment inside the Ubuntu

instance. Second, we installed the NVIDIA Docker Toolkit from the official repository5

so we can run ML task with docker. Third, we further modify the Docker files to make the

tasks run automatically. We generated a requirement.txt file from the Python script

we used for model training. We modified the existing Dockerfile by adding the RUN pip

install --no-cache-dir -r requirements.txt and COPY in the Python script to

the target directory. Lastly, we defined the starting command to run the Python script so

that the docker container can automatically run the task when the image activate.

ML model and dataset. We choose an image classification mode, Xception [Cho17],

as the base model to test in the different implementation environments. As shown in

Table4.2, Xceptioin can reach up to 95% accuracy rate for image classification tasks and

requires a minimum of 110.9MB for storage and the inference overhead is 109.4 ms.

Xception model is suitable for our experiment since it demands intensive computational

power in model development and its model size is also significantly larger than regular

web applications. Therefore, we use it as the test base for our evaluation process. The

3https://github.com/NVIDIA/nvidia-docker
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experiment use an open-source training data set [xce] as shown in Figure 4.4, containing

299*299 4000 images and labeled as 1000 images for cats, 1000 images for chook, 1000

images for dogs and 1000 images for horses. The data set is split 80% (3200 out of 4000

images) into samples used to train the models and the rest (800 images) for validation.

Metrics. For model development, we focus on running time, accuracy, loss, and

confusion matrix of the trained model. For model deployment, we care about session

length, response time, and failed rate when implementing ML applications in different

computing platforms.

Table 4.1: Summary of the computational resources for the experiment setup

Resouce Description
In-house
data center

72 CPU core, Inter(R) i9-7980XE
AT 2.6Hz, 128GB memory, NVIDIA
GeForce GTX 1080 Ti with 11GB
GPU Memory *2

NVIDIA
Docker

36 CPU core, Inter(R) i9-7980XE
AT 2.6Hz, 64GB memory, NVIDIA
GeForce GTX 1080 Ti with 11GB
GPU Memory

Web Server 12 CPU core, ntel(R) Xeon(R) E-
2176M CPU at 2.70GHz, 32GB mem-
ory

AWS
Lambda

us-east2, 5GB Memory

Table 4.2: The official parameters of Xception [Cho17]

Model Size (MB) Accuracy Time (ms) per
inference step (CPU)

Time (ms) per
inference step (GPU)

Xception [Cho17] 110.9 95% 109.4 8.1

4.4.2 Model Development

We measure the performance of StraightLine in model development. We adapt Google

TensorFlow [ABC+16] to perform the training of the model. The entire GPU cluster is
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set up as NVIDIA Docker [NVI] in order to realize the designed flexibility. A 20-fold

cross-validation technique is used to evaluate the models during training. The training

dataset is divided into 20 subsets: 16 are used for training and the remaining 4 are used

for testing. This process is repeated until all samples of the training dataset have been

used. The accuracy of the model is the average of the accuracy observed in each iteration.

The same training task is performed on the same cluster with CPU and GPU respectively.

Running time. Figure 4.5 reports the running time of GPU cluster and CPU cluster.

It is obvious to see that the CPU cluster takes 644.2 minutes, whereas the GPU only

takes 32 minutes to complete the same task. Additionally, since the GPU cluster is a

NVIDIA-Docker, the resources will be provisioned only when the task is triggered. This

significantly reduce the cost while enhancing the performance. It is because StraightLine

containerizes the phases in model development so StraightLine can connect required GPU

resources and run the training tasks smoothly.

Confusion matrix. We further generate the confusion matrix to compare the the

actual model performance for image classification tasks. Since we already know from the

previous evaluation that both models reach the same accuracy rate and the end, we do not

expect obvious difference. The result in the Figure 4.7 also supports this assumption.

Accuracy and loss. Figure 4.6 compares the CPU and GPU clusters’ accuracy and

loss. Apparently, after 20 epochs, both models reach 99% training accuracy and 70%

- 80% validation accuracy and around 0.9 validation Loss. Algorithm CPU and GPU

clusters can finis the training tasks, however, from chart (a) and (b), we know that for the

CPU cluster, it took 9-10 epochs to get the final stable accuracy and Loss. On the other

hand, as shown in (c) and (d), it only takes 1-2 epoch to reach a final and stable accuracy.

Even though it took around 10 epochs to get the final Loss, the deviation for the Loss is

obviously smaller than the CPU cluster.
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4.4.3 Model Deployment

We set up an emulated hybrid infrastructure for the seamless implementation of ML ap-

plications among local servers, data centers, and AWS Lambda serverless environment.

To simulate the request load, we use cloud-based performance scripting client, Artillery

[art]. We implement ML application of Xception on different platforms and measure the

performance with different request frequencies and request data sizes shown in Figure 4.8

are launched. We increase the load from 10 to 7000 within 180 seconds.

RESTful service. Figure 4.9 reports the load test results of Flask API implemented on

the local web server and the in-house data center. From Figure 4.9a we see that the local

web server and in-house data center achieve the similar failed rate when total sessions

reaches 1300. From Figures 4.9b and 4.9c we can see that the session length in the local

web server surges when total sessions reach 1200, whereas the session length in the in-

house data center increases when total sessions reach 1400. It is because the web server

implements single thread to run the ML application.

Serverless computing. Figure 4.10 reports the results of session length, response

time of AWS Lambda stack implemented with 2GB and 3GB docker. It is obvious to see

that the performance is improved significantly on AWS Lambda stack. We can see that

the median response time stays around 300-500ms even when the request frequency in-

creases up to 6000 per 180 seconds and the failed rate reaches up to 60% when the request

frequency rises to 6000 per 180 seconds. The results on AWS Lambda outperforms the

traditional RESTful API implementations.

Hybrid Infrastructure. Figure 4.11 shows the comparison of failed rate of running

ML applications on different computing platforms. It is obvious indicate as the requests

frequency increases, the serverless computing manage the failed rate in a acceptable level.

In addition, as the provisioned memory increased from 2GB to 3GB for the severless

computing, the failed rate decreased. Therefore, serverless computing tends to be a good
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solution for high request frequencies environment. It is because serverless computing

can offer unlimited resources for running ML applications as well as provide a efficient

orchestration method to trade-off the required computational resources to the provisioned

memory.

Figure 4.12 shows the comparison of response time of running ML applications on

different computing platforms. Clearly, the Flask API outperforms the rest. It is because

the Flask API can offer local computation for ML applications for application to directly

call the inference function. Both Docker and AWS serverless solution cause longer re-

sponse time because of the docker container activation overhead.

4.5 Conclusion and Future Work

Existing model development and model deployment systems were designed for one stage

or phase in the life cycle of ML applications. In this paper, we present StraightLine,

a from-development-to-deployment ML application pipeline that enables cross-platform

ML applications and hybrid infrastructure implementations. StraightLine leverages docker

to containerize the stages in model development to offer plug-and-go provisioning, and

build up multiple computing platforms and cross-platform containers for model deploy-

ment. To consider the hybrid infrastructure, StraightLine designs an online resource

placement algorithm to allocate computing resources for ML applications, using request

frequencies and request data sizes as the input of the algorithm. An interesting question

for future work is how to incorporate edge computing resources as part of the infrastruc-

ture. Edge computing is an emerging paradigm for mobile users since it offers proximity-

aware services since the edge is usually located in the proximity of mobile users. Edge

computing units are usually connected via wireless network so it is necessary to con-
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sider the communication failure, possible packet loss. We will open source StraightLine,

together with the data used to produce the results in this paper.
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Figure 4.1: The conceptual life cycle of ML applications. In model development, the
streaming data serves as the training data and goes over predefined data pipelines, and
ML models are trained and verified with processed data using local infrastructure (e.g., in-
house data center, local server, or docker containers). In model development, the trained
ML models are then deployed on the infrastructure composed of different computing
resources. Then, applications services send requests to the infrastructure through, for
example, RESTful APIs.
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Figure 4.2: The workflow and three layers in StraightLine. In Layer 1, StraightLine uses
NVIDIA-Docker to define the execution in model development. In Layer 2, StraightLine
deploys multiple implementations for ML applications. In Layer 3, StraightLine runs
the online resource placement algorithm to place computing resources for upcoming ML
requests.
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Figure 4.3: The core information in the dockerfile. It only copies over the necessary
resources and the script to start up in the target environment. There is no operating system-
related information carried out and no preset provisioning resources are required.
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Figure 4.4: The sample training data set after pre-processing.
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Partial log from GPU cluster

Partial log from CPU cluster

The CPU cluster performed 20 times slower 

than the GPU cluster. The log shows from 

2,000ms to 100ms difference.
20 times Faster

Figure 4.5: The training log demonstrate the significant improvement from the GPU clus-
ter to the model training task. Each step the GPU cluster perform on average 20 times
faster than CPU cluster
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(a) Training and Validation Accuracy
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(c) Training and Validation Accuracy

GPU Cluster

(b) Training and Validation Loss
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(d) Training and Validation Loss
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Figure 4.6: Training and validation Accuracy and Loss for the same task running by the
CPU and GPU cluster respectively.
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Figure 4.7: The confusion matrix generated by the model trained with the CPU cluster
and the GPU cluster respectively. The result does not indicate obvious difference between
two matrix.
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Figure 4.8: The experiment is designed for applying same batch of load test within 180
seconds with the same input image to different ML application implementations
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Figure 4.9: The performance of a Flask API server implemented on a local web server and
in-house data center. (a) shows the failure rate of the local web server and the in-house
data center. (b) and (c) show the session length of the local web server and the in-house
data center, respectively. Total sessions start from 10 requests per 180 seconds to 2,000
requests per 180 seconds against the Xception model.
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Figure 4.10: The graph shows the comparison for the same Xception application docker
implemented on AWS Lambda with 2GB and 3GB provisioned respectively. (a) shows
the failed rate directly impacted by the provisioned memory. (b) and (c) indicates the the
application latency does not affect much by the load changes.
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Figure 4.11: Results shows serverless implementation is dominating for the high fre-
quency request environment. It significantly enhance the application capacity from 7-8
per second to 30 per second.
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Figure 4.12: This figure shows the Flask API still out perform the rest implementation in
terms of response time.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this dissertation, we focus on the long-tail problem of ML application implementation

in various industries. In chapter 1, we present the motivation for this research is to solve

the domain-specific problem for Ml application development and the ML application

implementation in heterogeneous infrastructure environment. The contributions of

this dissertation are:

• proposed dpSmart as a conceptual framework for ML application development in

the domain-specific area.

• proposed StraightLine as a serverless enabled hybrid framework for Ml application

implementation in the heterogeneous infrastructure environment.

In chapter 2, we conduct a background review of both ML application development

for domain-specific areas and the Ml application implementation environments. For the

domain-specific problem, recent research and similar studies are reviewed. The review

result indicates a framework that can minimize the domain knowledge dependency is in

demand. For the ML application implementation problem, we have reviewed the existing

infrastructure from on-premise private, public cloud, hybrid cloud, and serverless com-

puting. The review result revealed the need for a framework that can provide flexibility

between different infrastructures.

In chapter 3, we demonstrate how to apply dpSmart from a conceptual framework to a

physical implementation for a recommendation system in the digital library domain. The

detailed design and an evaluation of the effectiveness and the system performance impact

are presented in this chapter.
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In chapter 4, we present StraightLine as a serverless computing enabled hybrid frame-

work for ML application implementation. StraightLine provides the model develop-

ment abstractions layer, multiple infrastructure deployment layers, and real-time resource

placement layers. By introducing this layered model, different types of ML applications

can be developed in a dedicated environment and deployed in a separate, hybrid, and

serverless computing enabled environment. StraightLine also provides a real-time place-

ment algorithm to optimize the ML application performance.

5.2 Lessons Learned

lack of training data. Getting the right training data means collecting or identifying

the data that correlate with the outcomes we want to predict. However, obtaining rich

training data is challenging because it takes a lot of time and domain-specific knowledge

to find the data that contains a signal about events we are interested in

Data sharing barriers. Private data owners may be reluctant to share the data.

Even when private data (e.g., administrative data, field treatment data) are shared, it is not

certain that a private data set is compatible with another private data set or with other pub-

lic data sets. For example, samples from public agencies are usually conducted according

to certain statistical standards, whereas this is not necessarily the case when private data

are collected.

Theory and Practice Gaps Empirical models trained using machine learning meth-

ods are difficult to generalize and used in domain-specific problems. For example, in

many recommendation system research, the collaborative filter is considered a common

recommender. However, when implemented in the digital library domain, it could pro-

duce more recommendation noises for academic users.
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5.3 Broader Impact

The experimental approach used in this dissertation is by abstracting the problems from

real-world projects, making a hypothesis, and verifying from a simulated environment.

This approach can make a broader impact since it can be generally used in many engi-

neering projects.

.
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