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ABSTRACT OF THE DISSERTATION

ENABLING THIRD LAYER BITCOIN APPLICATIONS USING LIGHTNING

NETWORK

by

Ahmet Kurt

Florida International University, 2023

Miami, Florida

Professor Kemal Akkaya, Major Professor

When Bitcoin was introduced in 2009, it created a big sensation in the world as it

was first of its kind. Since then, a lot of different cryptocurrencies were proposed.

Today, cryptocurrencies can be used to pay for goods and services similar to using

cash or credit cards. However, none of them could replace or supersede Bitcoin

in usage or market capitalization. Current market conditions still imply that it

will stay the same way. However, Bitcoin suffers from very low transaction per

second (TPS) which limits its usability on large scale. There have been numerous

proposals to increase its scalability such as block size increase, Schnorr signatures,

side chains and layer-2 networks. Among all, layer-2 networks is by far the most

promising solution as shown with the success of the Lightning Network (LN) which

grew exponentially over the years reaching 16,000 public nodes worldwide.

LN was implemented in 2017 with the aim of decreasing the load on the Bitcoin

blockchain by facilitating the transactions on its decentralized network which enables

almost free and instant Bitcoin payments. It works by processing the payments off-

chain meaning payments are not recorded on the Bitcoin blockchain. In order to

transact on LN, users need to open at least one LN channel to one of the nodes in the

network in advance and put some funds in the channel. Emergence of LN opened

new doors to many potential novel applications that can utilize its infrastructure.
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Indeed, LN’s underlying network offers a perfectly covert communication medium

to enable security and privacy by default. This creates opportunities for the sake of

good and bad. This dissertation aims to demonstrate both types of applications that

can rely on or exploit LN, which are referred to as third-layer applications assuming

that Bitcoin is the first and LN is the second layer.

Specifically, we first introduce a malicious use case of LN where a botmaster can

control a botnet utilizing LN as the command and control (C&C) channel. In our

design, we show that, unlike traditional or Bitcoin-based botnets, it is very hard

to stop a botnet on LN due to LN’s existing security and anonymity features. In

our second work, we propose a secure and lightweight protocol to enable resource

constrained IoT devices to use LN. With this protocol, IoT devices can send and

receive LN payments by just involving in cryptographic signing operations. We

implement this protocol by integrating it into LN’s code and demonstrate that

IoT devices can use it with minimal overhead to performance metrics. Finally,

as a third work, we investigate fully offline Bitcoin payments which is of great

need for communities that temporarily do not have access to the Internet. This

usually happens when there is a natural disaster or a big scale power outage. We

demonstrate that wireless mesh networks are a perfect venue to realize these offline

payments without needing any extra infrastructure or protocol changes to LN or

Bitcoin. We provide proof of concept implementations and ways to scale it to

networks with much more people.
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CHAPTER 1

INTRODUCTION

In recent years, many cryptocurrencies started being used in various daily-life

applications [CXS+18]. In particular, Bitcoin has been gaining tremendous popu-

larity [Bro21] which was fueled by the revolutionary blockchain concept. Its market

cap is now above 50% among all cryptocurrencies. Nevertheless, Bitcoin’s transac-

tions fees are still high and payment verification times are generally more than 10

minutes, which makes it unfeasible for real-time transactions. To address this issue,

different schemes have been proposed [ZHZB20]. Among these, the most widely

adopted one is the Lightning Network (LN). The idea is to utilize smart-contracts

and avoid writing every transaction to the blockchain. Instead, the transactions are

recorded off-chain until the accounts are reconciled. Specifically, once a channel is

created between two peers, many off-chain transactions can be performed in both

directions as long as there are enough funds. When many nodes come together,

the off-chain payment channels turn into a network, referred to as payment channel

network (PCN), such as LN. As of today, LN grew to more than 16k users in five

years, making it a popular environment for instant Bitcoin transactions.

To briefly explain how LN off-chain mechanism works, we use an example case

where Alice opens an LN channel to Bob with the purpose of sending him LN

payments. When Alice wants to open a channel to Bob, she needs to construct a

proper funding transaction first. This on-chain transaction determines the channel

capacity which is the amount of funds that will be committed to the channel. Once

Alice creates the transaction and receives Bob’s signature, she broadcasts the fund-

ing transaction to the Bitcoin network. In Fig. 1.1, Alice opens a channel to Bob

with a 5 Bitcoin capacity. Once funds are committed to the channel, she can send
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Figure 1.1: A depiction of the on-chain channel opening and closing transactions
and off-chain payments in LN.

off-chain payments to Bob up to a total of 5 Bitcoins.

When Alice starts sending Bob off-chain payments, her and Bob’s balances on

the channel will change. In Fig. 1.1, Alice sends 3 different payments to Bob with

amounts 1 Bitcoin, 2 Bitcoins, 1 Bitcoin respectively. Since these transactions are

not on-chain (i.e., not mined by miners thus not included in the blocks), there has

to be a different mechanism to keep track of each parties’ balances in the channel.

This is done by the commitment transactions. A commitment transaction is a type

of Bitcoin transaction specifically designed for LN. A payment channel consists of

states, changing with each payment. In each state, parties have different balances

which are recorded onto their commitment transactions. She receives Bob’s signa-

ture for each new state which enables her to broadcast her commitment transaction

if required.

We also mention the security and privacy features of LN which we utilize in

different parts of this dissertation. It can be listed as follows:

• No publicly advertised activity: The drawback of using a cryptocurrency

based communication infrastructure is that all of the activities are publicly stored
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in a persistent, transparent, append-only ledger. However, using the off-chain

transaction mechanism, only the intermediary nodes in a multi-hop payment path

know the transactions. The activities that are taking place in a multi-hop payment

is locally stored by the nodes responsible for forwarding that payment.

• Covert messaging: LN was proposed to ease the problems occurring in the

Bitcoin network. Hence, all of the actions taking place in the network is regarded

as financial transactions. In that sense, twisting this idea into using the network

for covertly forwarding commands will be indistinguishable from innocent, legit-

imate, and real financial transactions. Furthermore, even when the messages are

attached to the payments, the communication is still covert as the intermediary

nodes cannot tell that the payments include a message inside them.

• Relationship anonymity: LN utilizes onion routing [Lig22b] when forwarding

the payments. This feature enables users to stay anonymous when transacting

on LN. Intermediary nodes on a payment path cannot know the origin or the

destination of the payment. This applies to any “curious” node in the network.

Without colluding with other users, it is not possible to know who transacts with

whom, which is known as the relationship anonymity.

1.1 Third Layer Bitcoin Applications

Emergence of LN opened new doors to many potential novel applications that can

utilize its infrastructure. Indeed, LN’s underlying network offers a perfectly covert

communication medium to enable security and privacy by default. This creates

opportunities for the sake of good and bad. This dissertation aims to demonstrate

both types of applications that can rely on or exploit LN, which are referred to as

third-layer applications assuming that Bitcoin is the first and LN is the second layer.
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This dissertation tackles the challenges of building novel third layer LN applications

on three practical use-cases.

Botnet: We first explored a malicious use case of LN where we show how LN

can be used to control a botnet [KEC+20]. Numerous botnets have been proposed

and deployed in the past [WSZ10, SMP18]. Regardless of their communication

infrastructure being centralized or peer-to-peer, existing botnet C&C channels and

servers have the challenge of remaining hidden and being resistant against legal

authorities’ actions. Hence, in Chapter 4, we first present LNBot [KEC+20], which

is the first botnet that utilizes LN infrastructure for its communications between the

botmaster and C&C servers with a two-layer hybrid architecture. This two-layer

command and control mechanism not only enables scalability, but also minimizes the

burden on each C&C server, which increases their anonymity. Second, we present

iLNBot which stands for improved version of LNBot that has significantly reduced

cost and latency overheads. However, the proposed LNBot and iLNBot still assume

a centralized communication model between the botmaster and C&C servers. To

further strengthen the anonymity, we show that a distributed version, namely D-

LNBot can be created which forms itself over existing LN nodes.

IoT Micro-payments: Our second practical application is utilization of LN for

enabling micro-payments (i.e., paying with your smart watch or vehicle) for resource

constrained IoT devices. Although LN addresses many problems of Bitcoin, it still

cannot be run on most of the IoT devices because of the computation, communica-

tion, and storage requirements [Kur21]. Therefore, a lightweight solution is needed.

We are specifically focusing on Bitcoin’s LN because LN is currently the most widely

used cryptocurrency payment channel network. To this end, in Chapter 5, we pro-

pose a threshold cryptography-based protocol where an IoT device can perform LN

operations through an untrusted LN gateway that hosts the full LN and Bitcoin
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nodes [KMS+21]. With this integration, the IoT device can 1) open LN channels,

2) send LN payments, 3) receive LN payments, and 4) close LN channels. The LN

gateway is incentivized to provide this payment service by charging service fees for

IoT device’s payments. By implementing our approach, we demonstrated that the

proposed protocol 1) has negligible communication and computational delays thus

enables timely payments; 2) is scalable for increasing number of IoT devices and

payments; 3) can be run on networks with low bandwidth (data rate); and 4) asso-

ciated energy consumption and monetary costs of using the protocol for IoT devices

are negligible.

Offline Bitcoin Payments: Our third LN application is for enabling offline

Bitcoin payments. Decentralized nature of Bitcoin offer opportunities to explore

whether digital payments can be realized when there is no Internet connection.

This is particularly crucial for the cases when there are natural disasters such as

hurricanes or earthquakes causing power and Internet outages while people in com-

munities still need to interact and make payments. Indeed, this was a particular issue

after Hurricane Irma in 2017 when people in South Florida did not have Internet

for weeks1 while they still needed to make payments for gas, groceries, repairs and

other basic needs. Thus, in Chapter 6, we propose using LN on top of community

wireless mesh networks to enable sending/receiving offline LN payments between

the members of the mesh network without needing any Internet connection. In this

way, until users get back online, they can transact using their existing LN channels.

As long as nodes can communicate with each other through wireless technologies

such as WiFi or Bluetooth, they can perform offline LN payments.

1https://mashable.com/article/hurricane-irma-power-outage-florida
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1.2 Our Contributions

Our contributions in this dissertation are as follows:

1. Contributions of Chapter 4: D-LNBot: A Scalable, Cost-Free and Covert

Hybrid Botnet on Bitcoin’s Lightning Network :

• We first propose LNBot which is a covert and hybrid botnet that uses Bitcoin’s

LN for its C&C communications. LN’s strong anonymity features makes it

very challenging to stop the botnet.

• Next, we propose iLNBot which is a significantly improved version of LNBot

in terms of cost and time spent on sending the commands to the bots.

• We then propose D-LNBot which is a distributed version of LNBot that is

superior in cost, delay and resiliency aspects. Specifically, D-LNBot forms

itself over LN with minimum botmaster intervention, sends the commands to

the bots for free, spends significantly less time to propagate the commands to

all the bots.

• We present proof of concept implementations for all three versions and exten-

sively analyze their performance metrics. Some implementation details can be

found in our GitHub repositories at: https://github.com/startimeahmet

/D-LNBot and https://github.com/LightningNetworkBot/LNBot.

• Finally, all these features of LNBot and D-LNBot make them botnets that

need to be taken seriously therefore we provide a list of countermeasures that

may help detect LNBot and D-LNBot activities and minimize damages from

them.

2. Contributions of Chapter 5: LNGate2: Secure Bidirectional IoT Micro-

payments using Bitcoin’s Lightning Network and Threshold Cryptography :
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• We propose LNGate2, a secure and lightweight protocol that enables resource-

constrained IoT devices to open/close LN channels, send/receive LN payments

through an untrusted gateway node.

• We utilize (2,2)-threshold cryptography so that the IoT device does not have

to get involved in Bitcoin or LN operations, but only in transaction signing

and key generation. We propose to thresholdize LN’s Bitcoin public/private

keys and public/private keys of new channel states (i.e., commitment points)

for a secure 2-party threshold LN node.

• We used game theory to analyze the security of the protocol and prove that

it is secure against collusion attacks.

• We implemented LNGate2 by changing LN’s source code. LN’s Bitcoin public

and private keys were thresholdized. Our code is publicly available in our

GitHub pages at: https://github.com/startimeahmet/lightning and

https://github.com/startimeahmet/LNGate2.

3. Contributions of Chapter 6: LNMesh: Who Said You need Internet to send

Bitcoin? Offline Lightning Network Payments using Community Wireless Mesh

Networks :

• We propose LNMesh which enables using LN on top of community wireless

mesh networks to enable sending/receiving offline LN payments between the

members of the mesh network without needing any Internet connection.

• We conducted a feasibility study using 8 Raspberry Pi devices to realize the

offline LN payments using Bluetooth Low Energy (BLE) and WiFi for com-

munication.
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• We then propose two channel assignment strategies based on minimum con-

nected dominating set and universal spanning tree concepts to scale the con-

cept to large-scale community mesh networks.

• We implemented a simulator in Python to assess the performance of the pro-

posed channel assignment approaches and show that overall payment success

rates up to 95% are achievable.

• Finally, the details of our proof of concept implementations and the full source

code of our simulator can be found in our GitHub page at https://github

.com/startimeahmet/LNMesh.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows. We give the literature review of

any related work in Chapter 2. It is followed by Chapter 3 to provide a comprehen-

sive background for the proposed studies in the dissertation. Then, in Chapter 4, we

propose D-LNBot which is a botnet utilizing LN for its covert communication. In

Chapter 5, we propose LNGate2 which is a secure and lightweight protocol enabling

IoT devices to use the functions of LN. In Chapter 6, we propose LNMesh which

enables making offline Bitcoin payments using wireless mesh networks. Finally, we

give the concluding remarks and the future works in Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we provide the related work of the studies presented in this

dissertation.

2.1 Botnets

Botnets have been around for a long time and there have been even surveys classi-

fying them [SSPS13, BCJ+09]. While early botnets used IRC, later botnets focused

on P2P C&C channels for resiliency [GSN+07]. Our proposed LNBot and D-LNBot

fall under covert botnets which became popular much later. As an example, Na-

garaja et al. proposed Stegobot, a covert botnet using social media networks as a

command and control channel [NHP+11]. Pantic et al. proposed a covert botnet

command and control using Twitter [PH15]. Tsiatsikas et al. proposed SDP-based

covert channel for botnet communication [TAK+15]. Calhoun et al. presented a

MAC layer covert channel based on WiFi [CJCLB12]. A recent work by Wu et al.

[WLH+21] presents a mobile covert botnet network. Another covert botnet design

based on social networks was recently proposed by Wang et al. [WLC+22]. Tian et

al. proposed DLchain [TGL+20], a covert channel utilizing the Bitcoin network.

Recently, there have been proposals on using the Bitcoin blockchain for bot-

net C&C communication [BAS+19]. For instance, Roffel et al. [RG14] came up

with the idea of controlling a computer worm using the Bitcoin blockchain. An-

other work[Swe17] discusses how botnet resiliency can be enhanced using private

blockchains. Pirozzi et al. [PP18] presented the use of blockchain as a command

and control center for a new generation botnet. Kamenski et al. [KSWK21] also

show a proof of concept to build a Bitcoin-based botnet. Similarly, ChainChannels

[FAZ18] utilizes Bitcoin to disseminate C&C messages to the bots. These works are
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different from our architecture as they suffer from the issues of high latency and pub-

lic announcement of commands. ZombieCoin [AMLH15] proposes to use Bitcoin’s

transaction spreading mechanism as the C&C communication infrastructure. The

authors later proposed ZombieCoin 2.0 [AMLH18] that employs subliminal channels

to increase the anonymity of the botmaster. However, subliminal channels require a

lot of resources to calculate required signatures which is computationally expensive

and not practical to use on a large scale. A more recent work by Yin et al. [YCL+20]

proposes CoinBot, a botnet that runs on cryptocurrency networks based on Bitcoin

protocol such as Litecoin and Dash. Similar to other Bitcoin based botnets, Coin-

Bot utilizes the OP RETURN field in the transactions. However, this approach is still

costly and command propagation is slow.

There are also Unblockable Chains [Zoh18], and Botract [AM22], which are

Ethereum [Woo14] based botnet command and control infrastructures that suffer

from anonymity issues since the commands are publicly recorded on the blockchain.

Baden et al. [BFTFPS19] proposed a botnet C&C scheme utilizing Ethereum’s

Whisper messaging protocol. However, it is still possible to blacklist the topics used

by the botmaster. Additionally, there is not a proof of concept implementation of

the proposed approach yet, therefore it is unknown if the botnet can be successfully

deployed or not.

The closest works to ours are the Franzoni et al. [FAD20] and DUSTBot

[ZZZ+19]. Franzoni et al. propose to utilize the Bitcoin Testnet for controlling

a botnet. Even though their C&C communication is encrypted, non-standard Bit-

coin transactions used for the communication exposes the botnet activity. Once

the botnet is detected, the messages coming from the botmaster can be prevented

from spreading, consequently stopping the botnet activity. DUSTBot also partially

uses the Bitcoin Testnet in its design. Authors propose to utilize the Testnet as the
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upstream channel for sending the bot data back to the botmaster. However, bot-

master’s Bitcoin address is subject to blacklisting which blocks the communication

of the botnet.

Finally, there are also botnets that utilize anonymity networks such as Tor

[Bro10]. It is tempting for botmasters to use Tor and other anonymity networks

due to their privacy and anonymity guarantees. However, there are numerous works

in the literature showing ways to detect and stop botnets utilizing Tor. For example,

Casenove et al. [CM14] showed that a botnet over Tor can be exposed due to the

recognizable patterns in the C&C communication. Sanatinia et al. [SN15] proposed

a Sybil mitigation technique to neutralize the bots in their proposed OnionBots

which is a botnet utilizing Tor. Thus, as can be seen, anonymity networks are sus-

ceptible to other unique attacks associated with their inherent characteristics when

used for botnet communication.

In contrast, our work is based on legitimate LN payments and does not require

any additional computation to hide the commands. Also, these commands are

not announced publicly. Moreover, LNBot offers a very unique advantage for its

botmaster: C&C servers do not have any direct relation with the botmaster thanks

to LN’s anonymous multi-hop structure. Even more, D-LNBot removes the costs

that were present in LNBot and enables running a free botnet on LN. As a result,

LNBot and D-LNBot do not carry any mentioned disadvantages through their two-

layer hybrid architecture and provide superior scalability and anonymity compared

to others.
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2.2 IoT Micro-payments

Hannon and Jin [HJ19] propose a protocol based on LN to give the IoT devices

the ability to transact. They propose using two third parties that they named IoT

payment gateway and watchdog. However, their approach has a fundamental flaw.

They assumed that the IoT device can open payment channels to the gateway and

this process is not explained. This is indeed the exact problem we are trying to

solve. IoT devices do not have the computational resources to open and maintain

LN payment channels. Therefore, their assumption is not feasible and our work is

critical in this sense to fill this gap.

The authors of [RKG20] proposed IoTBnB which is a digital IoT marketplace

that utilizes LN payments for data trading. In their approach, an LN module which

hosts the Bitcoin and LN nodes is used to send users’ payments. In contrast to our

work, this approach is focusing on integrating LN into an existing IoT marketplace.

Thus, the individual devices that are not part of such marketplaces are not consid-

ered. Additionally, the authors’ LN framework relies on Bitcoin wallets held by the

ecosystem itself which raises security and privacy concerns. In our approach, IoT

devices do not share the ownership of their Bitcoins with a third party.

A work focusing on Ethereum micro-payments rather than Bitcoin was proposed

by Pouraghily and Wolf [PW19]. It is a ticket-based verification protocol to enable

low-end IoT devices to exchange money and data inside an IoT ecosystem. However,

this approach has major problems: The joint account opened with a partner device

raises security concerns as the details of it are not provided. Additionally, the

approach was compared with µRaiden [Bra18] whose development stopped more

than 4 years ago. In contrast to this work, we targeted Bitcoin’s LN as it is actively

being developed and dominating the market.
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A recent work by Rebello et al. [RPBdAD22] proposed a hybrid PCN architec-

ture for wireless resource constrained devices to be able to access and use PCNs.

However, their solution does not work for devices that stay offline for long periods of

time. Additionally, authors assume that resource-constrained devices can run light

nodes and establish payment channels. This assumption cannot be generalized to

all the IoT devices. Our approach does not require IoT devices to stay online except

for the time they perform the LN operations. They also do not need to run light

nodes.

Another recent work by Wang et al. [WZWX21] introduced HyperChannel which

utilizes a group of Intel Software Guard Extensions (SGXs) that are run by selfish

service nodes to execute the transactions. The approach includes an entity called

client emergency enclave. This is an extra burden on the IoT devices since each

device has to own an emergency enclave to protect themselves in case of service

node shutdowns. In our approach, we only require IoT devices to perform signing.

Profentzas et al. [PAL20] proposed TinyEVM to enable IoT devices to per-

form micro-payments. The authors’ method involves running a modified version of

Ethereum virtual machine on the IoT devices. In contrast, in our approach, IoT

devices only generate signatures which is not a resource-intensive operation. The

work by Li et al. [LFX+20] focuses on designing a PCN-based smart contract for

IoT data transactions. However, they do not seem to discuss the costs associated

with their protocol and the routing performance of the protocol drops significantly

when there are malicious nodes in the network. A slightly different work by Tapas

et al. [TYL+20] proposed utilizing LN in the context of patch update delivery to

the IoT devices where they claim rewards through LN. However, unlike our work,

the IoT devices are assumed to be able to connect to the blockchain through light

clients or third party full nodes on the network which requires a degree of trust.
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There are also some implementation efforts for creating lighter versions of LN

such as Neutrino [Lig23b] light client and Phoenix [ACI23] mobile wallet. The

problem with these software is that they are not specifically designed for IoT devices

thus most IoT devices cannot run them. Thus, we opt for a solution that covers a

wider range of IoT devices and applications.

In addition to these works, we acknowledge that there are also many works

that offer cash payments from IoT devices that do not include cryptocurrencies.

These are typically bank-based, card-based and digital cash based payment options

[WCZ20, BRV+22]. However, as mentioned before, our goal is not to compete with

these solutions. Our work is just a reliable and convenient alternative for those who

prefer cryptocurrency payments that rely on blockchains.

2.3 Offline Bitcoin Payments

While there has been a lot of work on the integration of Bitcoin with IoT devices

[KMS+21, FCFL18], the concept of fully offline Bitcoin payments received little in-

terest. The closest work to ours is from Myers [Mye19]. The author proposes a

protocol called Lot49 that aims to incentivize message senders in a mesh network

using LN-like payment channels. While the work looks interesting in the direction to

possibly enable offline LN payments, it has too many requirements and assumptions

that are unlikely to be feasible. For example, the protocol requires Schnorr signa-

tures and SIGHASH NOINPUT flag to be adopted by the Bitcoin community, changes

to the Bitcoin scripts of LN, and many different types of nodes to be setup in the

mesh. Additionally, there is no proof of concept implementation of the protocol. In

contrast, our work does not need any modifications to the LN or Bitcoin protocols,

and works without setting up so many different types of nodes.
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It is also worth mentioning that, the idea of using mesh networks to enable offline

Bitcoin and LN payments were mentioned at several news articles12. However, they

do not offer any actual solution. There are also commercialized mesh networking

solutions such as Locha Mesh3 that might be used for sending Bitcoin offline. How-

ever, users need to purchase special nodes and the system is geared more towards

communication or chat. Additionally, the open source development of the software

seems to be dormant as of now.

A practical problem in this context is to temporarily accommodate offline LN

nodes. While there was no scientific study, there have been discussions in the Bitcoin

and Lightning community about how offline LN nodes can receive payments. Such

payments are called asynchronous (async) payments. A thread on the Lightning-

dev mailing list was started by Matt Corallo to discuss the possible solutions4.

According to him, Point Time Locked Contracts5 (PTLCs) which were proposed

to replace HTLCs in LN, could be the best option. PTLCs use public key for

locking and a corresponding signature for unlocking in contrast to HTLCs’ hash

and preimage combination. Since PTLCs are not yet implemented in LN; a partial

solution, trampoline relays were proposed6. These relay nodes are managed by third

parties and can temporarily hold the payments until the offline recipient node comes

1https://bitcoinmagazine.com/technical/making-bitcoin-unstoppable-par

t-one-mesh-nets

2https://bitcoinmagazine.com/technical/from-isp-to-p2p-how-mesh-network

s-take-bitcoin-off-the-grid

3https://github.com/btcven/locha

4https://lists.linuxfoundation.org/pipermail/lightning-dev/2021-October

/003307.html

5https://bitcoinops.org/en/topics/ptlc/

6https://github.com/ACINQ/eclair/pull/2435
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back online. However, this approach does not address payment sending between two

offline LN nodes. In our approach, we enable offline-to-offline payments utilizing

wireless mesh networks.

There were some efforts on enabling offline but on-chain Bitcoin transactions as

well which works based on the concept of online coin preloading. The first feasible

idea was proposed by Dmitrienko et al. [DNY17] where authors proposed utilizing

offline wallets leveraging secure hardware. Later, Takahashi et al. [TO20] slightly

improved on this idea by removing the external trusted time-stamp server in the

design. However, both approaches need wallets produced by trustworthy manufac-

turers which raises security concerns. Additionally, the approach requires changes

to the Bitcoin protocol.

Researchers also explored other blockchains for realizing offline cryptocurrency

payments. For example, Rawat et al. [RDS22] explored whether IOTA blockchain

can be used to perform offline payments. They concluded that current IOTA

blockchain cannot accommodate the desired offline payments without significant

modifications to its protocol. A more concrete solution called DelegaCoin was pro-

posed by Li et al. [LWZ+21] whose main idea is to utilize Trusted Execution En-

vironments (TEEs) for secure offline delegation of coins without interacting with

the blockchain. However, this approach requires additional entities to be set up

(i.e., TEEs) which may not be practical for all users. In contrast to these works,

we propose using LN on top of existing wireless mesh networks without needing to

modify existing blockchain protocols or setting up new entities.
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CHAPTER 3

BACKGROUND

This chapter provides background on LN, its underlying mechanisms, threshold

cryptography and game theory as a preliminary to our studies presented in this

dissertation.

3.1 Lightning Network Preliminaries

LN was introduced in 2015 in a draft technical whitepaper [PD16] and later was

implemented and deployed onto Bitcoin Mainnet by Lightning Labs [Sub18]. It

runs on top of the Bitcoin blockchain as a second-layer peer-to-peer distributed

PCN and aims to address the scalability problem of Bitcoin. It enables opening

secure payment channels among users to perform instant and cheap Bitcoin transfers

through multi-hop routes within the network by utilizing Bitcoin’s smart contract

capability [ABC+18]. The number of users using LN has grown significantly since

its creation. At the time of writing this chapter, LN incorporates 16,450 nodes and

74,625 channels which hold 5,438 BTC in total (worth around 160 million USD)1.

Off-chain Concept: The main idea behind LN is to utilize the off-chain concept

which enables near-instant Bitcoin transactions with negligible fees. This is accom-

plished through bidirectional payment channels which are created among two parties

to exchange funds without committing the transactions to Bitcoin blockchain. The

channel is opened by making a single on-chain transaction called the funding trans-

action. The funding transaction places the funds into a 2-of-2 multisignature address

which also determines the capacity of the channel. Whenever the parties want to

send a payment, they basically shift corresponding portion of their channel balance

to the other side of the channel. So, after a transaction takes place, the total ca-

1https://1ml.com/
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pacity in the channel does not change but the directional capacities do. Therefore,

the peers can make as many transactions as they want in any amount as long as the

amount they want to send does not exceed the directional capacity. The example

shown in Fig. 3.1 illustrates the concept in more detail.

2-of-2
Multisignature
(A&B):	5₿

Alice:	5₿

Bob:	0₿

A	&	B

Bob:	1₿

1₿

A	&	B

Bob:	3₿

2₿

A	&	B

Bob:	4₿

1₿

2-of-2
Multisignature
(A&B):	5₿

Alice:	1₿

Bob:	4₿

On-chain
Transactions

Off-chain
Transactions

Opening	the	Channel Closing	the	Channel1

2

3

Figure 3.1: Off-chain mechanism of LN.

Per figure, 1○ Alice opens a channel to Bob by funding 5 Bitcoins into a 2-

of-2 multi-signature address which is signed by both Alice and Bob. 2○ Using this

channel, Alice can send payments to Bob simply by transferring the ownership of her

share in the multi-signature address until her funds in the address are exhausted.

Note that these transactions are off-chain meaning they are not written to the

Bitcoin blockchain which is a unique feature of LN that is exploited in our botnet.

Alice performs 3 transactions at different times with amounts of 1, 2 and 1 Bitcoin

respectively. 3○ Eventually, when the channel is closed, the remaining 1 Bitcoin in

the multi-signature address is returned to Alice while the total transferred 4 Bitcoins

are settled at Bob. Channel closing is another on-chain transaction that reports the

final balances of Alice and Bob in the multi-signature address to the blockchain.

Multi-hop Payments: In LN, a node can send payments to another node even if

it does not have a direct payment channel to that node. This is achieved by utiliz-

ing already established payment channels between other nodes and such a payment
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Figure 3.2: Illustration of a multi-hop payment. R is the pre-image generated by
Bob, H is the hash of R. Alice creates an HTLC and includes H in it. Through
this mechanism, Alice can securely route her payment to Bob over Charlie.

is called multi-hop payment since the payment is forwarded through a number of

intermediary nodes (i.e., hops) until reaching the destination. This process is trust-

less meaning the sender does not need to trust the intermediary nodes along the

route. Fig. 3.2 depicts a multi-hop payment. Alice wants to send a payment to

Bob but does not have a direct channel with him. Instead, she has a channel with

Charlie which has a channel with Bob, thus Alice can initiate a payment to Bob via

Charlie. For this to work, 1○ Bob first sends an invoice to Alice which includes the

hash (H) of a secret R (known as pre-image). 2○ Then, Alice prepares the payment

through a contract called Hash Time Locked Contract (HTLC) [PD16] and includes

H inside the payment. HTLCs are used to ensure that the payments can be securely

routed over a number of hops. Now, Alice sends this HTLC to Charlie and waits

for Charlie to disclose the R. That is the condition for Alice to release the money

to Charlie. 3○ In the same way, Charlie expects Bob to disclose R so that he can

send it to Alice the claim the money. Finally, when Bob releases the R to Charlie,

the payment will have successfully sent and HTLC will have fulfilled. Through this

mechanism of LN, as long as there is a path from the source to the destination with

enough liquidity, payments can be routed just like the Internet.

The rest of this section explains technical concepts about LN such as funding

transaction, commitment transaction, Hash Time Locked Contract (HTLC), revoked
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Figure 3.3: Life cycle of an LN channel.

state, and Basis of Lightning Technology (BOLT) which are essential to understand

our protocol. The explanations are based on an example case where Alice opens an

LN payment channel to Bob and wishes to transact with him.

Funding Transaction: When Alice would like to open a channel to Bob, this is

done via an on-chain Bitcoin transaction called the funding transaction. Generally

the channel is funded by the party initiating the process, but dual-funding where

both channel parties commit funds to the channel is also possible. With the funding

process, the capacity of the channel is determined as well. For example, if Alice funds

the channel with 10 Bitcoins (BTC) as shown in Fig. 3.3 (1. Channel Opening),

she can send payments to Bob until her 10 BTC in the channel are exhausted.

The reverse of the funding transaction is called the closing transaction which is

used to close an LN channel (3. Channel Closing in Fig. 3.3). It is also an on-chain

transaction which needs to be broadcast to the Bitcoin network.

Commitment Transaction: Once the channel is used for sending a payment,

the balances of Alice and Bob in the channel will change. Since the LN payments

are off-chain meaning they are not recorded on the Bitcoin blockchain, another

type of Bitcoin transaction which will keep track of the channel balances is needed.
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Alice's Commitment Transaction

INPUT

Funding Transaction Outpoint
Bob's Signature
Amount: 5 BTC

OUTPUT 1: Local Balance

To Alice with k blocks delay
OR

To Bob with revocation key
if Alice cheated
Amount: 3 BTC

OUTPUT 2: Remote Balance

To Bob
Amount: 1 BTC

OUTPUT 3: Offered HTLC

To Bob with payment
preimage R

OR
To Alice with a w blocks delay

Amount: 1 BTC

Figure 3.4: An illustration of a commitment transaction stored at Alice.

This is done by the commitment system of LN. A simple LN payment requires

two separate commitment rounds: one when the payment is offered and one when

it is fulfilled. Each commitment round requires both peers to sign a commitment

transaction. Here, the commitment transactions are what actually hold the channel

balance information and incoming/outgoing payments. They are specially crafted

for LN and symmetrical for channel peers. An illustration of this is shown in Fig.

3.3 (2. Payment Sending) where Alice initiates a 1 BTC payment to Bob and their

channel balances get updated.

Inputs to Alice’s commitment transaction is the funding transaction outpoint

and Bob’s signature. Outpoint is the combination of the transaction output and

its output index. A typical commitment transaction has three main outputs. For

Alice’s version, the first output is for her balance, the second output is for Bob’s
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and the third would be for a payment. These outputs are illustrated in Fig. 3.4.

Hash Time Locked Contract (HTLC): LN payments are constructed using

a special type of transaction called Hash Time Locked Contract (HTLC). In this

scheme, when Alice wants to send a 1 BTC payment to Bob as depicted in Fig.

3.3 (2. Payment Sending), she asks Bob to generate a secret called preimage. Bob

hashes the preimage and sends the hash to Alice. Alice includes the hash in the

HTLC and sends the HTLC to Bob. Upon receiving Alice’s HTLC, Bob reveals the

preimage to Alice to receive the 1 BTC payment. This acts as a proof that Bob is

the intended recipient. If for some reason, Bob cannot reveal the preimage on time

to claim the HTLC, Alice gets the 1 BTC back after some block height w. Output

3 in Fig. 3.4 illustrates this HTLC payment.

Revoked State: Alice’s balance in her commitment transaction is conditional such

that; if she closes the channel, she has to wait k number of blocks before she can

redeem her funds on-chain. This is to protect Bob from a possible cheating attempt

by Alice in which she uses an old (revoked) channel state to close the channel. Since

Alice has a record of all the old channel states, it might be tempting for her to

broadcast an old state in which she has more funds. But, if Bob sees that the

channel was closed using an old state, he will punish Alice by taking all her funds

in the channel. But to do that, he has to be online and take action before the

broadcast transaction reaches the depth k on the blockchain. Note that, when Alice

closes the channel, Bob can redeem his funds immediately unlike Alice.

Basis of Lightning Technology (BOLT): BOLT specifications describe LN’s

layer-2 protocol for secure off-chain Bitcoin payments. In order to implement our

proposed protocol, we made modifications on BOLT #2 which is LN’s peer protocol

for channel management. BOLT #2 has three phases which are channel establish-

ment, normal operation of the channel, and channel closing. Using this protocol,
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LN nodes talk to each other for channel related operations. The full details of the

protocol can be found at [Lig22a].

3.2 Invoice & Key Send Payments

LN payments are sent using invoices which are basically long strings consisting

of characters and numbers2. They are encoded in a specific way to include all

the information required to send the payment such as the destination public key,

payment amount, expiration date, signature etc. The recipient of the payment

prepares the invoice and sends it to the payer.

Key send in LN enables sending payments to a destination without needing to

have an invoice first [Jag19]. It utilizes Sphinx [DG09] which is a compact and secure

cryptographic packet format to anonymously route a message from a sender to a

receiver. This is a very useful feature to have in LN because it introduces new use

cases where payers can send spontaneous payments without contacting the payee

first. In this mode, the sender generates the pre-image for the payment instead of

the receiver and embeds the pre-image into the Sphinx packet within the outgoing

HTLC. If an LN node accepts key send payments, then it only needs to advertise its

public key to receive key send payments from other nodes. We utilize this feature

to send payments from botmaster to C&C servers in LNBot, iLNBot and D-LNBot.

2https://github.com/lightning/bolts/blob/master/11-payment-encoding.md
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3.3 Source Routing, Onion Routed Payments and Private

Channels

With the availability of multi-hop payments, a routing mechanism is needed to select

the best route for sending a payment to its destination. LN utilizes source routing

which gives the sender full control over the route for the payment to follow within

the network. Senders are able to specify: 1) the total number of hops on the path;

2) total cumulative fee they are willing to pay to send the payment; and 3) total

time-lock period for the HTLC [Lig22b]. Moreover, all payments in LN are onion-

routed payments meaning that HTLCs are securely and privately routed within the

network. Additionally, by encoding payment routes within a Sphinx packet, the

following security and privacy features are achieved: the nodes on a routing path do

not know: 1) the source and the destination of the payment; 2) their exact position

within the route; and 3) the total number of hops in the route. Consequently, these

features prevent any node from easily censoring or analyzing the payments.

In LN, it is optional to announce the opened channels publicly. The channels

that are not publicly announced to the network are called private channels. They

are only known by the two peers of the channel. Other users cannot use the private

channels to route payments over them. However, it is still possible to utilize these

channels for routing payments with the help of routing hints3. Routing hints are

used to let the sender know how to reach an LN node behind a private channel.

3https://write.as/arshbot/everything-you-need-to-know-about-hop-hints-i

n-the-lightning-network
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3.4 Attaching Messages to the Payments

Recent developments in LN4 made it easier to attach arbitrary data to the payments.

A protocol to enable this functionality was developed at 20195. Later, the protocol

was incorporated to the Core Lightning through the noise plugin [Dec23]. We utilize

the plugin for sending botmaster’s commands to the C&C servers in iLNBot and

D-LNBot. Messages are included in the payload inside the onion packets that are

routed over the hops until reaching the recipient. Onion size is 1300 bytes, thus

theoretically, messages of size up to 1300 bytes can be sent in a single payment. This

is much higher than the size allowed by the OP RETURN field in Bitcoin transactions

which allows carrying only 80 bytes of data. The protocol carries the following

information inside the onion payload: 1) key send pre-image, 2) message of variable

size, 3) compressed signature and recovery id, and 4) timestamp. Intermediary

nodes cannot the see payload inside the onion packet thus the messages can be

anonymously sent to the recipients. Note that, different LN implementations might

have a different version of this protocol or may not have it at all.

3.5 Threshold Cryptography

Threshold cryptography [Des94] deals with cryptographic operations where more

than one party is involved. The idea of sharing a cryptographic secret among a

number of parties was proposed by Shamir [Sha79]. In a threshold scheme, a secret

is shared among n parties and a threshold t is defined such that, no group of t−1 can

learn anything about the secret. Such setup is defined as (t, n)-threshold scheme.

We utilize (2,2)-threshold cryptography in our proposed protocol for cooperative

4https://github.com/lightning/bolts/pull/619

5https://github.com/joostjager/whatsat

25

https://github.com/lightning/bolts/pull/619
https://github.com/joostjager/whatsat


signing and key generation. Since Bitcoin is using Elliptic Curve Digital Signature

Algorithm (ECDSA) for signing operations, in the next sections, we first present

the ECDSA signature scheme. Then, we give the details of the 2-party ECDSA

threshold key generation and signing that we employ in our protocol. They are

rewritten from [Tea18] and based on Lindell’s work [Lin17].

ECDSA Signature Scheme: ECDSA signature scheme takes an input message

m and a private key x and produces a pair of integers (r, s) as output. The steps of

the algorithm are as follows:

1. Hash h = H(m) of the message is calculated. H is a hash function (i.e., SHA-

256).

2. A secure random integer k between [1, n− 1] is generated.

3. A random point (x, y) = k ·G is calculated. Then, r = x (mod n) is computed.

4. Signature proof s = k−1 · (h+ r · x) (mod n) is calculated.

5. (r, s) is returned which is the ECDSA signature.

(2,2)-Threshold Key Generation: Let G be an elliptic curve of prime order q

and a base point (generator) G. In our setting, the protocol is run between a server

P1 and a client P2.

1. Initiation: Choosing a random x1, the server computes Q1 = x1 ·G and choosing

a random x2, the client computes Q2 = x2 ·G.

2. A variant of the ECDH key exchange (see [Lin17]) is run by the client and the

server to generate the joint public key Q = x1x2G.

3. A Paillier key-pair is generated and ckey = Encpk(x1) is computed by the server

where pk is the Paillier public key. Then, the server sends ckey and pk to the

client.
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4. The client receives a non-interactive zero-knowledge proof whose Paillier key is

well-formed from the server. Proof in [GRSB18] as well as the parameters in

[LN18] were utilized.

5. The client asks the server to prove that the encrypted value in ckey is the discrete

log of Q1 using a 2-round zero-knowledge protocol that is given at Section 6 of

Lindell’s work [Lin17].

6. The client asks the server to prove that x1 ∈ Zq where q is the order of the elliptic

curve using a 2-round zero-knowledge protocol that is given at Appendix A of

Lindell’s paper [Lin17].

(2,2)-Threshold Signing: This 2-party threshold ECDSA algorithm produces the

same signature (r, s) as the original ECDSA signature scheme given earlier.

1. Step 1 of the key generation protocol is repeated for ephemeral key-pairs by the

server and the client. This outputs k1, R1 for the server and k2, R2 for the client.

2. Server and the client can extract the x-coordinate r = rx from the same R they

generate by R = k1 ·R2 and R = k2 ·R1 respectively.

3. c1 = Encpk(k
−1
2 · H(m) + ρq) and c2 = ckey

x2·r·k−1
2 are computed by the client

where ρ is some random number. Then, c3 = c1⊕ c2 is computed and sent to the

server by the client where ⊕ is the additive homomorphic operation of Paillier

cryptosystem.

4. c3 is decrypted by the server to get s′ which is used to compute s = s′ ·k−1
1 . Now,

server outputs (r, s) as the ECDSA signature if (r, s) validates as a signature on

H(m).
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3.6 Game Theory Background

In Chapter 5, the concept of subgame perfect equilibrium (SPE) [MR88] plays an

important role to identify the solution. A (proper) subgame is a subset of the tree

structure of the actual game. When tree form is used in a game, sequentiality can be

applied rather than simultaneity. That is, in a two-player game, one player moves

first and the other decides how to play after observing the first player’s action. In

this setting, it is assumed that the players are all sequentially rational, meaning

that each player systematically and purposefully performs his/her best to achieve

the objective. Most of the time, the objective for a player in an economic setting is

to maximize profit. One should also note that profit maximization requires the cost

minimization at the same time by its definition.

Player 1

Action a Action b

Player 2

(P1a, P2d)(P1a, P2c) (P1b, P2f)

Player 2

(P1b, P2e)

Action c Action d Action e Action f

Figure 3.5: An example extensive form of a sequential game

To find the solution of a game with a similar setting (i.e., SPE), the concept

called backward induction [Aum95] can be used. Applying the backward induction

procedure requires investigating the game from the end to the start. Particularly, at

each decision node, any action that results in a smaller payoff for the corresponding

player is eliminated. Incorporating sequential rationality, a strategy profile is SPE

if it specifies a Nash equilibrium [Mye78] in every subgame of the original game. A

Nash equilibrium is the optimal solution which yields no incentive for any player in
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the game to deviate once it is achieved. We show an example extensive form game

in Fig. 3.5.

In this example, Player 1 and Player 2 are performing certain actions resulting

in different payoffs at the end of the game.
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CHAPTER 4

D-LNBOT: A SCALABLE, COST-FREE COVERT HYBRID BOTNET

ON BITCOIN’S LIGHTNING NETWORK

While various covert botnets were proposed in the past, they still lack complete

anonymization for their servers/botmasters or suffer from slow communication be-

tween the botmaster and the bots. In this chapter, we first propose a new generation

hybrid botnet that covertly and efficiently communicates over Bitcoin Lightning Net-

work (LN), called LNBot. Exploiting various anonymity features of LN, we show the

feasibility of a scalable two-layer botnet which completely anonymizes the identity

of the botmaster. In the first layer, the botmaster anonymously sends the com-

mands to the command and control (C&C) servers through regular LN payments.

Specifically, LNBot allows botmaster’s commands to be sent in the form of surrep-

titious multi-hop LN payments, where the commands are either encoded with the

payments or attached to the payments to provide covert communications. In the

second layer, C&C servers further relay those commands to the bots in their mini-

botnets to launch any type of attacks to victim machines. We further improve on

this design by introducing D-LNBot; a distributed version of LNBot that generates

its C&C servers by infecting users on the Internet and forms the C&C connections

by opening channels to the existing nodes on LN. In contrary to the LNBot, the

whole botnet formation phase is distributed and the botmaster is never involved in

the process. By utilizing Bitcoin’s Testnet and the new message attachment feature

of LN, we show that D-LNBot can be run for free and commands are propagated

faster to all the C&C servers compared to LNBot. We presented proof-of-concept

implementations for both LNBot and D-LNBot on the actual LN and extensively

analyzed their delay and cost performance. Finally, we also provide and discuss
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a list of potential countermeasures to detect LNBot and D-LNBot activities and

minimize their impacts.

4.1 LNBot Architecture

In this section, we describe the overall architecture of LNBot with its elements.

4.1.1 Overview

The overall architecture is shown in Fig. 4.1. As shown, the LN is used to maintain

the C&C servers and their communication with the botmaster. Each C&C server

runs a separate mini-botnet. Receiving the commands from the botmaster, the C&C

servers relay the commands to the bots in their possession to launch attacks. The

details of setting up the C&C servers are explained next.

4.1.2 Setting up the C&C Servers

The botmaster sets up the necessary number of C&C servers s/he would like to

deploy. Depending on the objectives, the number of these servers and the number

of bots they will control can be adjusted without any scalability concern. In Section

4.3, we explain how we set up real C&C servers running on LN on the real Bitcoin

network.

Each C&C server is deployed as a private LN node which means that they do not

advertise their channels within the LN. This helps C&C servers to stay anonymous in

the network. Each C&C server opens private channels to at least k different random

public LN nodes. The number k may be tuned depending on the size and topology

of LN when LNBot will have deployed in the future. To open the channels, C&C

servers need some Bitcoin in their Bitcoin wallets. This Bitcoin is provided to the
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Figure 4.1: Overview of LNBot architecture.

C&C servers by the botmaster before deploying them. Since C&C servers’ channels

are unannounced (i.e., private) in the network, botmaster uses routing hints to be

able to route his/her payments to the C&C servers. In this case, since the C&C

servers are set up by the botmaster, s/he knows the necessary information to create

the routing hints.
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4.1.3 Formation of Mini-botnets

After the C&C servers are set up, we need bots to establish connections to the C&C

servers. An infected machine (bot) connects to one of the C&C servers available.

The details of bot recruitment and any malware implementation issues are beyond

the objectives of this work. It is up to the botmaster to decide which type of

infrastructure the C&C servers will use to control the bots in their possession. This

flexibility is enabled by our proposed two-layer hybrid architecture of the LNBot.

The reason for giving this flexibility is to enable scalability of LNBot through any

type of mini-botnets without bothering for the compromise of any C&C servers. As

it will be shown in Section 4.5, even if some of the C&C servers are compromised,

this neither reveals the other C&C servers nor the botmaster.

4.1.4 Forming LNBot

Now that the C&C servers are set up and mini-botnets are formed, the next step

is to form the infrastructure to control these C&C servers covertly with minimal

chances of getting detected. This is where LN comes into play. Botmaster has the

LN public keys of all the C&C servers. Using an LN node called LNBot master

server, the botmaster initiates the commands to all the C&C servers through LN

payments. Similar to the C&C servers, LNBot master server is also a private LN

node and the botmaster has flexibility on the setup of this node and may change

it regularly. Without using any other custom infrastructure, the botmaster is able

to control the C&C servers through LN, consequently controlling all the bots in the

botnet.
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4.1.5 Command Propagation in LNBot

Once the LNBot is formed, the next step is to ensure communication from the

botmaster to the C&C servers. We utilize a one-to-many architecture where the

botmaster sends the commands to each C&C server separately. Commands can be

sent in two different ways: 1) Encoding the characters in the command to individual

LN payments; 2) Attaching the whole command to a single LN payment. The first

method is utilized in LNBot and the second one is utilized in iLNBot. These two

methods are explained separately at the sections below.

Encoding/Decoding Schemes

An important feature of LNBot is its ability to encode botmaster’s commands into

a series of LN payments that can be decoded by the C&C servers. We used ASCII

encoding and Huffman coding [Huf06] for the purpose of determining the most

efficient way of sending commands to the C&C servers in terms of Bitcoin cost

and time spent. American Standard Code for Information Interchange (ASCII) is a

character encoding standard that represents English characters as numbers, assigned

from 0 to 127. Huffman coding on the other hand is one of the optimal options when

the data needs to be losslessly compressed. We used Quaternary numeral system to

generate the codebook as will be shown in Section 4.4.

For both methods, botmaster uses the Algorithm 1 to send the commands. S/he

first checks if the respective C&C server is online or not (LN nodes have to be

online in order to send and receive payments) before sending any payment. If the

C&C server is not online, command sending is scheduled for a later time. If online,

the botmaster sends 5 satoshi as the special starting payment of a command, then

the actual characters of the command one by one. Lastly, the botmaster sends 6

satoshi as the special ending payment to finish sending the command. Note that the
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Algorithm 1: Send Command

1 define k;
2 initialize command;
3 int counter = 0; /* retry count */

4 bool isOnline = checkIfC&CServerIsOnline();
5 if isOnline then
6 bool result = send(5 satoshi);
7 if result==success then
8 counter = 0;
9 for character in command do

10 bool result = send(character);
11 if result==success then continue;
12 else if result==fail and counter < k then
13 retry sending character;
14 counter++;

15 else reschedule(command, date, time);

16 end
17 counter = 0;
18 bool result = send(6 satoshi);
19 if result==success then
20 Command has been successfully sent!;
21 else if result==fail and counter < k then
22 retry sending 6 satoshi;
23 counter++;

24 else reschedule(command, date, time);

25 else if result==fail and counter < k then
26 retry sending 5 satoshi;
27 counter++;

28 else reschedule(command, date, time);

29 else
30 reschedule(command, date, time);
31 end

selection of 5 satoshi and 6 satoshi in this algorithm depends on the chosen encoding

and could be changed based on the needs. If any of these separate payments fail,

it is retried. If any of the payments fail for more than k times in a row, command

sending to the respective C&C server is canceled and scheduled for a later time.
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Noise Plugin Method

When LNBot was introduced, attaching custom data to LN payments was a work

in progress by the LN developers. As explained in Section 3.4, noise plugin [Dec23]

gives one the opportunity to embed messages in LN payments. If we utilize this

plugin in LNBot for sending botmaster’s commands, the command sending will be

much faster and cheaper. Specifically, the delay of sending a command to a C&C

server will be reduced to a delay of sending a single payment. In the same way,

the cost of sending a command will now be the cost of sending a single payment.

Thus, we propose iLNBot which utilizes the noise plugin as its command sending

mechanism instead of the encoding method presented earlier.

4.1.6 Reimbursing the Botmaster

Another important feature of LNBot is the ability of its botmaster to get the funds

back from the C&C servers. Depending on botmaster’s command propagation ac-

tivity, C&C servers’ channels will fill up with the funds received from the botmaster.

Therefore, in our design, C&C servers are programmed to send the funds in their

channels to an LN node called collector when their channels fill up completely. Col-

lector is a private LN node set up by the botmaster. Its LN public key is stored

in the C&C servers and thus they can send the funds to collector through LN. In

addition to collector’s LN public key, C&C servers are also supplied with routing

hints to be able to successfully route their payments to the collector. In this way, the

funds accumulate at the collector. The botmaster can collect these funds by closing

collector’s respective LN channels and sending the settled Bitcoins to his/her own

Bitcoin wallet through on-chain transfers.
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4.2 D-LNBot Architecture

The LNBot we presented in the previous section relies on a centralized model where

the botmaster communicates with each C&C server separately. Additionally, in

LNBot, C&C servers are manually set up by the botmaster which incurs several op-

erating costs on the botmaster that grows with each installed C&C server. Specifi-

cally, botmaster needs to create machines to run the C&C servers and the LN nodes

on them as well as fund each of these LN nodes which costs time and money. On top

of that, LNBot’s centralized design might tamper the anonymity of the botmaster

and the C&C servers. Therefore, in this section, we present a distributed version of

LNBot, namely D-LNBot, where the payments sent by the botmaster are reduced

to a single transaction (i.e., to a specific C&C server) regardless of the size of the

botnet. On top of the distributed design, we propose to utilize the Bitcoin Testnet

instead of the Mainnet which removes the associated costs of running the botnet.

4.2.1 Overview

In this section, we describe the overall architecture of D-LNBot with its elements.

LN is used for the communication between the botmaster and the C&C servers also

among the C&C servers themselves. Different than LNBot, in D-LNBot, botmaster

does not send the commands to each C&C server individually. Rather, the com-

mands are just sent to one of the C&C servers which relays them to all other C&Cs

distributively as will be explained in the subsequent sections. We illustrated this

difference in command sending between the LNBot and D-LNBot in Fig. 4.2. We

propose to utilize the noise plugin for sending the commands. Similar to the LNBot,

each C&C server controls a mini-botnet which can utilize any existing known C&C

infrastructure in the literature.
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Figure 4.2: Comparison of the command propagation between LNBot and D-LNBot.

4.2.2 Creation of the C&C Servers

The way that the C&C servers are created differs from the LNBot. Botmaster

infects existing machines on the Internet to turn them into C&C servers. Thus,

s/he deploys a malware into the wild for this purpose. Deployment details of this

malware is out of the scope of this work. However for later reference, we will

call it the malware 1. Once a machine is infected with malware 1, there are two

possibilities: 1) With probability p, the machine becomes a C&C server or 2) with

probability 1-p, nothing happens and the malware deletes itself. Ultimately, the

probability p should be less than 0.5 to ensure that C&C servers are generated

occasionally. The reason for not turning every infected machine into a C&C server

is to limit the number of C&C servers that will be ever created. If botmaster lets

every infected machine to turn into a C&C server, that will increase the number of

public LN nodes in LN on Bitcoin’s Testnet dramatically. As of May 2023, LN on

Bitcoin’s Testnet have around 2,400 public nodes1. Considering how fast a malware

can infect new machines, we propose that it is best to limit the number of C&C

servers that can be generated with the malware. There might be several ways to

1https://1ml.com/testnet/
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do this and we leave its design to the botmaster. After this process, if the machine

turns into a C&C server, it will download an LN software first. We propose to go for

an LN light client instead of a full LN node since downloading a full LN node may

alert the user of the infected machine as the download size is around 480 GB at the

time of writing this chapter. Light LN clients such as Neutrino [Lig23b] occupy a

very small space (around 1 MB) on the file system and have higher chances of going

unnoticed by the users. After the LN node is created and initiated, it needs to be

funded with some Testnet Bitcoins. For this, we suggest to use a pre-funded Testnet

Bitcoin wallet where the C&C server can fetch the Bitcoins from. Generally, Testnet

Bitcoins are obtained from Testnet faucets2. The procedure of pre-funding a wallet

can be tailored by the botmaster to leave as little on-chain trace as possible. After

the C&C server obtains some Testnet Bitcoins, the next step is the recruitment of

the bots to work under the C&C server (i.e., formation of the mini-botnet).

4.2.3 Formation of the Mini-botnets

Similar to the LNBot, the botmaster uses a specific malware for this purpose. Let

us call it malware 2. The machines that are infected with malware 2 become bots

and connect to the available C&C servers. When enough number of machines are

infected with malware 2, they form a mini-botnet which are controlled by their

respective C&C server. Here, the command and control infrastructure to control

the bots can be different for each mini-botnet. There are many available C&C types

such as DNS, social media, IRC, blockchain etc. [VZF17]. Botmaster should include

as many of these C&C channel options as possible into the malware 2 so that the

C&C servers can randomly utilize one of them. These randomization is required

since in D-LNBot, the C&C servers are not set up by the botmaster. Otherwise,

2e.g., https://coinfaucet.eu/en/btc-testnet/
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botmaster would have to create variations of malware 2 which utilize different C&C

channels. However, this creates additional management overhead for the botmaster

therefore we opt to create only one malware for this purpose that includes different

C&C channel options where C&C servers can randomly choose from. This flexibility

is a design choice which enables creating a hybrid botnet. So, ultimately botmaster

deploys two malware into the wild, namely malware 1 and malware 2, to create the

C&C servers then to create bots to work under them. Next step is to create the

connections between the C&C servers to form the D-LNBot.

4.2.4 Forming D-LNBot using Innocent Nodes

An important challenge in D-LNBot is to piece together the D-LNBot from indi-

vidual C&C servers without the botmaster intervening in the process. We propose

forming the communication among the C&C servers by exploiting the connections

that can be created with existing nodes in LN. We will call them innocent nodes and

basically these are LN nodes that are publicly reachable by other nodes. Current LN

implementation lets users explore the network topology. For example, typing lncli

describegraph (lncli is lnd’s [Lig23a] command line interface) returns the net-

work topology information in JSON format that can be analyzed to get information

about the nodes reachable from our node. The information that can be collected

include their public keys, IP addresses, channels, and channels’ capacities.

The steps of forming the D-LNBot is shown in Algorithm 2 as well as illustrated

in Fig. 4.3. First step is to identify some innocent nodes. When a new C&C server,

say C&Cn, is created, it will establish channels with some of these innocent nodes

following a specific policy. To do that, first, C&Cn queries the LN and finds the

h most connected nodes in the network. Next, among these h nodes, C&Cn ran-
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domly selects one of them and opens a channel to it with a capacity K1 (line 7

in Algorithm 2). As for choosing the value of K1, it should satisfy the following

condition: f(K1) = ξ, where f() is a general function and ξ is an unique value (line

3-6). Then, C&Cn scans the LN to discover the existing C&C servers (line 8). This

is easy to do by querying the LN and checking the capacity of each channel to see

if it is satisfying the rule given earlier. As soon as C&Cn finds a channel satisfying

the rule, it will register the node that opened this channel as a C&C server to its

local database (line 16). Here, even though discovering the existing C&C servers

is the goal, it is not desirable to reveal the presence of all existing C&C servers at

once. Therefore, older C&C servers should hide their existence and the newly joined

C&C servers should be able to discover only a small number of C&C servers at any

given time. This is possible by older C&C servers closing their open channels with

the innocent nodes after getting discovered by m new C&C servers (line 31). For

example, if m is set to 2, C&C1 will close its open channel with the innocent node

after getting discovered by the C&C3. C&C2 will do the same after C&C4 joins the

network. In this way, there will always be m C&C servers only that are discoverable

by a newcomer at any time. This number can be adjusted based on the needs and

we will refer to it as the number of active C&C servers. But, how can the existing

C&C servers know that a new C&C server joined the network? This is possible by

existing C&C servers monitoring each new channel creation on LN and checking if

the channel capacity satisfies the given rule. New channels are already announced

to the network automatically so one would only need to implement a helper function

to detect the channels that were created by the newly joined C&C servers (line 10).

Following this mechanism, each C&C server will be aware of m older C&Cs and m

newly joined C&Cs (except for the first m C&C servers).
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Next, assume that a new C&C server, C&Cn+1, joins the network. Similarly, it

will establish a channel with an innocent node with a capacity K2 where f(K2) = ξ

and query the LN to find the older C&Cs. It will find out that, C&Cn has a channel

with an innocent node that satisfies the condition f(K1) = ξ. Thus, C&Cn+1 will

add C&Cn as a C&C server to its local database (line 16). In the mean time, C&Cn

will observe that C&Cn+1 has joined LN since it opened a channel satisfying the

rule f(K2) = ξ and will add C&Cn+1 to its local database (line 28). This procedure

goes on as new C&C servers join the network. Here, the function f() and value ξ

can be hard-coded in the malware 1. An example function for f() could be sin().

One possible issue that might arise is that when new C&C servers join the network,

the h most connected nodes in LN might change. This might cause the newly joined

C&C servers to not be able to discover the existing C&C servers and vice versa. To

remedy this issue, the C&C servers that could not discover at least two other C&C

servers repeat the process of opening a channel to an innocent node (line 20). This

will make sure that all C&C servers are aware of at least two other C&C servers.

Essentially, this process forms an overlay network on top of LN to control a botnet.

4.2.5 Command Propagation in D-LNBot

Unlike LNBot, D-LNBot utilizes a logical topology created during the setup for

command propagation. To initiate the command propagation, the botmaster sends

the command from a node called D-LNBot master server to a particular C&C server

which sends it to the C&C servers it recorded in its local database. We will call these

recorded C&Cs, neighboring C&C servers. Every C&C server does the same so the

command is propagated among the C&C servers in a P2P fashion. We illustrate

two logical D-LNBot topologies in Fig. 4.4 when the number of active C&C servers
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Figure 4.3: An illustration of how D-LNBot is formed when number of active C&C
servers is 2 (i.e., m = 2). a) C&Cn joins the network and opens a channel to an
innocent node with a capacityK1. b) C&Cn+1 joins the network and opens a channel
to an innocent node with a capacity K2. c) C&Cn+2 joins the network and opens a
channel to an innocent node with a capacity K3 which results in C&Cn closing its
channel with the innocent node. The process of C&C servers registering each other
as neighboring servers into their local databases are also illustrated.

is two and three. The bidirectional links show the command propagation between

the respective C&C servers. Note that, the C&C servers are not connected to each

other with direct channels.

For the m = 2 case in Fig. 4.4, the propagation starts when C&C1 receives

a command from the botmaster. C&C1 immediately relays the command to its

neighbors C&C2 and C&C3 by sending them a single payment which includes the

command. Then, when C&C2 receives the command, it also immediately forwards

the command to its neighbors C&C1, C&C3, and C&C4. C&C3 does the same when

it receives the command from C&C1 or C&C2. Here, each C&C server sends and

receives the command multiple times but this do not result in multiple executions

of the same command. Because, each C&C server knows its neighbors and upon

receiving a command from one of its neighbors, the C&C server can ignore the

command if it was received from another neighbor before. This requires being able

to authenticate the sender of the commands which the C&C servers can do. As

mentioned in Section 3.4, the noise plugin messages include a signature. Using the
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Algorithm 2: Form D-LNBot

1 define h, m, f(), ξ;
2 global K = []; /* an empty list */

3 for i← 1 to n do
/* calculate n valid channel capacities for the policy based

on f() and ξ */

4 solve f(Ki) = ξ for Ki;
5 K.append(Ki);

6 end
7 global node = open channel to innocent();
8 check for existing C&Cs();
9 global counter = 0; /* newcomer C&C count */

10 monitor new channels();
11 Function check for existing C&Cs(void):
12 LN topology = query LN();
13 count = 0; /* existing C&C count */

14 for channel in LN topology do
15 if f(channel.capacity) == ξ then
16 register channel.getNode();
17 count++;

18 end

19 end
20 if count < 2 then open channel to innocent();

21 end
22 Async Function monitor new channels(void):

/* will catch each new channel */

23 return is C&C(channel);

24 end
25 Function is C&C(channel):
26 if f(channel.capacity) == ξ then
27 if counter < m then
28 register channel.getNode();
29 counter++;

30 else
31 close channel(node);
32 end

33 end

34 end
35 Function open channel to innocent(void):
36 innocent nodes = []; /* an empty list */

37 LN topology = query LN();
38 innocent nodes = get h most connected(LN topology, h);
39 node = randomly select one(innocent nodes);
40 K1 = randomly select one(K);
41 open channel(node, K1);
42 return node;

43 end
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Figure 4.4: An illustration of the logical topology and command propagation of
two sample D-LNBots when the number of active C&C servers is two and three
respectively (i.e., m = 2 and m = 3). In this example, botmaster initiates the
command sending from C&C1.

signature, the LN public key of the sender can be recovered. This means that, a

C&C server can compare this public key with the ones it has in its local database

to make sure the command is coming from a legitimate C&C server. Additionally,

the redundancy on sending and receiving the commands helps C&C servers keep

their channels balanced. For the command propagation of m = 3 case, please refer

to Fig. 4.4.

The redundancy on command propagation also helps detecting any false positives

during the D-LNBot formation phase. Let us imagine a scenario where an honest

LN node opens a channel with a capacity satisfying the policy used by the C&C

servers. This will be automatically detected by the active C&C servers (there are

only m of them) who were actively querying the LN to detect the newly joined

C&C servers. The active C&C servers will register this honest LN node to their
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local database. Now, let us imagine that the botmaster issues a command which

starts getting propagated among the C&C servers which will eventually reach the

C&Cs that registered the honest node as a neighbor C&C. At that point, the honest

node will receive a number of noise messages from these C&Cs but will not propagate

anything back. In fact, it might not even receive the messages successfully because of

the custom TLV (type-length-value) used by the noise messages. Regardless, when

the C&Cs do not get the command back from the honest node, they can understand

it was not actually a C&C server thus, mark it as a false positive and delete it from

their local database.

One advantage of D-LNBot is that, the botmaster can initiate the command

propagation from any one of the C&C servers because the initial C&C server will

replicate the command to its neighboring C&C servers. In other words, the botmas-

ter does not need to initiate the command propagation from C&C1 necessarily, and

can use the C&C5 instead for example. Botmaster is able to do this because s/he is

aware of all the C&C servers as s/he is constantly watching the network and knows

the policy the C&C servers use to open channels to the innocent nodes. Being able

to freely choose the first C&C server to initialize the command propagation also

provides better anonymity for the botmaster.

4.3 Proof-of-Concept Implementation

In this section, we demonstrate that implementations of the proposed LNBot and

D-LNBot are feasible by presenting a proof-of-concept for each. Full LN nodes

interact with the Bitcoin network in order to run the layer-2 protocols. There

are two Bitcoin networks: Bitcoin Mainnet and Bitcoin Testnet. As the names

suggest, Bitcoin Mainnet hosts Bitcoin transfers with a real monetary value. On
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the contrary, in Bitcoin Testnet, Bitcoins do not have a monetary value. They are

only used for testing and development purposes. Nonetheless, they both provide the

same infrastructure and LNBot and D-LNBot can run on both networks. The only

difference between the Testnet and Mainnet networks for LN is the number of nodes

and the channels they have. LN on Bitcoin Testnet have about 60% less nodes, and

80% less channels compared to LN on Bitcoin Mainnet.

LNBot: We used lnd (version 0.9.0-beta) from Lightning Labs [Lig23a] for

the full LN nodes. We used Bitcoin Testnet for our proof-of-concept development.

We created 100 C&C servers and assessed certain performance characteristics for

command propagation. We created a GitHub page explaining the steps to set up

the C&C servers3. The steps include installation of lnd & bitcoind, configuring

lnd and bitcoind, and extra configurations to hide the servers in the network by

utilizing private channels. Nevertheless, to confirm that the channel opening costs

and routing fees are exactly the same in both Bitcoin Mainnet and Testnet, we also

created 2 nodes on Bitcoin Mainnet. We funded one of the nodes with 0.01 Bitcoin,

created channels and sent payments to the other node. We observed that the costs

and fees are exactly matching to that of Bitcoin Testnet.

lnd has a feature called autopilot which opens channels in an automated manner

based on certain initial parameters set in advance4. Our C&C servers on Bitcoin

Testnet employ this functionality of lnd to open channels on LN. Using autopilot, we

opened 3 channels per server. Note that this number of channels is picked based on

our experimentation on Bitcoin Testnet on the success of payments. We wanted to

prevent any failures in payments by tuning this parameter. As mentioned, these 3

channels are all private, created with --private argument, which do not broadcast

3https://github.com/LightningNetworkBot/LNBot

4https://github.com/lightningnetwork/lnd/blob/master/sample-lnd.conf
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themselves to the network. A private channel in LN is only known by the two peers

of the channel.

lnd has an API for communicating with a local lnd instance through gRPC5.

Using the API, we wrote a client that communicated with lnd in Python. Particu-

larly, we wrote two Python scripts, one running on the C&C servers and the other

on the botmaster machine. We typed the command we wanted to send to the C&C

servers in a terminal in the botmaster machine. The command was processed by

the Python code and sent to the C&C servers as a series of payments.

D-LNBot: Different than LNBot, we used Core Lightning (version 0.10.0) for

the full LN nodes in D-LNBot. It is one of the implementations of LN developed

by Blockstream [Blo23a]. The details of setting up a Core Lightning node that is

configured to run on the C&C servers are given at our GitHub page6. Specifically,

we explain the steps for installing Core Lightning and bitcoind, configuring Core

Lightning and bitcoind, and installing the necessary Core Lightning plugins. Simi-

lar to the LNBot, we used Bitcoin’s Testnet for our proof-of-concept development.

We created 3 C&C servers at various locations in US. The channels for the C&C

servers were opened manually instead of using the autopilot feature of LN. The

number of opened channels were 3 for all C&C servers. To send the botmaster’s

commands, we utilized the noise plugin in Core Lightning. Basically, it enables one

to attach messages to the key send payments. Since the commands are sent using

a single payment, there was no need for writing a script to serialize the payments

into commands like in LNBot.

In addition to setting up C&C servers on Bitcoin networks, we performed several

simulations in a specially crafted time-driven simulation environment using Python.

5https://lightning.engineering/api-docs/api/lnd/

6https://github.com/startimeahmet/D-LNBot
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In our setup, we simulated the D-LNBot formation phase and the command prop-

agation in D-LNBot. The simulation environment can be found on our GitHub

repository as well. Specifically, in the simulations, C&C servers joined the network

at random times and attempted to discover each other based on a certain policy

as explained in Section 4.2.4. For the command propagation, using the generated

network, the C&C servers sent the commands to their neighbors in a P2P fashion as

explained in Section 4.2.5. In these simulations, we used an up-to-date LN topology

which is made publicly available [Dec22]. The dataset is a collection of LN’s gossip

messages that is collected by a number of LN nodes running on Bitcoin Mainnet.

4.4 Evaluation and Analysis

In this section, we present a detailed cost and delay analysis of LNBot, iLNBot,

and D-LNBot. While analyzing the different implementations, it is important to

note that the selection of Bitcoin Mainnet and Bitcoin Testnet dramatically affects

the evaluation results. While the infrastructure they offer are exactly the same, the

cost of running the botnet is different. Testnet Bitcoins do not have a monetary

value and thus they can be obtained for free from the faucets. On the other hand,

Mainnet Bitcoins do have a real monetary value and have to be purchased.

4.4.1 LNBot Evaluation

While it is mostly a design choice, we used Bitcoin Mainnet to evaluate the LNBot

because of its bigger size. Also, as will be explained in Section 4.5, historically

Mainnet had more uptime than Testnet.
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Cost Analysis of LNBot Formation

We first analyze the monetary cost of forming LNBot. As noted earlier, we opened

3 channels per server. The capacity of each channel is 20,000 satoshi which is the

minimum allowable channel capacity in lnd. Therefore, a server needs 60,000 satoshi

for opening these channels. While opening the channels, there is a small fee paid to

Bitcoin miners since channel creations in LN are on-chain transactions. We showed

that, opening a channel in LN can cost as low as 154 satoshi on both Bitcoin Testnet7

and the Mainnet8.

So the total cost of opening 3 channels for a C&C server is 60,462 satoshi. While

462 satoshi is consumed as fees, the remaining 60,000 satoshi on the channels is not

spent, rather it is just locked in the channels. The botmaster will get this 60,000

satoshi back after closing the channels. Therefore, funds locked in the channels are

non-recurring investment cost for the formation of LNBot. Only real associated cost

of forming LNBot is the channel opening fees.

Table 4.1 shows how the costs change when the number of C&C servers is in-

creased. The increase in the cost is linear and for 100 C&C servers, the on-chain

fees are only 46,200 satoshi.

Cost and Delay Analysis of Command Propagation

To assess the command propagation delay, we sent the following SYN flooding at-

tack command to the C&C servers from the botmaster (omitting the start and end

7Check LNB6’s channel opening transaction for instance: https://blockstream.in

fo/testnet/tx/fc46c99233389d24c4fd9517cd503f08265c517a6f0570d806e7cc98b7f7

963b

8In a similar way, check one of our mainnet nodes’ channel opening transaction: https:
//blockstream.info/tx/1d81b6022ff1472939c4db730ca01b82d43b616e757d799aea17

ee0db6427520
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Table 4.1: Channel Opening Fees for Different Number of C&C Servers

Number of C&C Servers Channel Opening Fees
10 4,620 satoshi
25 11,550 satoshi
50 23,100 satoshi
100 46,200 satoshi

characters): sudo hping3 -i u1 -S -p 80 -c 10 192.168.1.1

We sent this command using both of the encoding methods we proposed earlier.

For Huffman coding, we compared several different base number systems. The best

result was obtained by using the Quaternary numeral system, the codebook of which

is shown in Table 4.2.

Table 4.2: Obtained Codebook for Huffman Coding

‘s’ 234 ‘n’ 233 ‘o’ 232 ‘h’ 231
‘d’ 224 ‘g’ 223 ‘c’ 222 ‘9’ 221
‘6’ 214 ‘2’ 213 ‘3’ 212 ‘u’ 211
‘p’ 144 ‘i’ 143 ‘8’ 142 ‘0’ 141
‘.’ 24 ‘1’ 12 ‘-’ 13 ‘E’ 4
‘ ’ 11 ‘S’ 3

Cost Analysis: To calculate the cost of sending a command, we need to encode each

character with its corresponding satoshi value. To give an example; the command

sudo would be encoded as (115,117,100,111) with ASCII and (2,3,4,2,1,1,2,2,4,2,3,2)

with Huffman where each value represents the satoshi amount of the payment. As

can be seen in Table 4.3, to send the SYN flooding attack command, the botmas-

ter spent 2,813 satoshi using the ASCII encoding and only 215 satoshi using the

Huffman coding. Table 4.3 shows how many payments were sent for each piece of

the command as well as the total satoshi spent for sending the whole command

for both encoding methods. While in both cases the botmaster will be reimbursed

at the very end, we would like to note that the lifetime of the channels is closely
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Table 4.3: Breakdown of How Many Payments are Sent for the sudo hping3 -i u1

-S -p 80 -c 10 192.168.1.1 Command with ASCII and Huffman Encoding

Number of Payments
Command ASCII Quaternary

Encoding Huffman Encoding
‘sudo ’ 5 14
‘hping3 ’ 7 20

‘-i ’ 3 7
‘u1 ’ 3 7
‘-S ’ 3 5
‘-p ’ 3 7
‘80 ’ 3 8
‘-c ’ 3 7
‘10 ’ 3 7

‘192.168.1.1’ 11 26
Total Number of 44 108

Payments

Total Satoshi Used 2,813 215

related with these costs. In case of the ASCII encoding, the initial funds will be

spent faster and the botmaster needs to reconfigure (or rebalance) the channels for

continuous operation of the botnet. In case of the Huffman coding, this is not the

case as the consumption of the channel funds is much slower. So, we can see that if

channel lifetime is an important factor for the botmaster, the Huffman coding could

be preferred. In other words, the Huffman coding gives the botmaster the ability to

perform more attacks without creating high capacity channels.

However, the situation is reverse in case of routing fees. According to our experi-

ments in LN, the average forwarding fee for payments was 4 satoshi. Taking this into

account, the total forwarding fee for sending the SYN flooding attack command for

different number of C&C servers is shown in Table 4.4. The increase in the routing

fees is linear for both the ASCII and Huffman coding. For 100 C&C servers, total

routing fee paid is only 17,600 satoshi for ASCII while it is 43,200 satoshi for the

Huffman coding. This indicates that routing fees with Huffman is 2.45 times higher
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than ASCII. However, the satoshi spent for sending the actual command is 13 times

less than ASCII. Thus, if the botmaster is willing to open channels with higher

capacities, it is more feasible to run the botnet using the ASCII method because of

the less routing fees paid.

Table 4.4: Routing Fees for Different Number of C&C Servers

Number of
C&C Servers

Routing Fees
(ASCII)

Routing Fees
(Huffman)

10 1,760 satoshi 4,320 satoshi
25 4,400 satoshi 10,800 satoshi
50 8,800 satoshi 21,600 satoshi
100 17,600 satoshi 43,200 satoshi

Delay Analysis: The propagation time of a command is calculated by multiplying

the number of payments with the average delivery time of the payments. To estimate

the average delivery time, we sent 90 key send payments with different amounts from

botmaster to our C&C servers over LN at random times and measured the time it

took for payments to reach their destinations. The results are depicted in Fig. 4.5.

As shown, key send payments took 7.156 seconds on average to reach their

destinations and the maximum delay was never exceeding 10 seconds. This delay

varies since it depends on the path being used and the load of each intermediary

node in the LN. We observed that the number of hops for the payments was 4, which

helps to strengthen unlinkability of payments and endpoints in case of any payment

analysis in LN.

Using an average of 7.156 seconds, the total propagation time for the ASCII en-

coded payments is 7.156x44=314.864 seconds while it is 7.156x108=772.848 seconds

for the Huffman coding. The Huffman coding reduces the Bitcoin spent for sending

the commands (not the routing fees), but increases the command sending delays.
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Figure 4.5: Time for key send payments to reach their destinations with varying
satoshi.

This analysis is for sending the command to a single C&C server only. If we

generalize it to n C&C servers where the command comprises of a characters; we

can see that the time complexity of sending the command to all the C&C servers

is in the order of O(na). We will call this total command sending delay for later

reference which basically stands for the time it takes for all the C&C servers in the

botnet to receive the command. Note that, we assume that the botmaster do not

parallelize the command sending by trying to send the command to multiple C&C

servers at the same time. Instead, s/he sends the command to each C&C server

sequentially.

Next, we analyze the iLNBot which uses the noise plugin for sending the com-

mands instead of the ASCII or Huffman methods.
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4.4.2 iLNBot Analysis

Using the noise plugin for command sending dramatically reduces both the delay

and cost of sending the commands. For the same SYN flooding attack command,

this time the botmaster just sends a single payment to each C&C server instead of

sending consecutive payments for each character in the command. According to our

experiments, the forwarding fee paid for a message sent using the noise plugin was 2

satoshi over an average of 30 tries. Thus, for 100 C&C servers, the total forwarding

fee paid for sending the same SYN flooding attack command is only 200 satoshi. In

LNBot, it was 17,600 satoshi for ASCII and 43,200 satoshi for the Huffman method.

Thus, there is an improvement around 98% compared to the LNBot.

The delay of sending the command decreases in similar proportions. According

to our measurements in LN, the delay of sending messages using the noise plugin

was only 2.11 seconds over an average of 30 tries. Length of the messages did not

affect the delay. One thing to note here is that the delay is less compared to what

we measured for the LNBot (7.156 seconds) even though both utilize the key send

payments. This is due to the network conditions at different times as well as the

number of hops used to send the payments. If we consider the ASCII encoding case

where it took 314.864 seconds to send the SYN flooding attack command, the new

method is 99% faster than the ASCII method. Now, we can easily generalize the

total command sending delay when there are n C&C servers in the botnet. Since

the time complexity of sending the command to an individual C&C server is O(1),

sending it to n C&C servers is in the order of O(n). This is much faster than

LNBot’s O(na) total command sending time.
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4.4.3 D-LNBot Evaluation

Evaluation of D-LNBot is slightly different than the LNBot as we propose to utilize

the Bitcoin Testnet. Because of this design choice, the cost just becomes zero.

Thus, we only analyze the delay of command propagation. In this direction, we

first analyze the time complexity of propagating a command to all the C&C servers

in D-LNBot. Then, we numerically show the total command propagation delay for

varying number of C&C servers based on the simulations we performed.

The average delay of sending a message using the noise plugin was already given

at the previous section which was 2.11 seconds. In D-LNBot, this corresponds

to the delay of sending a command from one C&C server to another. In order

to numerically calculate the total command propagation time of D-LNBot, we first

need to analyze how the commands propagate among the C&C servers in a D-LNBot

topology.

D-LNBot’s topology forms a connected graph where each vertex is a C&C server

and each edge is a logical neighbor link. To compute the time complexity of the

command propagation in this graph, we first examine the two worst cases: 1) m = 1

and 2) m = n where m is the number of active C&C servers and n is the number of

C&C servers. The topologies formed for these cases are shown in Fig. 4.6 below.

In both of these cases, the time complexity of propagating a command to all the

C&C servers will be O(n). In m = 1 case, C&C servers form a straight line and

the total propagation time is directly proportional to the number of C&C servers

lined up as the command have to go through all the C&C servers one by one until

reaching the last C&C server. Looking at the second topology where m = n, we see

that it is the same centralized topology in LNBot and iLNBot. Thus, the time com-

plexity of this case will also be O(n) due to sequential propagation of the commands.
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Figure 4.6: Logical topologies of the two worst cases in D-LNBot.

For 1 < m < n case that is of the real interest to us, we already provided two

example topologies at Fig. 4.4. At first glance, the topologies hint us that the time

complexity of command propagation is at least in the order of m (i.e., Ω(m)). This

is because we need at least m messages in any case due to minimum number of

neighbors we need to reach sequentially for a node. But as seen in Fig. 4.6, the

height of the tree also has a role in the number of messages since we need to use

a spanning tree to reach every C&C server. The height of the spanning tree grows

as m grows and it reduces as m decreases. This corresponds to a height of logmn.

Now, the first level of the tree uses m branches which already brings m messages to

the total complexity. Starting from level 2 of the tree, we get a height of logmn and

each level adds m more messages. This means we have m(logmn−1) more messages

added to the complexity. Thus in total, our message complexity is m+m(logmn−1)

which is in the order of O(mlogn). This is faster than O(n) in the average cases

considering random topologies.

We can conclude that, D-LNBot has a clear advantage over LNBot on both the

cost and delay of sending the commands thanks to its unique distributed design and

utilization of the Bitcoin Testnet.
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Simulation Results: Measuring the command sending delay between two C&C

servers was straightforward however measuring the total command sending delay is

not as straightforward since it requires a rather complicated setup to perform the

experiments. Specifically, one would need to create an extensive number of machines

and program each of them to properly perform the botnet formation and the com-

mand propagation operations. Additionally, since in our design, the C&C servers

are created spontaneously, it is hard to realize this behavior on actual LN without

actually releasing a malware in-the-wild [BAA+22, OALU22]. Instead of going this

route, we performed simulations to measure the total command propagation delay

in D-LNBot. Simulations also let us capture and test a wide range of cases. In

this direction, we first simulated the D-LNBot formation phase in Python using the

latest available LN topology at [Dec22] which consists of 13,772 nodes and 118,021

channels. In the simulation, all the required parameters such as number of active

C&C servers, number of C&C servers, number of innocent nodes are set accordingly

and a specific policy was set for C&Cs to discover each other. After running the

simulation, we observed that all the C&C servers discovered the required number of

neighboring servers and a D-LNBot was successfully formed. The resulting topolo-

gies can be reproduced by running the Python scripts in our GitHub page. As

explained in Section 4.2.4, C&C servers first found the most connected nodes (i.e.,

innocent nodes) in the network and randomly opened a channel to one of them.

Additionally, each C&C server randomly opened a channel to one of the nodes in

the network to be able to route the payments even after closing its channel with

the innocent node. This means that the C&C servers did not necessarily establish

channels to the centralized nodes in the network which actually resulted in most of

the payments being forwarded in 5 to 7 hops. And in the simulations, we assumed

that each hop introduces a delay between 0.4 and 0.5 seconds which is a realistic
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approximation from real LN payments we performed. To be able to simulate the

multi-hop mechanism, we first calculated the shortest path between a sender and

the recipient using Dijkstra’s algorithm [Dij59]. Then, we created a data structure

for the C&C servers to be able to carry the hop information for the payments as

well as a message. In this way, C&C servers know where to forward the payment

next and can deliver the message to the destination. The number of active C&C

servers in the simulations were 3. Finally, to be able to compare the results with

LNBot and iLNBot, we varied the number of C&C servers in the simulations.

The results of total command propagation times are shown in Table 4.5. To

compare, in LNBot, sending the command to a single C&C server using the faster

ASCII method took 314.864 seconds. Consequently, sending it to 10 C&C servers

takes 3,148.64 seconds. This is much slower than D-LNBot’s 14 seconds. In iLNBot,

sending the command to each C&C server took 2.11 seconds. Thus, the total com-

mand sending delay for 10 C&C servers is 21.1 seconds which is still slower than

D-LNBot as expected. The results for more C&C servers can be seen at Table 4.5.

D-LNBot is faster than the other two due to its distributed topology that splits into

branches. In a sense, command sending is parallelized with each branch enabling

D-LNBot to achieve a faster propagation. Thus, we can conclude that D-LNBot

propagates the commands to the C&C servers much faster compared to LNBot

and the gap between the two opens up even more as the number of C&C servers

increases.

4.4.4 Comparison with Other Similar Botnets

We also considered other existing botnets that utilize Bitcoin for their command

and control. The extensive comparison of these botnet with our proposed LNBot,
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Table 4.5: Total Command Propagation Time of SYN Flooding Attack Command
in LNBot, iLNBot and D-LNBot for Different Number of C&C Servers

Number of
C&C Servers

D-LNBot iLNBot LNBot

10 14 sec 21.1 sec 3,148.64 sec
25 36.5 sec 52.75 sec 7,871.6 sec
50 72.9 sec 105.5 sec 15,743.2 sec
100 136.5 sec 211 sec 31,486.4 sec

Table 4.6: Comparison of LNBot, iLNBot and D-LNBot with Similar Bitcoin-based
Botnets

Botnet Network Method Cost Delay Scalability

BOTCHAIN [PP18] Mainnet OP RETURN
22,848 satoshi
as of today

∼ 1 hour Low

ZombieCoin 2.0 [AMLH18] Mainnet
OP RETURN +

subliminal channels
22,848 satoshi
as of today

∼ 10 seconds Low

DUSTBot [ZZZ+19]
Both Mainnet
and Testnet

OP RETURN
22,848 satoshi
as of today

∼ 10 seconds Medium

ChainChannels [FAZ18] Mainnet ECDSA Signature
>22,848 satoshi

as of today
∼ 10 seconds Medium

CoinBot [YCL+20]
Either Mainnet

or Testnet
OP RETURN +

website
226 satoshi ∼ 6 minutes Low

Franzoni et al. [FAD20] Testnet
non-standard
OP RETURN

133-51,349
Testnet satoshi

∼ 10 minutes Low

LNBot Mainnet LN Payment
176 satoshi
(per C&C)

∼ 5 minutes
(per C&C)

High

iLNBot Mainnet LN Payment
2 satoshi
(per C&C)

∼ 2 seconds
(per C&C)

High

D-LNBot Testnet LN Payment 2 Testnet satoshi
∼ 1.5 seconds
(per C&C)

High

iLNBot and D-LNBot are presented in Table 4.6. We considered the following met-

rics for the comparison: 1) Which Bitcoin network is utilized by the botnet?; 2)

What methods are used for command propagation?; 3) What is the cost of sending

our SYN flood attack command to all the bots in the botnet?; 4) How long does it

take for all the bots in the botnet to receive the SYN flood attack command from the

botmaster (i.e., total command propagation time); 5) How scalable is the botnet?

Low: thousands of bots, Medium: hundreds of thousands of bots, High: millions of

bots.

60



Before interpreting the results, it is important to note that the cost of sending

the commands is variable for some botnets because they utilize on-chain Bitcoin

transactions whose fees change dynamically depending on the load on the Bitcoin

network. At the time of writing this chapter, fee for a Bitcoin transaction with a

median transaction size of 224 bytes was 22,848 satoshi9. For the botnets that fully

run on Bitcoin’s Testnet, the cost of command sending is normally zero but in order

to have a quantitative comparison with the other botnets, we still mentioned the

cost with Testnet satoshi.

As can be seen in Table 4.6, BOTCHAIN [PP18] is the worst among all with

a high cost and long delay for sending the commands. ZombieCoin 2.0 [AMLH18],

DUSTBot [ZZZ+19] and ChainChannels [FAZ18] are faster but still come with high

costs. CoinBot [YCL+20] has much less cost due to using 1 sat/byte fee for Bitcoin

transactions however, it still takes a long time to propagate the commands. Franzoni

et al. [FAD20] can send the commands for free due to using Testnet however still has

long delays. LNBot spends less than all previously mentioned botnets but still has

long delays. iLNBot achieves much faster and cheaper command sending compared

to LNBot due to the use of noise plugin. Finally, D-LNBot sends the commands

even faster than iLNBot and for free ultimately being the best among all.

If we look at the scalability of these botnets, only DUSTBot [ZZZ+19] and Chain-

Channels [FAZ18] seem to be able to somewhat scale due to the way they propagate

the commands to the bots. Others rely on blockchain confirmations of their Bitcoin

transactions which greatly limits their scalability. Our proposed LNBot, iLNBot and

D-LNBot on the other hand can scale freely thanks to their 2-layer architecture.

9https://bitcoinfees.earn.com/
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4.5 Security & Anonymity Analysis and Countermeasures

In this section, we discuss the security properties of LNBot and D-LNBot as well

as possible countermeasures to detect their activities in order to minimize their

impacts.

• Taking LN Down: Obviously, the simplest way to eliminate LNBot and D-LNBot

is to take down LN as a whole once there is any suspicion about a botnet. However,

this is very unlikely due to LN being a very resilient decentralized payment channel

network. In addition, today many applications are running on LN and shutting it

down may cause a lot of financial loss for numerous stakeholders.

• Resetting the Bitcoin Testnet: Since taking LN down is not really an option,

taking down the Bitcoin Network itself could be explored. Since its creation, Bitcoin

Mainnet never went offline. Bitcoin Testnet on the other hand is in its third iteration,

which is called Testnet3. Previous two Testnets were reset due to some technical

reasons10. Essentially, this poses a great risk for a botnet running on the Bitcoin

Testnet. When the existence of D-LNBot is discovered, it is possible that the Bitcoin

developers might go the route of resetting the Testnet again. Basically, a new

genesis block is generated invalidating all the previous blocks. If this happens, all

LN channels created on the Bitcoin Testnet will become unusable. This action

therefore will stop the D-LNBot completely.

• Compromising and Shutting Down a C&C Server: In our design, there are many

C&C servers each of which is controlling a mini-botnet. Given the past experience

with various traditional botnets, it is highly likely that these mini-botnets will be

detected at some point in the future paving the way for also the detection of a C&C

server. This will then result in the revelation of its location/IP address and even-

10https://bitcoin.stackexchange.com/questions/36252/testnet-version-his

tory
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tually physical seizure of the machine by law enforcement. Nevertheless, in LNBot,

the seizure of a C&C server will neither reveal the identity of the botmaster nor

other C&C servers since a C&C server receives the commands through onion routed

payments catered with Sphinx’s secure packet format, which does not reveal the

original sender of the payments. Additionally, the communication between the bot-

master and the C&C servers is 1-way meaning that botmaster can talk to the C&C

servers, but servers cannot talk back since they do not know the LN address of the

botmaster. This 1-way communication combined with the onion routed payments

ensure that the identity of the botmaster will be kept secret at all times.

Note that, in LNBot, since the C&C servers hold the LN public key of the col-

lector, it will also be revealed when a C&C server is compromised. However, since

the collector’s LN channels are all private, its IP address or location is not known

by the C&C servers. Therefore, learning the LN public key of the collector node

does not help locating it physically. However, honest LN nodes in the network can

be informed of collector’s LN public key and be advised to refuse opening channels

to it. In this case, collector might be unable to receive funds from the C&C servers.

Therefore, we offer alternatives to address this issue with the new features of LN.

Best and most reliable option is to use splicing which enables either adding or re-

moving funds from a channel by a single on-chain transaction without having to

close the channel or create a new one. It is one of the most anticipated additions

to LN because it will solve the biggest problem of LN which is the channel liquidity

management. In case of C&C servers, they would splice out their channel funds to

an on-chain output which the botmaster can spend and re-use. Currently there is

an experimental implementation of splicing11. Thus, we rather recommend using

PeerSwap protocol instead until splicing is fully integrated into LN. PeerSwap en-

11https://github.com/ElementsProject/lightning/pull/5675
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ables swapping on-chain Bitcoins for inbound or outbound channel liquidity between

a channel’s peers [Blo23b]. The protocol is completely trustless, low cost and can

be used today with both Core Lightning and lnd. C&C servers can swap out their

channels funds for on-chain Bitcoins which the botmaster can spend and re-use.

Eventually, we can see that taking down a single C&C server shuts down the LNBot

partially resulting in less damage to victims.

In case of the D-LNBot, revealing a C&C server will also reveal its neighboring

C&C servers’ LN public keys and possibly IP addresses. Even though more infor-

mation is being revealed, it is easier to recruit new C&C servers in D-LNBot. The

reason for that is, in D-LNBot, botmaster does not create the C&C servers himself

rather they are created through malware 1 infections. To conclude, we can say that,

taking down a single C&C server only reveals a few other C&C servers which is not

critical considering that the number of C&C servers in D-LNBot will likely to be

greater than that of LNBot. Regardless, this still takes down a portion of D-LNBot

which helps reducing its impacts on the victims.

Additionally, in D-LNBot, when a C&C server is compromised, the function f()

and the value ξ can be revealed. In such a case, the active C&C servers’ LN public

keys (and possibly IP addresses) will be revealed. As explained in Section 4.2.4,

there are only m active C&C servers in D-LNBot at any time, thus revelation of

these hardcoded parameters will only cause revelation of m C&C servers. Older

C&C servers that already closed their channels with the innocent nodes cannot be

detected with this information. Thus, an observer could instead start monitoring

the new channel openings in LN to identify the newly joined C&Cs. However, s/he

cannot know for certain if an LN node satisfying the policy is a C&C server or a

honest LN node. Because, the channel capacities satisfying the policy can also be

used by honest LN nodes.
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Thus, we can conclude that revelation of these parameters expose active C&C

servers helping investigators take down a portion of D-LNBot.

• Payment Flow Timing Analysis for Detecting the Botmaster:

As explained in Section 3.3, the intermediary nodes in a payment path do not

know the origin of the payment; therefore they cannot distinguish between the

botmaster and a regular forwarding node on the payment path. In our tests for

LNBot, we observed that our payments took 4 hops to reach the C&C servers.

Therefore, payment analysis for that many hops is a challenge. However, it can help

increase our chances to detect the botmaster.

Potential
Botmaster

100 sat

Compromised

Node C

100 sat

100 sat 100 sat

Node ENode D

Node A Node B

Node F

Compromised

50 sat

50 sat 50 sat

50 sat

C&CCompromised

Figure 4.7: The payments that are forwarded by Node A and Node D and the
payments arriving at the C&C server are monitored by an observer. Red arrows
show the payment channels between the nodes and the green arrows show the flow
of the payments

To further investigate this attack scenario, a topology of 8 nodes was created on

Bitcoin Testnet as shown in Fig. 4.7. We assume that Node A, Node D and the

C&C server are compromised and thus we monitored their payments. In this setup,
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a 100 satoshi payment was sent from the botmaster to the C&C server through

hops Node A, Node B, and Node C and the payment was monitored at Node A. By

monitoring the node, we got the payment forwarding information shown in Fig. 4.8.

"forwarding_events": [
    {
        "timestamp": "1579043693",
        "chan_id_in": "1826219544504369152",
        "chan_id_out": "1826219544504434688",
        "amt_in": "101",
        "amt_out": "100",
        "fee": "1",
        "fee_msat": "1000",
        "amt_in_msat": "101000",
        "amt_out_msat": "100000"
    }]

Figure 4.8: The payment forwarding event captured at Node A. LN nodes keep the
payment forwarding information locally and it can be accessed in JSON format with
the command lncli fwdinghistory.

In the same way, this time a 50 satoshi payment was sent from the botmaster

to the same C&C server following the hops Node D, Node E, and Node F and

the payment was monitored at Node D. Similar payment forwarding information

is obtained at Node D. Here, the particularly important information for us is the

timestamp of the payment, and the chan id in and the chan id out arguments

which represent the ID of the channels that carry the payment in and out from Node

A. We can query these channel IDs to learn the public keys of the nodes at both ends

of the channel by running lncli getchaninfo chan id. Obtained LN public keys

at Node A, in this case, belong to the potential botmaster and Node B. In the same

way, LN public keys of potential botmaster and Node E is obtained at Node D. After

the payment is observed at Node A, payment with the same amount was observed

at the C&C server. We now correlated these two payments (i.e., timing analysis)

and suspected that the sender to Node A (or D) can be a potential botmaster.

Obviously, there is no guarantee for this (e.g., imagine a different topology where
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the real botmaster is 2 more hops away). We need to collect more data from many

compromised nodes and continue this analysis for a long time. To increase the

chances, well connected LN nodes could be requested to cooperate in case of law

enforcement investigation to share the timing of payments passing from them.

This analysis is applicable to D-LNBot as well. A similar topology can be created

around a captured C&C server in an attempt to reveal the sender of the payments.

However, the senders are already known by the C&C server; i.e., the neighboring

C&C servers. So, doing this timing analysis to try to find the botmaster will be

pointless as s/he is never involved in the process. Only case where this might be

useful is applying the analysis to the C&C server that initially receives the command

from the botmaster. However, even in that case, C&C server will only receive a single

payment for each command which will make the timing analysis impracticable as

the analysis requires the C&C server to receive a number of payments to possibly

provide useful information.

• Poisoning Attack: In LNBot, another effective way to attack the botnet is through

message poisoning. Basically, once a C&C server is compromised, its LN public

key will be known. Using the public key, one can send payments to the C&C

server at the right time to corrupt the messages sent by the botmaster. There

is currently no authentication mechanism that can be used by the botmaster to

prevent this issue without being exposed. Recall that the commands are encoded

into a series of payments and when an attacker sends a different character during a

command transmission, it will corrupt the syntax and thus eventually the command

will not have any effect on the corresponding mini-botnet. The right time will

be decided by watching the payments and packets arriving at the C&C server.

The disadvantage of this, however, is that one needs to pay for those payments.

Nonetheless, this can be an effective way to continue engaging with the botmaster for
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detection purposes rather than just shutting down the C&C server while rendering

any attack impossible.

iLNBot and D-LNBot are not vulnerable to this attack because of the authen-

tication mechanism that exists in the noise messages as explained in Section 4.2.5.

Even if somehow an attacker gets the LN public keys of the C&C servers and ini-

tiates commands to them using the noise plugin, the C&C servers will realize that

the commands are coming from an unknown node so, they can just ignore them.

Additionally, an attacker cannot poison the commands as the commands are sent

with a single payment. Rather, the attacker can only try to execute his/her own

commands on the C&C servers which will not be possible due to the authentication

mechanism.

• Analysis of On-chain Transactions: Another possible attack vector to both LNBot

and D-LNBot is to analyze the on-chain Bitcoin transactions of the C&C servers (i.e.,

channel opening and closing transactions). For such forensic analysis, the Bitcoin

addresses of the C&C servers have to be known. As with many other real-life botnets,

botmasters generally use Bitcoin mixers to hide the source of the Bitcoins. Usage of

such mixers makes it very challenging to follow the real source of the Bitcoins since

the transactions are mixed between the users using the mixer service [vWOvD18].

Even though, the chances of finding the identity of the botmaster through this

analysis is low, it can provide some useful information to law enforcement.

• Packet Inspection: Finally, LN payments could also be analyzed with packet in-

spection tools such as Wireshark. However, this will prove to be not very useful

because all LN payments are encapsulated into onion packets as explained in Sec-

tion 3.3. Any information that might be included in the payments such as messages,

commands or instructions cannot be decrypted without having access to the asso-

ciated private keys.
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CHAPTER 5

LNGATE2: SECURE BIDIRECTIONAL IOT MICRO-PAYMENTS

USING BITCOIN’S LIGHTNING NETWORK AND THRESHOLD

CRYPTOGRAPHY

Bitcoin has emerged as a revolutionary payment system with its decentralized

ledger concept; however it has significant problems such as high transaction fees

and low throughput. Lightning Network (LN), which was introduced much later,

solves most of these problems with an innovative concept called off-chain payments.

With this advancement, Bitcoin has become an attractive venue to perform micro-

payments which can also be adopted in many IoT applications (e.g., toll payments).

Nevertheless, it is not feasible to host LN and Bitcoin on IoT devices due to the

storage, memory, and processing restrictions. Therefore, in this chapter, we propose

a secure and efficient protocol that enables an IoT device to use LN’s functions

through an untrusted gateway node. Through this gateway which hosts the LN and

Bitcoin nodes, the IoT device can open & close LN channels and send & receive LN

payments. This delegation approach is powered by a threshold cryptography based

scheme that requires the IoT device and the LN gateway to jointly perform all LN

operations. Specifically, we propose thresholdizing LN’s Bitcoin public and private

keys as well as its public and private keys for the new channel states (i.e., com-

mitment points). We prove with a game theoretical security analysis that the IoT

device is secure against collusion attacks. We implemented the proposed protocol by

changing LN’s source code and thoroughly evaluated its performance using several

Raspberry Pis. Our evaluation results show that the protocol; is fast, does not bring

extra cost overhead, can be run on low data rate wireless networks, is scalable and

has negligible energy consumption overhead. To the best of our knowledge, this is

the first work that implemented threshold cryptography in LN.
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5.1 System & Threat Model
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Figure 5.1: Illustration of the system model.

5.1.1 System Model

There are four main entities in our system which are IoT device, LN gateway,

Bridge LN node, and Sender/receiver LN node as shown in Fig. 5.1. We also

show other tools and intermediary devices; Threshold client, LN gateway’s LN

and Bitcoin nodes, Threshold server. IoT device wants to pay the receiver LN

node for the goods/services. IoT device can also receive payments if needed such as

a refund or a payment from another LN node (sender LN node). In other words,

payments are bidirectional meaning that the IoT device can both send and receive

payments. We assume that the owner of the IoT device also operates the device

for these transactions. Any third party operation of the IoT devices is also possible

but this may raise business privacy issues among the owner and the operator which

is beyond the scope of this work. The LN gateway can be hosted on the cloud or

locally depending on the use case scenario. It provides services to the IoT device

by running the required full Bitcoin and LN nodes and is incentivized by the fees

the IoT device pays in return. The LN gateway also runs a threshold server that

70



communicates with the threshold client installed at the IoT device when required.

This client/server setup enables the 2-party threshold ECDSA operations. Bridge

LN node is the node to which the LN gateway opens a channel when requested

by the IoT device. Through the bridge LN node, IoT device’s payments are either

routed to a receiver LN node specified by the IoT device or delivered to the IoT

device from a sender LN node on the Internet.

We assume that the IoT device and the LN gateway do not go offline in the

middle of a process such as sending or receiving a payment. IoT device can be

offline for the rest of the time.

5.1.2 Threat Model

We assume that the communication between the IoT device and the LN gateway is

secured using TLS-like mechanisms. Based on our system model and application,

possible adversaries to the system are the LN gateway and the bridge LN node

which are assumed to be malicious. Therefore, we consider the attacks that would

potentially be performed by these actors as well as the ones related to the specific

processes of our payment application for the IoT devices. For instance, we assume

that, both of these actors can be selfish in the sense that they can send old channel

states to the Bitcoin blockchain in an attempt to cheat. We also assume that the

LN gateway and the bridge LN node can collude with each other for deceiving the

IoT devices. Furthermore, these nodes can also deviate from the proposed protocol

descriptions to make monetary benefits.

Note that there may be also external attacks to Bitcoin’s consensus mechanism

and transactions independent from our approach i.e., not specific to our applica-

tion. For instance, 51% attack enables external adversaries to gain control of the
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blockchain [SSN+19]. Similarly, double spending attack tries to enable spending

of the same currency at least two times [KAC12]. There are also attacks to LN

by congesting the channels or the layer-1 [MZ21, SS23]. Since mitigations to these

known attacks are already analyzed in previous studies [SMG19, NWG+20] or in

the same papers where the attacks are proposed (e.g., for LN), we assume that our

protocol will not be impacted from these attacks. Based on these assumptions, we

consider the following attacks to our system:

• Threat 1: Collusion Attacks: The LN gateway and the bridge LN node can

collude with each other to steal money from the IoT device.

• Threat 2: Stealing IoT Device’s Funds: The LN gateway can steal IoT

device’s funds that are committed to the channel by 1) sending them to other LN

nodes; 2) broadcasting revoked states and; 3) colluding with the bridge LN node.

• Threat 3: Ransom Attacks: The LN gateway can deviate from the protocol

after opening a channel for the IoT device and not execute IoT device’s requests

(i.e., uncooperative LN gateway). Then, it can ask the IoT device to pay a ransom

before executing the payment sending/receiving or channel closing operations.

5.2 Proposed Protocol Details

This section explains the details of the protocol that includes the channel opening,

sending a payment, receiving a payment and channel closing. As mentioned in

Section 3.1, we propose modifications to LN’s BOLT #2 which are shown throughout

the protocol descriptions. More importantly, LN’s signing mechanism is modified

and replaced with a (2,2)-threshold scheme that is utilized by the IoT device and

the LN gateway. In addition to that, we propose changes to LN’s commitment
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Gateway's Commitment
Transaction

INPUT

Funding Transaction Outpoint
Bridge's Signature
Amount: 10 BTC

OUTPUT 1: Gateway's Balance

To Gateway with k blocks delay
OR

To Bridge with revocation key
if Gateway cheated
Amount: 0.1 BTC

OUTPUT 2: IoT's Balance

To IoT
Amount: 9 BTC

OUTPUT 4: Offered HTLC

To Bridge with payment
preimage R

OR
To IoT with a w blocks delay

Amount: 0.9 BTC

OUTPUT 3: Bridge's Balance

To Bridge
Amount: 0 BTC

Bridge's Commitment
Transaction

INPUT

Funding Transaction Outpoint
Gateway and IoT's Signature

Amount: 10 BTC

OUTPUT 1: Bridge's Balance

To Bridge with k blocks delay
OR

To Gateway with revocation key
if Bridge cheated
Amount: 0 BTC

OUTPUT 2: IoT's Balance

To IoT
Amount: 9 BTC

OUTPUT 4: Received HTLC

To Bridge with payment
preimage R

OR
To IoT with a w blocks delay

Amount: 0.9 BTC

OUTPUT 3: Gateway's Balance

To Bridge
Amount: 0.1 BTC

Figure 5.2: Depiction of the proposed commitment transactions for the LN gateway
and the bridge LN node. These commitment transactions are generated after the
following operations: 1) A channel with 10 BTC capacity was opened, 2) IoT re-
quested sending 1 BTC to a destination, 3) Gateway charged the IoT a service fee
of 0.1 BTC for this payment (the fee in real life would be much less).

transactions to accompany IoT device’s funds in the channel which is explained

next.

5.2.1 Modifications to LN’s Commitment Transactions

Introduction of the IoT device requires some modifications to LN’s commitment

transactions as there are now 3 channel parties instead of 2. Since each channel

party has a separate balance in the channel, they have to have an output in the
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commitment transactions reflecting their balance. An illustration of LN’s original

commitment transaction was given in Fig. 3.4.

Our proposed modified version of LN’s commitment transactions are shown in

Fig. 5.2. As can be seen, there is an extra output for the IoT device in both versions

of the commitment transaction. This output is not time-locked nor conditional

unlike other outputs as the IoT device cannot be punished because of cheating

attempts from other channel parties. This essentially protects IoT device’s funds in

the channel. Apart from that, the LN gateway’s and the bridge LN node’s outputs

are regular time-locked outputs and are spendable by the counterparty in case of a

cheating attempt.

5.2.2 Channel Opening Process

The IoT device is not able to open a channel by itself as it does not have access to

LN nor Bitcoin network. Therefore, we enable the IoT device to securely initiate

the channel opening process through the LN gateway and jointly generate signatures

with it using the (2,2)-threshold scheme. This means that the LN’s current channel

opening protocol needs to be modified according to our needs.

All the steps for the channel opening protocol which includes the default LN

messages and our additions are depicted in Fig. 5.3. We explain the protocol step

by step below:

• IoT Channel Opening Request: IoT sends an OpenChannelRequest message

(Message #1 in Fig. 5.3) to the LN gateway to request a payment channel to

be opened to a bridge LN node. This message has the following fields: Type:

OpenChannelRequest, Channel Capacity, Bridge LN Node. Channel Capacity is

specified by the IoT device and this amount of Bitcoin is taken from IoT device’s
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5. Create the funding tx
from IoT BTC address to
2-of-2 multisig address

4. accept_channel

1. OpenChannelRequest
{Type: OpenChannelRequest,

Channel Capacity,
Bridge LN Node}

11. Broadcast funding tx
to the Bitcoin network

12. funding_locked

13. funding_locked

2. Threshold Key Generation
to thresholdize funding_pubkey

8. Threshold Signing
to generate signature for

bridge's commitment

9. funding_created

10. funding_signed

3. open_channel
(channel_capacity)

7. Create the commitment
transactions on this
commitment point

6. Threshold 2P-HD
to thresholdize the
commitment point

LN Gateway Bridge LN NodeIoT Device

Figure 5.3: Protocol steps for opening a channel.

Bitcoin address as will be explained in the next steps. Here, we opt to let the IoT

device choose the bridge LN node since letting the LN gateway choose the bridge

LN node might not be secure as will be shown in Section 5.3.1. IoT device can

make this choice by accessing API services that provide public LN information1.

• Channel Opening Initiation: Upon receiving the request from the IoT de-

vice, the LN gateway initiates the channel opening process by connecting to the

1e.g., https://amboss.space/
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bridge LN node specified by the IoT device. Before initiating the channel open-

ing process by sending an open channel message, we propose the LN gateway to

perform a (2,2)-threshold key generation with the IoT device to thresholdize

its funding pubkey (#2 in Fig. 5.3). The funding pubkey is a Bitcoin public key

and both channel parties have their own. This process replaces the LN gateway’s

Bitcoin public and private keys with a threshold public/private key pair that is

jointly computed between the IoT device and the LN gateway. In this way, the

LN gateway cannot spend the funds the IoT device is committing to the channel

without the IoT device’s authorization. After this step, the LN gateway sends the

open channel message (#3 in Fig. 5.3) to the bridge LN node which includes the

thresholdized funding pubkey. The channel capacity specified by the IoT device is

also sent with this message. After this step, the bridge LN node responds with an

accept channel message (#4 in Fig. 5.3) to acknowledge the channel opening re-

quest of the LN gateway. Note that, open channel and accept channel are default

BOLT #2 messages.

• Creating the Transactions: Now that the channel parameters are agreed on,

the LN gateway can create a funding transaction from IoT device’s Bitcoin address

to the 2-of-2 multisignature address of the channel. Since the input to the funding

transaction is from the IoT device’s BTC address, IoT device can also pay the

on-chain fee for this transaction2. At this step, the LN gateway also creates the

commitment transactions for itself and the bridge LN node (#7 in Fig. 5.3). Here,

we propose to compute the first commitment point jointly between the IoT device

and the LN gateway. Commitment points are used to derive revocation keys

2Custom funding transactions like this can be constructed by first creating a partially
signed Bitcoin transaction (PSBT), then adding the inputs externally and finalizing it in
LN. See: https://docs.corelightning.org/reference/lightning-openchannel_ini
t
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and they are unique for each channel state. Thus, thresholdizing the commitment

points prevents the IoT device and the LN gateway from single-handedly revealing

the revocation key before the channel state is updated. For this, we propose using

a (2,2)-threshold child key derivation process (#6 in Fig. 5.3) also known as, 2P-

HD [Tea18]. 2P-HD allows the derivation of child keys from the master key that

was already generated with (2,2)-threshold key generation earlier (#2 in Fig.

5.3). We propose using 2P-HD over (2,2)-threshold key generation because of its

efficiency.

• Exchanging Signatures: Now, the LN gateway needs to send the signature for

bridge LN node’s version of the commitment transaction to the bridge LN node.

For this, the LN gateway and the IoT device jointly generate the signature in a

(2,2)-threshold signing (#8 in Fig. 5.3). After signing is done, the LN gateway

sends the signature to the bridge LN node along with the outpoint of the funding

transaction in a funding created message (#9 in Fig. 5.3). Learning the funding

outpoint, the bridge LN node is now able to generate the signature for the LN

gateway’s version of the commitment transaction and sends it over to the LN

gateway in funding signed message (#10 in Fig. 5.3).

• Broadcasting the Transaction to the Bitcoin Network: After the LN gate-

way receives the funding signed message from the bridge LN node, it must broad-

cast the funding transaction to the Bitcoin network (#11 in Fig. 5.3). Then, the

LN gateway and bridge LN node should wait for the funding transaction to reach

a specified number of confirmations on the blockchain (generally 3 confirmations).

After reaching the specified depth, the LN gateway and the bridge LN node ex-

change funding locked messages which finalizes the channel opening (#12-13 in

Fig. 5.3).
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5.2.3 Sending a Payment

Similar to the channel opening, we incorporate the IoT device in threshold operations

to authorize a payment sending. The same threshold schemes are utilized and LN’s

current payment sending protocol is modified. The steps of the proposed payment

sending protocol is depicted in Fig. 5.4 and elaborated below:

1. SendPayment
{Type: SendPayment,

Payment Amount,
Destination Node ID}

17. PaymentSendSuccess

3. update_add_htlc
(destination node ID,
payment amount)

4. Threshold Signing
to generate signature

5. commitment_signed

6. revoke_and_ack

8. Threshold 2P-HD for
new commitment point

7. commitment_signed

9. revoke_and_ack

10. update_fulfill_htlc

11. commitment_signed

13. revoke_and_ack

12. Threshold 2P-HD for
new commitment point

14. Threshold Signing
to generate signature

15. commitment_signed

16. revoke_and_ack

IoT Device LN Gateway Bridge LN Node

2. Adds an HTLC output
to bridge's commitment
and charges service fee

Figure 5.4: Protocol steps for sending a payment.
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• Payment Sending Initiation: To request a payment sending, IoT device sends

a SendPayment message (#1 in Fig. 5.4) to the LN gateway. This message has

the following fields: Type: SendPayment, Payment Amount, Destination Node ID.

Here, we assume that the Destination Node ID is either interactively provided to

the IoT device in some form (i.e., QR code) by the vendor (i.e., toll gate) just

before the payment or it is known by the IoT device in advance.

• Payment Processing at the LN Gateway: Upon receiving the request, the

LN gateway adds an HTLC output to bridge LN node’s version of the commitment

transaction (#2 in Fig. 5.4). When preparing the HTLC, the LN gateway deducts

a certain amount of fee from the real payment amount the IoT device wants to

send to the destination. Therefore, the remaining Bitcoin is sent with the HTLC.

This fee is taken to incentivize the LN gateway to continue serving the IoT devices.

The LN gateway then sends an update add htlc message (#3 in Fig. 5.4) to

actually offer to the HTLC to the destination LN node which is first received

by the bridge LN node and then other nodes on the payment path (destination

LN node is not shown in Fig. 5.4 for simplicity). Here, the destination node ID,

specified by the IoT device, is embedded into the onion routing packet which is

sent with the update add htlc message.

• 1st Commitment Round: In LN, HTLCs always require two rounds of commit-

ment signed and revoke and ack. First round is for invalidating the old channel

state right before the HTLC is attached to the channel. The second one is to fulfill

the HTLC to remove it from the channel. Thus, at this point, the LN gateway

will initiate the first round by sending a commitment signed message to the bridge

LN node. For that, it jointly generates a signature with the IoT device in a (2,2)-

threshold signing (#4 in Fig. 5.4). The HTLC signature is also jointly generated

at this step. Once the commitment and HTLC signatures are generated, they are
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sent to the bridge LN node in the commitment signed message (#5 in Fig. 5.4).

These signatures will enable bridge LN node to spend the new commitment trans-

action and the HTLC output. The bridge LN node responds to this message by

first sending a revoke and ack then a commitment signed message (#6-7 in Fig.

5.4). Symmetrically, now the LN gateway will send a revoke and ack message but

before that we propose the LN gateway and the IoT device to thresholdize the

new commitment point in a 2P-HD (#8 in Fig. 5.4). Once this is done, the LN

gateway sends the revoke and ack message (#9 in Fig. 5.4).

• Fulfilling the HTLC: Now, the next step is for bridge LN node to fulfill the

HTLC with a similar symmetric commitment signed & revoke and ack round.

Thus, it sends an update fulfill htlc message to the LN gateway (#10 in Fig.

5.4) then a commitment signed message (#11 in Fig. 5.4) to initiate the second

round of commitments. This will be followed by the LN gateway sending a re-

voke and ack message. However, the LN gateway first performs a 2P-HD with the

IoT device to thresholdize the new commitment point (#12 in Fig. 5.4). After

sending the revoke and ack message (#13 in Fig. 5.4), the next step is to send

the commitment signed message. To generate the signature, the LN gateway per-

forms a (2,2)-threshold signing (#14 in Fig. 5.4) with the IoT device then sends

the commitment signed message (#15 in Fig. 5.4). Finally, the bridge LN node

replies with a revoke and ack message to irrevocably fulfill the HTLC (#16 in

Fig. 5.4).

• Notifying IoT: Now that the payment is successfully sent, the LN gateway can

notify the IoT device of the successful payment by sending a PaymentSendSuccess

message (#17 in Fig. 5.4).
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5.2.4 Receiving a Payment

Receiving payments on the channel is a bit different than other channel operations

as it does not require the IoT device to send a request to the LN gateway. Rather,

an LN node on the Internet initiates a payment to the IoT device which needs to be

received on the channel that the LN gateway opened for it. Normally, when sending

a payment on LN, it is enough to only specify the recipient’s LN public key. If

the recipient has multiple channels that can receive the payment, then the payment

might end up at any of them. The exact channel that will receive the payment is

internally decided by LN’s routing algorithm. For our context, since the LN gateway

has multiple channels each of which might be serving different IoT devices, receiving

a payment on a specific channel becomes an important problem to tackle. In this

direction, a sender LN node can force its payment to take a predetermined path

which is also known as the source routing. By querying the possible routes to the

recipient node, a sender LN node can decide all the channels to use before sending

the payment. We propose that the LN gateway does not charge a service fee for

receiving payments. The steps of the proposed protocol is shown in Fig. 5.5 and

explained in detail below:

• Calculating a Route: We assume that the sender LN node already knows to

which IoT device to initiate the payment and the channel ID belonging to that

IoT device (i.e., the channel the LN gateway opened to the bridge LN node for this

specific IoT device). Knowing the channel ID, the sender LN node can calculate a

route from its LN node to the LN gateway’s LN node where the channel belonging

to the IoT device is the last channel on the route. After calculating the route, the

sender LN node can prepare a key send payment that will use this specific route.
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1. update_add_htlc

2. commitment_signed

4. revoke_and_ack

6. commitment_signed

7. revoke_and_ack

8. update_fulfill_htlc

10. commitment_signed

11. revoke_and_ack

12. commitment_signed

14. revoke_and_ack

9. Threshold Signing
to generate signature

5. Threshold Signing
to generate signature

3. Threshold 2P-HD for
new commitment point

15. PaymentReceiveSuccess

13. Threshold 2P-HD for
new commitment point

LN Gateway Bridge LN NodeIoT Device

Figure 5.5: Protocol steps for receiving a payment.

• 1st Commitment Round: The sender LN node can initiate the payment by

sending an update add htlc message (#1 in Fig. 5.5) to the LN gateway which

will be relayed to all the nodes on the payment path including the bridge LN node

(sender LN node is not shown in Fig. 5.5 for simplicity). At this stage, similar to

the payment sending case, there are going to be two rounds of commitment signed

and revoke and ack. The bridge LN node initiates the first round by sending a

commitment signed message to the LN gateway to commit the initial changes on

the channel (#2 in Fig. 5.5). Here, before sending a revoke and ack message, the

LN gateway performs a threshold 2P-HD (#3 in Fig. 5.5) with the IoT device to
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thresholdize the next commitment point. Then, it sends the revoke and ack mes-

sage (#4 in Fig. 5.5). Now, the LN gateway needs to send a commitment signed

message to the bridge LN node. Thus, to generate the signature, it performs a

(2,2)-threshold signing with the IoT device (#5 in Fig. 5.5). Then, the commit-

ment signed message is sent (#6 in Fig. 5.5) and a revoke and ack message is

received (#7 in Fig. 5.5) from the bridge LN node.

• Fulfilling the HTLC: Messages #2-7 made sure that the old channel state is

invalidated so the bridge LN node cannot pretend the HTLC never existed. Now,

the next step is to fulfill the HTLC with a similar symmetric commitment signed

& revoke and ack round. Thus, the LN gateway first sends an update fulfill htlc

message (#8 in Fig. 5.5). Then, the LN gateway and the IoT device generate

a signature in a (2,2)-threshold signing (#9 in Fig. 5.5) which is sent to the

bridge LN node in a commitment signed message (#10 in Fig. 5.5). Bridge LN

node responds by first sending a revoke and ack message (#11 in Fig. 5.5) then

a commitment signed message (#12 in Fig. 5.5). Finally, before sending the

revoke and ack message, the LN gateway again performs a threshold 2P-HD with

the IoT device to thresholdize the next commitment point (#13 in Fig. 5.5). It

then sends the revoke and ack message (#14 in Fig. 5.5) which fulfills the HTLC

irrevocably.

• Notifying IoT: Now, it is a good time for the LN gateway to let the IoT device

know that the payment is successfully received. Thus, it sends a PaymentRe-

ceiveSuccess message to the IoT device.
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5.2.5 Channel Closing Process

A channel in LN is closed either unilaterally by one of the parties broadcasting its

most recent commitment transaction to the blockchain or closed mutually by both

parties agreeing on the closing fee. In our case, all 3 parties of the channel namely;

the IoT device, the LN gateway, and the bridge LN node can close the channel. We

explain all three cases separately below:

IoT Device Channel Closure

When the IoT device would like to close the channel, it follows the proposed protocol

below.

• IoT Device Channel Closing Request: The IoT device sends a ChannelClos-

ingRequest message to the LN gateway.

• Mutual Close: The LN gateway has two options to close the channel which are

unilateral or mutual close. In mutual close, the LN gateway and the bridge LN

node first exchange shutdown messages and then start negotiating on the channel

closing fee. For this, they start exchanging closing signed messages. This message

includes the offered fee and offering party’s signature. Thus, each time the LN

gateway sends a closing signed message, it has to perform a (2,2)-threshold signing

with the IoT device to generate the signature. Once the closing fee is agreed upon,

the closing transaction is broadcast to the blockchain by the LN gateway.

• Unilateral Close: In the unilateral close case, the LN gateway just broadcasts

its most recent commitment transaction to the Bitcoin network after getting it

(2,2)-threshold signed with the IoT device. Once the broadcast transaction is

mined, the channel is closed and everyone’s funds in the channel settle in their

respective Bitcoin addresses.
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We propose the on-chain fee for both cases to be paid by the IoT device since

the channel closing was requested by the IoT device. The fee is deducted from the

IoT device’s Bitcoin address.

LN Gateway Channel Closure

The LN gateway can also initiate the channel closing if it wants to close IoT device’s

channel for any reason. The steps are very similar to IoT device channel closure

case and explained below:

• LN Gateway Channel Closing Request: The LN gateway sends a Chan-

nelClosingRequest message to the IoT device to show its intention to close the

channel.

• Closing the Channel: The LN gateway can close the channel unilaterally or mu-

tually. For either case, it needs the IoT device to participate in a (2,2)-threshold

signing. The steps for closing the channel are exactly the same of the IoT device

channel closure case explained above. The only difference is that, since now the

channel closing is requested by the LN gateway, the on-chain fee is paid by the

LN gateway by deducting the fee from its Bitcoin address.

Bridge LN Node Channel Closure

The bridge LN node can close the channel unilaterally or mutually. A mutual close

from the bridge LN node will trigger a fee negotiation phase with the LN gateway

which involves exchanging closing signed messages. Since this requires the IoT

device to be online and participate in (2,2)-threshold signing with the LN gateway,

the bridge LN node might have to close the channel unilaterally if the IoT device

is not online at the time of the mutual close attempt. For the unilateral close, the
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Figure 5.6: Extensive form of the behavioral game for channel closures between the
LN gateway and the bridge LN node.

bridge LN node can just broadcast its most recent commitment transaction to the

blockchain.

Behavioral Analysis of Channel Closures

In our preliminary version of this work [KMS+21], the protocol was only capable of

unidirectional payments. With unidirectional payments, the LN gateway and the

bridge LN node cannot make profit by broadcasting revoked states or colluding with

each other. However, enabling bidirectional payments where the IoT device can also

receive payments from other nodes in LN requires revisiting the previous analysis.

The problem is, if the IoT device receives a payment, it will have some old states in

which it has less money. Thus, the LN gateway or the bridge LN node can publish

these old channel states to the blockchain to cheat and profit. To better illustrate

these cases and have a formal analysis, we will use a sequential game approach using

game theory and present the actions of each party that leads to various outcomes.

Then, we will present the Nash equilibrium for each case using backward induction.

We assume that all players act rationally to maximize their profits.

Game Model: The game theoretical model in an extensive form, i.e., tree-form, is

shown in Fig. 5.6 and set up as follows: There are two players in this game: The
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LN gateway (Gateway) and the bridge LN node (Bridge). Both the Gateway and

Bridge can start the game.

With probability p, Bridge starts the game. So, at its first decision node, Bridge

has to make a decision to close the channel normally or broadcast a revoked state

to the blockchain. If Bridge plays to close the channel normally, the game ends at

this terminal node with the payoffs of y BTC and z BTC for Bridge and Gateway,

respectively (i.e., (y, z) BTC). Furthermore, we assume that the IoT device (IoT)

will have x BTC for this case. Here, we can write the following equation:

x+ y + z = C (5.1)

where C is the channel balance.

If Bridge chooses to broadcast a revoked state, the Gateway gets to play at its

first decision node in this game. At this node, normally Gateway will punish the

Bridge as that is the way the LN protocol works. As explained before, if an LN node

broadcasts an old state, its funds will be automatically swept by the counterparty.

However, since we are examining the behavior where Gateway and Bridge are trying

to steal funds from the IoT, there is a chance that Gateway will go offline before

Bridge broadcasts the old state. Or, it might also happen that Gateway goes offline

due to a power/Internet outage which Bridge can see and try to exploit. Thus, at

this node, Gateway can either punish the Bridge or be offline.

If Gateway plays to punish the Bridge, Bridge’s funds in this old state will be

taken by the Gateway as proposed in our protocol description in Section 5.2.1. If

the channel balances of IoT, Bridge and Gateway are (x′, y′, z′) BTC respectively

in this old state, Gateway will have z′ + y′ BTC after punishing the Bridge. Here,

we can write the following equations:

87



x′ + y′ + z′ = C

y′ > y

z′ ≤ z

x′ < x

(5.2)

because we know that Bridge has more funds in the broadcast revoked state and

Gateway either has the same amount of funds or less. Gateway cannot have more

funds in an old state because its balance only increases when IoT sends payments.

Gateway does not charge fees when IoT receives payments on the channel. Hence,

the game ends at this terminal node with the payoffs (0, z′ + y′) BTC.

If Gateway plays to go offline instead, Bridge will end up with some extra funds.

Thus, the end game payoffs will be (y′, z′) BTC.

Game can also be started by the Gateway with probability 1 − p. Normally,

Gateway does not have an incentive to broadcast a revoked state because it does

not have any old states in which it has more funds. But, we still analyze it for the

sake of completeness. In its decision node, Gateway decides to whether close the

channel normally or broadcast an old state. If Gateway chooses to close the channel

normally, the game ends at this terminal node with the same payoffs as before; (y,

z) BTC. If Gateway chooses to broadcast an old state where the channel balances

are (x′′, y′′, z′′) BTC for IoT, Bridge and Gateway respectively, Bridge will have the

options of whether to punish the Gateway or be offline. Here, similar as before, we

can write the following equation:

x′′ + y′′ + z′′ = C (5.3)

If Bridge plays to punish the Gateway, Gateway’s funds in this old state will

be taken by Bridge as proposed in our protocol description in Section 5.2.1. Thus,
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Bridge will have y′′ + z′′ BTC after punishing the Gateway. Here, we can write the

following equations:

y′′ > y

z′′ ≤ z

x′′ < x

(5.4)

One should note that, in this node, Gateway will get zero payoff. Thus, the

game ends at this terminal node with the payoffs (y′′ + z′′, 0) BTC.

If Bridge plays to be offline instead; unlike the previous scenario, Gateway will

not end up with some extra funds. Instead, Bridge ends up with some extra funds.

In that case, the end game payoffs will be (y′′, z′′) BTC.

Equilibrium Analysis:

Theorem 1 In a simple behavioral game for channel closures where the Bridge plays

first, the Nash equilibrium is “close channel normally” for the Bridge, and “punish”

for the Gateway. Symmetrically, when the Gateway plays first, the Nash equilibrium

is “close channel normally” for the Gateway, and “punish” for the Bridge.

Proof. For the proof of Bridge starting the game first, we apply the backward in-

duction. Thus, we observe that Gateway plays to punish the Bridge at the terminal

node since z′ + y′ > z′ from Equation (2). Similarly, Bridge obtains a better pay-

off if it plays to close the channel normally because y > 0. Hence, it implies that

the optimal solution for this game is that Bridge chooses “close channel normally”

and Gateway chooses “punish”. That is the Bridge chooses to close the channel

normally. In the event that Bridge chooses to broadcast a revoked state, Gateway

plays to punish the Bridge. This equilibrium implies that the Bridge will always

close the channel normally which is the intended behavior in LN.
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In a similar fashion, when the Gateway starts the game first, we observe that

Bridge plays to punish the Gateway as y′′ + z′′ > y′′ from Equation (4) using

backward induction. As expected, the Gateway becomes better off by playing to

close the channel normally since z > 0. Therefore, the optimal solution for this game

is that Gateway chooses “close channel normally” and Bridge chooses “punish”.

Again, if the Gateway chooses to broadcast a revoked state, Bridge plays to punish

the Gateway. Finally, we obtain that the Gateway will always close the channel

normally which is again the intended behavior in LN.

5.3 Security Analysis

In this section, we show how our proposed protocol addresses the attacks mentioned

in Section 5.1.2.

5.3.1 Collusion Attacks

Broadcasting revoked states can be exploited by the Gateway and Bridge when they

collude with each other to increase their chances of stealing money from the IoT

and share that profit when they are successful. It is important to note that when

the Gateway and Bridge are controlled by the same entity, this can cause IoT to

lose funds. However, as explained in Section 5.2.2, the Gateway and Bridge are not

controlled by the same entity since the Bridge is chosen by the IoT per our approach.

Building on the analysis in Section 5.2.5, we formally analyze the collusion game as

follows:

Theorem 2 In a collusion game where the Bridge plays first, the Nash equilibrium

is “close channel normally” for the Bridge and “punish”, “do not share” for the
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Gateway. When the Gateway plays first, the Nash equilibrium is “close channel

normally” for the Gateway and “punish”, “do not share” for the Bridge.

punish offline

Gateway

Gateway Bridge

punish offline

Bridge

Bridge Bridge

(0, z'+y') (a(z'+y'), (1-a)(z'+y')) (y', z') ((1-b)y', z'+by') (y''+z'', 0) ((1-c)(y''+z''), c(y''+z'')) (y'', z'') ((1-d)y'', z''+dy'')

(y, z) (y, z)

1-ppBridge GatewayNature

close channel
normally

broadcast
revoked state

do not
share share

close channel
normally

broadcast
revoked state

do not
share share do not

share share do not
share share

Figure 5.7: Extensive form of the collusion game between the LN gateway and the
bridge LN node.

Proof. Similar to the proof of Theorem 1, we use the backward induction. The only

difference from the previous proof is that, we include an additional subgame, i.e.,

the end subgame, in Fig. 5.7 for both cases. For the case of Bridge starting the game

first, we apply the backward induction and check Gateway’s and Bridge’s payoffs

at this end subgame (their second decision nodes). At its second decision node,

Gateway chooses not to share profits since z′ + y′ > (1− a)(z′ + y′). Furthermore,

Bridge also chooses not to share profits at its second decision node since y′ > (1−b)y′.

Here, a and b represent the ratios used to share the profits. After that, we continue

the backward induction procedure, we observe that Gateway plays to punish the

Bridge as z′ + y′ > z′ and Bridge chooses to close the channel normally because

y > 0 as given in the proof of Theorem 1. Hence, the optimal solution for this game

is that the Bridge chooses “close channel normally”, the Gateway chooses “punish”

and “do not share”. In other words, the Bridge chooses to close the channel normally.

In the even that Bridge chooses to broadcast a revoked state, the Gateway plays

to punish the Bridge and not share the profits. This equilibrium implies that the

91



Bridge will not broadcast a revoked state as it results in Gateway getting all its

funds and not share anything back. Thus, the Bridge will always close the channel

normally, i.e., our protocol is secure against the collusion attacks.

For the case of the Gateway starting the game first, one should again apply the

backward induction and check Bridge’s payoffs at both end subgames. For both

punish and offline cases, Bridge chooses not to share the profits since y′′ + z′′ >

(1− c)(y′′ + z′′) and y′′ > (1− d)y′′. Similar as before, c and d represent the ratios

used to share the profits. Next, we observe that Bridge plays to punish the Gateway

as y′′+z′′ > y′′ from Equation (4) and Gateway chooses to close the channel normally

because z > 0 which was also shown with the proof of Theorem 1. Similar to the

first case, we then find that the optimal solution for this game is that the Gateway

chooses “close channel normally”, the Bridge chooses “punish” and “do not share”.

This implies that the Gateway chooses to close the channel normally. In the event

that the Gateway chooses to broadcast a revoked state, the Bridge plays to punish

the Gateway and not share the profits. The same reasoning about the equilibrium

applies here and hence the Gateway will always close the channel normally, which

again proves that our protocol is secure against the collusion attacks.

5.3.2 Stealing IoT Device’s Funds

Using (2,2)-threshold signatures for the LN operations secure the IoT device’s funds

in the channel since the LN gateway: 1) cannot send IoT device’s funds in the chan-

nel to other LN nodes without generating proper HTLC and commitment signatures

with the IoT device in a (2,2)-threshold signing; 2) cannot cause loss of IoT device’s

funds by broadcasting revoked states as shown in Section 5.3.1 and; 3) cannot cause

loss of IoT device’s funds by colluding with the bridge LN node again as shown in
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Section 5.3.1 with the game theoretic security analysis. If we used LN’s original

signing mechanism, the LN gateway could move IoT device’s funds in the chan-

nel without needing a signature from the IoT device. Consequently, the usage of

(2,2)-threshold schemes along with the proposed modifications to LN’s commitment

transactions prevent IoT device from losing any funds.

5.3.3 Ransom Attacks

This is an attack where the LN gateway deviates from the protocol description.

To put it with some examples, the LN gateway can say to the IoT device: “I will

perform your channel closing request only if you pay me X amount of Bitcoins” or;

“from now on, I will execute your payment sending requests only if you accept to

pay an 10% increased service fee”. This essentially turns into a game where the IoT

device’s best move is to reject the ransom attempt and just wait. Then, the LN

gateway would just hold the IoT device’s funds hostage for as long as it can in an

attempt to deter the IoT device. This is a deadlock case where both parties just wait.

It is clear that a rational LN gateway has no incentive to perform ransom attacks

as it does benefit from these attacks assuming that the IoT device acts rationale.

The best course of action for the LN gateway is to continue serving the IoT device

and keep collecting the service fees. Thus, our proposed protocol protects the IoT

device against ransom attacks.

5.4 Evaluation

This section describes the experiment setup to implement the proposed approach

and presents the performance results.
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5.4.1 Experiment Setup and Metrics

To evaluate the proposed protocol, we implemented it by modifying the source

code of Core Lightning v0.9.3 [Blo23a] which is one of the implementations of the

LN protocol written in C. The hsmd and bitcoin modules of Core Lightning were

modified. The hsmd module manages the cryptographic operations and controls

the funds in the channel. As the name suggests, the bitcoin module handles the

Bitcoin script, signature and transaction routines. Specifically, we thresholdized

the funding pubkey and the associated Bitcoin private key as explained in Section

5.2.2. To the best of our knowledge, this is the first-ever work that implemented

threshold cryptography for LN. Our implementation is publicly available in our

GitHub repository at https://github.com/startimeahmet/lightning.

In the experiments, we used WiFi (IEEE 802.11n) and Bluetooth Low Energy

(BLE) as the main communication protocol between the IoT device and the LN

gateway. The purpose of performing the experiments with both WiFi and BLE is

to investigate how different wireless technologies perform with our approach. Thus,

it is essential for the rest of the components of the experiment setup to stay the

same while changing the wireless communication method. In this direction, we cre-

ated two experiment setups that we will call WiFi setup and BLE setup. For all

experiments, we used Bitcoin’s Testnet as the base-layer. Similar to Bitcoin’s Main-

net, Testnet network consists of real Bitcoin nodes all around the world. However,

Testnet Bitcoins do not have a monetary value unlike Mainnet which makes it more

suitable for development and testing purposes.

Both setups use Raspberry Pi 4 Model B as the IoT device which is equipped

with on-board dual-band IEEE 802.11b/g/n/ac wireless, Bluetooth 5.0 and BLE.

For the LN gateway, we used a desktop computer with 2 Intel(R) Xeon(R) E5-2690

v4 CPUs and 32 GB of RAM. The desktop computer was connected to the Inter-
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net through a Gigabit Ethernet connection inside Florida International University

campus. It ran our modified version of the Core Lightning for the full LN node.

For the full Bitcoin node, it ran bitcoind [The23] which is one of the most widely

used implementations of the Bitcoin protocol. For the threshold operations, we used

Gotham city [Zen23] which is a decentralized client/server Bitcoin wallet applica-

tion that utilizes 2-party threshold ECDSA. Gotham city consists of Gotham client

and Gotham server. Gotham client is the wallet application and was run on the

desktop machine. Gotham server is a RESTful web service acting as a server for

the threshold operations and was run on the Raspberry Pi. The other way is also

possible (server on the desktop machine, client on the Pi) but it was easier to run

the server on the Pi in our setup. Additionally, we created another LN node running

the original Core Lightning v0.9.3 software in a DigitalOcean droplet in New Jersey

to use in our experiments.

For the WiFi setup, we connected a TP-Link TL-WN722N 150Mpbs Wireless

USB Adapter to the desktop machine. Using this adapter, we created aWiFi hotspot

which the Raspberry Pi connected to. In this way, the Pi directly communicated

with the desktop machine over the WiFi (IEEE 802.11n) connection.

For the BLE setup, we connected an Asus USB-BT500 Bluetooth 5.0 USB

Adapter (supports BLE) to the desktop machine. Now, even though both the desk-

top machine and the Raspberry Pi have BLE connectivity, they cannot perform the

threshold operations over BLE because the Gotham city is designed to work over

TCP/IP. To overcome this issue, we enabled TCP/IP to work over BLE on the

devices which is known as IP over BLE. A bunch of configuration had to be done

for this to work such as installing bluez package, creating a Personal Area Network,

configuring the master node and the slave node and more.
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The further details of our experiment setups, additional technical details and the

tools & scripts we used are provided in our GitHub page at https://github.com

/startimeahmet/LNGate2.

To assess the performance of our protocol, we used the following metrics: 1)

Time which refers to the communication and computational delays of the proposed

protocol; 2) Cost which refers to the monetary costs associated with our proposed

protocol; 3) Bandwidth which refers to the network usage of the IoT device and

the minimum required bandwidth (data rate) for the IoT device for timely LN

operations; 4) Scalability which refers to the scalability of the proposed protocol

for increasing number of IoT devices and payments; 5) Energy which refers to the

energy consumption of the IoT device when using the proposed protocol.

To compare our approach to a baseline, we considered the case where the LN

gateway performs the LN operations by itself such as sending and receiving a pay-

ment. In other words, no IoT device is present, and all LN tasks are solely performed

by the LN gateway. We will refer to it as no IoT case in the next sections.

5.4.2 Communication and Computational Delays

We first assessed the communication and computational delays of our proposed

protocol. Computational overhead of running the protocol on the Raspberry Pi

involves 3 different computations. These are the AES encryption of the protocol

messages, HMAC calculations and (2,2)-threshold computations. We used Python’s

pycrypto library to encrypt the protocol messages with AES-256 encryption. The

encrypted data size for the messages was 24 bytes. For the authentication of the

messages, we used HMAC. To calculate the HMACs, hmac module in Python was

used. Measuring the pure computation times of the (2,2)-threshold key generation
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and signing is a little bit tricky because Gotham client and Gotham server are run

on separate devices. We can instead run both the client and the server on the same

device and use localhost for the server to eliminate any real network traffic. In this

direction, we ran the client and the server on the Pi as well as the desktop PC to

measure the best and worst cases of the pure computation times. We present these

measured computation times in Table 5.1. All values are an average of 30 runs of

the respective operation.

Table 5.1: Pure Computation Times

AES
Encryption

HMAC
Calculation

(2,2)-Threshold
Key Generation

(2,2)-Threshold
Signing

IoT Desktop IoT Desktop
15 ms < 1 ms 1.78 s 0.53 s 166 ms 74 ms

As can be seen from the results, the overhead of the AES encryption and HMAC

calculation are negligible. (2,2)-threshold key generation takes 1.78 seconds on the

Pi and 0.53 seconds on the desktop machine. Thus, the real delay is between these

two values and it is not critical for LN operations since it is done 1-time at channel

opening as explained in Section 5.2.2. The (2,2)-threshold signing on the other hand

takes 166 ms on the Pi and 74 ms on the desktop machine which is much quicker

than key generation.

We then measured the execution time of our protocol for 5 different LN opera-

tions using WiFi and BLE as the communication method between the Pi and the

desktop machine. The 5 LN operations we considered are: 1) Channel opening, 2)

Channel closing, 3) Sending an invoice payment, 4) Sending a key send payment, 5)

Receiving a key send payment. Execution time of an LN operation can be broken

down to the sole execution time of the LN operation at the LN gateway plus the

execution time of the (2,2)-threshold operations between the IoT device and the

LN gateway. The results are presented in Table 5.2 and 5.3 and they are used in

97



other experiments to evaluate the timeliness of the protocol. Note that, the channel

opening and channel closing delays in Table 5.2 do not include the confirmation

times on the blockchain.

Table 5.2: Execution Times of Channel Opening and Closing for “WiFi”, “BLE”
and “No IoT” Cases

from to WiFi Delay BLE Delay No IoT Delay
Channel Opening LNGate2 VIOLETWALK 1.73 s 2.85 s 0.32 s
Channel Closing LNGate2 VIOLETWALK 0.91 s 1.35 s 0.18 s

Table 5.3: Execution Times of Payment Operations for “WiFi”, “BLE” and “No
IoT” Cases

from to WiFi Delay BLE Delay No IoT Delay
Sending Invoice Payment LNGate2 VIOLETWALK 1.07 s 2.75 s 0.31 s

Sending Key Send Payment LNGate2 VIOLETWALK 1.01 s 2.97 s 0.33 s
Receiving Key Send Payment VIOLETWALK LNGate2 1.08 s 2.93 s 0.3 s

The ‘from’ and ‘to’ fields in the Table 5.2 and 5.3 are the LN node aliases.

For example, the second row of Table 5.3 should be interpreted as follows: A key

send payment was sent from the node with alias LNGate2 to the node with alias

VIOLETWALK. LNGate2 is our node with the threshold modifications running on

the desktop machine that is located in Florida. VIOLETWALK is our node running

the original LN software on a DigitalOcean droplet in New Jersey. Each delay value

in Table 5.2 and 5.3 is an average of 30 executions of the respective LN operation

for statistical significance.

We first present the channel opening and closing delays in Table 5.2 as they are

1-time operations and their execution times are not critical since they should be

done in advance before the payment services are used. Therefore, blockchain con-

firmation delay of these operations also will not have impact on the actual payment

transactions. It is important to also note here that the users can use any of their

existing channels to make payments which alleviates the need to open a specific

channel for every transaction consequently the need to wait for channel openings.
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As can be seen in Table 5.2, the gap is not significant compared to no IoT case.

Specifically, WiFi case has around 1.4 seconds of extra delay compared to the no

IoT case which mostly comes from the computation time of the threshold key gener-

ation. Channel opening delay of the BLE case is around 1 second longer compared

to the WiFi case which is normal due to BLE’s limited bandwidth. For the channel

closing, WiFi case is only 0.7 seconds slower than the no IoT case which is again

mostly due to the computation time of the threshold signing operations. A mutual

channel close involves several rounds of threshold signing for peers to agree on the

closing fee as explained in Section 5.2.5. BLE is slower by approximately 0.4 seconds

than the WiFi due to its lower bandwidth.

Next, we show the results of payment sending and receiving in Table 5.3 which

are of more importance to the usability of the protocol. As can be seen, regardless of

the payment operation, the WiFi case took around 1 second while no IoT case took

0.3 seconds and BLE case took close to 3 seconds. To interpret these results, we need

to look at how many times threshold signing is performed in an LN payment. As

shown in Section 5.2.3 and 5.2.4, each HTLC requires two threshold signing. In our

experiments, we realized that sometimes a single payment creates multiple HTLCs

resulting in performing more than two threshold signing. Specifically, invoice and

key send payments in this experiment had four threshold signing operations which

took between (296, 664) ms. This tells us that the extra 0.7 seconds delay in the

WiFi case mostly came from the computations of the threshold signing operations.

The communication delays constitute a very small part of WiFi’s overall delay.

We can also see that BLE adds roughly another 1.8 seconds to the delay com-

pared to WiFi due to its limited data rates for transmitting threshold messages.

Nevertheless, a delay of 2.97 seconds to send a key send payment under BLE can be

considered fast enough for most scenarios. In particular, WiFi and BLE delays are
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comparable to or even less than that of any typical credit card payment delay which

can take two to three seconds to get approved. This time increases further with two

factor authentication services for security (e.g., more than 10 seconds) [RSD+19].

5.4.3 Cost Analysis

We consider and analyze the following costs associated with our proposed protocol:

1) The on-chain fees for channel opening and closing; 2) The fees that are charged

by the LN gateway for IoT device’s payments; 3) Forwarding fees that are charged

by the nodes on a payment route (i.e., bridge LN node).

According to our experiment results; a channel opening transaction signed with

(2,2)-threshold ECDSA, incurs a fee of only 222 satoshi when it is desired for the

transaction to be included in the next block3. Similarly, a mutual channel closing

transaction signed with (2,2)-threshold ECDSA, costs only 183 satoshi4. At current

Bitcoin price of $30,000, these fees correspond to 6.6 cents and 5.5 cents respectively

which are basically negligible considering these operations are 1-time.

LN gateway’s service fee for payments entirely depends on the LN gateway’s

choice. Forwarding fees, again entirely depend on nodes’ choices that are on a

payment path. In LN, nodes charge a fixed fee each time they route a payment

which is called the base fee [Bit19]. There is also fee per satoshi that the nodes

charge proportional to the satoshi value of the payments they route [Bit19]. To

measure an approximate value for the forwarding fee, we sent 30 LN payments

3See this channel opening transaction which is signed using (2,2)-threshold ECDSA:
https://blockstream.info/testnet/tx/f2dfec159f66be6b785c97b247c44d6efd6fc9

cd40a1b2d800386cec450f797a

4See this mutual channel closing transaction signed with (2,2)-threshold ECDSA: ht
tps://blockstream.info/testnet/tx/9714d8796425b472ccfa8e049b83f72d59d1505c

c805d9a3588fdc8b6865213d
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using different routes for each. The average of the forwarding fees was 2 satoshi

which is again negligible.

Most importantly; the channel opening & closing fees and forwarding fees do

not change with the introduction of (2,2)-threshold ECDSA. These values we mea-

sured are exactly the same for a regular LN node running the original LN software.

Therefore, our protocol does not bring extra cost overhead for the LN operations.

5.4.4 Network Usage and Bandwidth Analysis

In this experiment, we investigate: 1) the network usage of the IoT device; 2) the

minimum required bandwidth for the IoT device to timely complete the LN opera-

tions with the LN gateway. Our motivation for finding the minimum required band-

width is to understand if very low bandwidth IoT devices can participate in our pro-

tocol. To measure the network usage, we used Wireshark packet analyzer software.

We captured the packets on a specific network interface, e.g., wlxec086b180e1b for

WiFi, pan0 for BLE. After the capture, using the endpoint statistics of Wireshark,

we collected the number of packets and bytes information. We considered the same

5 LN operations which are: 1) Channel opening, 2) Channel closing, 3) Sending an

invoice payment, 4) Sending a key send payment, 5) Receiving a key send payment.

All LN operations were performed 5 times and the average values were calculated.

The network usage of WiFi and BLE cases were the same and it ranged between

(≈ 16,000, ≈ 42,000) bytes where (≈ 80, ≈ 200) network packets were exchanged

between the IoT device and the LN gateway. Channel opening and closing were less

intensive in terms of network usage compared to sending and receiving payments.

Now, the minimum required bandwidth for the IoT device can be calculated.

If we focus on sending key send payments where the IoT device have to exchange
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around 42,000 bytes in 2.97 seconds (Table 5.3), then the minimum required band-

width is 113 kbps. This is a reasonable bandwidth requirement considering that

even the low-power wireless technology 6LoWPAN supports a data rate of 250 kbps

[HT11].

5.4.5 Scalability Analysis

To test the scalability of our approach, we performed additional experiments using

increased number of Raspberry Pis instead of just 1. This setup consists of 5 Pis all

associated with a separate LN node running on the desktop computer. Basically,

the desktop machine ran 5 LN nodes and 5 Gotham clients to serve each Pi. On the

other hand, each Pi ran a Gotham server to perform the LN operations with their

corresponding LN nodes on the desktop machine.

To test the scalability of our approach, we conducted two different experiments:

1) Changed the number of sender IoT devices (i.e., Pis) where each of them is sending

100 payments at once to a single recipient LN node. The goal of this experiment is to

investigate how increasing the number of Pis will impact the computational overhead

on the LN gateway as it will now serve more Pis at the same time. In particular,

we are interested to see how it will affect the overall delays; and 2) Changed the

number of payments from a single sender IoT device to a single recipient LN node.

The goal here is to see how increased number of payments impact the performance

by keeping the computational overhead on the LN gateway constant by only serving

one IoT device. For this experiment case, we also used an unmodified LN node as the

sender node to create a baseline case. This way, we can compare the results with our

approach to see if any change in the delays are due to LN’s internal mechanisms or

related to our approach. For each of these experiment cases, we created bash scripts
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to automate the process. Each script was run 30 times and average results were used

for statistical significance. For the recipient LN node, we used our VIOLETWALK

node.

Table 5.4: Effect of Increasing the Number of IoT Devices on Payment Delays

Number of IoT Devices Average Payment Delay
1 3.50 seconds
2 3.84 seconds
3 4.98 seconds
4 5.43 seconds
5 7.18 seconds

Overhead of increased number of IoT devices : The results of this experiment are

presented in Table 5.4. As can be seen, increasing the number of IoT devices that

the LN gateway is serving resulted in an increase on the overall payment delays.

Each Pi generated 100 key send payments all at once resulting in a burst of pay-

ments that need to be processed by the LN nodes running at the LN gateway. Thus,

the increase in delays is not unusual and quite expected as the LN gateway commu-

nicated with each Pi more frequently for threshold signing operations. Additionally,

the increase is not linear. When we check the results in Table 5.5, we observe that

there is already a natural increase in delays when an LN node receives increasing

number of transactions. This is because the LN protocol have to process all these

HTLCs simultaneously which causes payment settling times to increase. Thus, we

can understand that most of the increase in delays in Table 5.4 are due to the LN

overhead for processing the payments. The additional overhead coming from using

our approach is minimal, which demonstrates that our approach can scale. Never-

theless, if certain delay requirements are to be met, additional LN gateways can be

deployed to reduce the load depending on the number of IoT devices to be deployed.
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Overhead of increased number of payments : The results of this experiments are

shown in Table 5.5. Increasing the number of key send payments from a single sender

resulted in increased delays for both threshold and baseline approaches. This clearly

tells us that when an LN node processes more payments, some of the payments set-

tle after the others resulting in a greater average delay. Thus, the increase in the

delay is not relevant to our approach rather related to the LN’s internal mechanisms.

However, the threshold delays are still slightly higher than the baseline delays as ex-

pected which is due to the time spent on performing the threshold signing operations

with the Pi.

Table 5.5: Effect of Increasing the Number of Transactions on Payment Delays

Number of Tx Threshold Delay Baseline Delay
100 3.50 seconds 2.65 seconds
200 5.87 seconds 4.59 seconds
300 8.65 seconds 6.96 seconds
400 10.53 seconds 8.96 seconds

5.4.6 Energy Consumption

As many IoT devices are powered with batteries, it is important to also analyze

their energy consumption. In this direction, we used a MakerHawk USB multimeter

device which can accurately measure the power consumption of a Raspberry Pi

in real-time. A photo of this setup is shown in Fig. 5.8. We report the energy

consumption of the Pi when it is idle and sending key send payments. We considered

two ends of the spectrum: 100 and 400 transactions to see the difference. For the

idle cases, we measured the energy consumption for the duration of time spent on

sending the transactions. The results are shown in Table 5.6.

According to these results, a single transaction only costs around 5 µWh which

indicates that the additional energy overhead that comes with our approach is mini-
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Figure 5.8: Our energy consumption setup for the Raspberry Pi using the Maker-
Hawk USB Multimeter.

Table 5.6: Energy Consumption of the IoT Device

Number of Tx Sending Payments Idle
100 3.56 mWh 3.03 mWh
400 11.76 mWh 10.13 mWh

mal. Additionally, the overhead remains constant even if the number of transactions

increase. Using battery solutions such as PiSugar5, Pis can run on battery around

10 hours non-stop. However, in our approach, we do not need the Pis to be running

all the time. They can power-on only when they need to perform the threshold

operations with the LN gateway and thus, can run on battery for days.

5.4.7 Comparison with Other Methods

Since there are not any reliable comparison options, we chose to implement the state-

of-the-art method for regular online payments which is the credit card payments.

5https://www.pisugar.com/
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Specifically, we used Square’s Web Payments SDK6 to implement the standard credit

card payments. A card payment utilizes 3D Secure (3DS) also known as Strong

Customer Authentication (SCA). Square lets developers test credit card payments

using their Sandbox servers. Thus, we installed this implementation into one of the

Raspberry Pis and measured the delay to make card payments to their server. We

tested the delays both with 3DS and without and present these results in Table 5.7.

The results clearly show that LN payments with our approach is much quicker than

credit card payments even when 3DS is not enabled.

Table 5.7: Comparison with Regular Credit Card Payments

Method Payment Sending Time
Credit Card Payment with SCA ≈ 5 s
Credit Card Payment w/o SCA ≈ 3 s

LNGate2 1.01 s

5.5 Limitations

Our proposed protocol requires changes to the LN protocol. Specifically, we propose

changes to LN’s BOLT #2 and commitment transactions. This will require ensuring

that the updated LN software should be run on the LN gateway and bridge LN nodes

in order to be able to support the IoT device transactions.

Additionally, our protocol requires the IoT device to be online for receiving

payments. In an ideal setting, the IoT device should be able to receive a payment

even when it is offline. It is important to note that this is also a problem for LN in

general [Kuw19].

6https://github.com/square/web-payments-quickstart
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CHAPTER 6

LNMESH: WHO SAID YOU NEED INTERNET TO SEND

BITCOIN? OFFLINE LIGHTNING NETWORK PAYMENTS USING

COMMUNITY WIRELESS MESH NETWORKS

Bitcoin is undoubtedly a great alternative to today’s existing digital payment

systems. Even though Bitcoin’s scalability has been debated for a long time, we see

that it is no longer a concern thanks to its layer-2 solution Lightning Network (LN).

LN has been growing non-stop since its creation and enabled fast, cheap, anonymous,

censorship-resistant Bitcoin transactions. However, as known, LN nodes need an

active Internet connection to operate securely which may not be always possible. For

example, in the aftermath of natural disasters or power outages, users may not have

Internet access for a while. Thus, in this chapter, we propose LNMesh which enables

offline LN payments on top of wireless mesh networks. Users of a neighborhood or

a community can establish a wireless mesh network to use it as an infrastructure

to enable offline LN payments when they do not have any Internet connection.

As such, we first present proof-of-concept implementations where we successfully

perform offline LN payments utilizing Bluetooth Low Energy and WiFi. For larger

networks with more users where users can also move around, channel assignments

in the network need to be made strategically and thus, we propose 1) minimum

connected dominating set; and 2) uniform spanning tree based channel assignment

approaches. Finally, to test these approaches, we implemented a simulator in Python

along with the support of BonnMotion mobility tool. We then extensively tested the

performance metrics of large-scale realistic offline LN payments on mobile wireless

mesh networks. Our simulation results show that, success rates up to 95% are

achievable with the proposed channel assignment approaches when channels have

enough liquidity.
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6.1 Feasibility Study

To demonstrate the feasibility of the approach, we first created a proof of concept

implementation. This section provides the details of this implementation and the

corresponding results. The proof of concept will shed light on how to design such a

system in large-scale which will be tackled in the next sections.

6.1.1 Implementation Environment

Our implementation utilizes 8 Raspberry Pi 4 Model B each having a 64GB SD

card loaded with 64-bit Raspberry Pi OS (Raspbian). Each of these Raspberry Pis

support Bluetooth Low Energy (BLE) and WiFi interfaces with dual-band IEEE

802.11b/g/n/ac and Bluetooth 5.0. For the Bitcoin nodes, we installed bitcoind

v0.23.0 [The23] and for the LN nodes, we used Core Lightning v0.11.2 [Blo23a].

All the transactions were performed on Bitcoin’s Testnet. To fund the LN nodes

with Testnet Bitcoins, we used a faucet1. Note that in LN, channels need to be

opened in advance and transactions can be sent to recipients over multi-hop routes.

If there is no route to the recipient, the payment will not go through.

6.1.2 Bluetooth Implementation and Results

We first tested the offline LN payments on a BLE setup to have an initial proof of

concept. The setup consists of 8 Pis where one of Pis is the master and the rest

are slaves. LN works with TCP/IP thus BLE alone cannot be used to perform

LN operations between the nodes. BLE setup needs to be adjusted such that the

TCP/IP can work over BLE. To do this, we did some configuration on the Pis such

as installing bluez-tools, creating a personal area network, configuring the master

1https://coinfaucet.eu/en/btc-testnet/
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node and slave nodes and more. However, doing only that is not enough as we are

also trying to create a mesh network. Such a setup is then called IP mesh over BLE

with no known implementation to-date. As we are only trying to test the feasibility

of the concept, we instead created a IP-over-BLE Star Network. Basically, one of

the Pis were designated as the master and other 7 connected to it as slaves. The full

details and step-by-step guide of this implementation is given at our GitHub page

at https://github.com/startimeahmet/LNMesh/tree/main/BLE_star.

Once this IP-over-BLE star network setup was ready, the next step was to open

the LN channels. For this, we again chose a star topology where all slaves opened a

channel to the master. The physical placement of the slaves around the master was

arbitrary. The virtual topology of this setup is illustrated in Fig. 6.1.

Master

<DHCP>
Server

Slave 6 

Slave 5 

Slave 7 

Slave 2 

Slave 3 

Slave 1 

Slave 4 

Network 172.25.1.0/24

Figure 6.1: Topology of the IP-over-BLE star network.

Once the Bitcoin and LN nodes of all Pis were synced, we cut the Internet

connection on all the Pis at the same time to take them all offline. This is a critical

part in the experiments as our motivation is to test offline LN payments. In our
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tests, we realized that, cutting the Internet connection puts the Bitcoin and LN

nodes into searching for peers mode. Both nodes still keep running but lose their

existing peers because of having no Internet connection. Thus, we just went ahead

and connected each LN node on the slave Pis to the LN node on the master Pi using

their local IP addresses 172.25.1.xxx with the command lightning-cli connect

pubkey@IP:port. In a real deployment, this process can be automated with a script

which will automatically get the local IPs of the peers and force a reconnect. This

way, we did not need to make any modifications on the LN or Bitcoin software to

make offline LN payments work.

For the experiments, we executed 100 payments in total where we randomly

selected two nodes among the 8 nodes to send payments to each other. This was

automated with a bash script we wrote. Since the LN channels were opened to

form a star topology, payments can either be between the slaves and the master

(direct payments) or between the slaves (1-hop payments). All executed payments

were successful. The average delay was around 1.5 seconds for direct payments and

around 2.5 seconds for 1-hop payments.

6.1.3 WiFi Implementation and Results

Next, we tested the concept with WiFi as it will offer longer coverage. Unlike

the BLE case, we created a full mesh network (i.e., not through a master) for the

WiFi experiments. Thus, it involves a more complicated setup since the nodes have

to be placed at a distance from each other to create a mesh topology. To create

the WiFi mesh network, we used batman-adv [Fre23] which is a routing protocol

specifically designed for mobile ad-hoc networks and is part of the Linux kernel.

One of the Pis were setup as the mesh gateway to provide Internet connectivity to
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the rest of the Pis in the mesh. For that, we used an additional generic Wireless

USB adapter on the gateway to connect it to the Internet when necessary. This

Internet connectivity was only used to sync the Bitcoin and LN nodes on the Pis.

The mesh network was created inside our university building and the nodes do not

necessarily have line of sight propagation between each other. The full details and

step-by-step guide of this implementation is given at our GitHub page at https:

//github.com/startimeahmet/LNMesh/tree/main/WIFI_mesh.

In Fig. 6.2, we show the topology of the nodes inside FIU Engineering Center

building and their connections to each other on the mesh level. The rectangles in

the figure represent the rooms and walls. The dashed lines on the figure represent

the neighbors of each node on the mesh network which were identified with the

command sudo batctl n where batctl is the configuration and debugging tool for

batman-adv.

2
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5

Figure 6.2: Placement of the Pis in the building and the resulting mesh topology
for the WiFi mesh setup. Dashed lines show the mesh links.

Next, we created several LN topologies by opening channels between the nodes.

These topologies can be seen in Fig. 6.3. First topology is the same as the mesh

topology where each node has a channel with its neighboring nodes. Second one is a
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Figure 6.3: Illustrations of different LN topologies tested on the WiFi mesh setup.
Red lines show the LN channels.

circular topology where the channels form a complete loop. Finally, the third one is a

star topology where all nodes have a channel to the gateway node. Same as the BLE

case, we cut the Internet connection of the nodes after the channels were opened

and peered them with each other on LN using their local IPs 192.168.199.xxx.

For all these topologies, again similar to the BLE case, we performed 100 pay-

ments between two randomly selected nodes among the 8 nodes we had. Payment

amounts were set to 5,000 satoshi and all channel capacities were initially set to

100,000 satoshi. The procedure of choosing the nodes randomly and executing the

payments between the nodes was automated using a bash script. Randomization

was done using fixed seed values to prevent different nodes to be selected for different

experiment runs. The results of these experiments are presented in Table 6.1.

Table 6.1: WiFi Mesh Experiment Results

Topology Success Average Total Number
Rate Delay of Channels

LN=Mesh 95% 5.95 sec 13
Circle 53% 6.31 sec 8
Star 60% 4.76 sec 7

Highest success rate was observed with the LN=Mesh topology which makes

sense as it has more channels than the other two thus more routing options/less
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failures. Circle topology on the other hand has the lowest success rate and the most

delay which again makes sense because routing options are limited and payments

have to go through more hops. Finally, we see that the star topology performs

slightly better than the circle with the least delay among all options which is logical

as the payments are either direct or 1-hop payments. In general, these results show

us that while offline payments are possible, the way the channels are assigned makes

a major impact on the success rate when considering mesh topologies. Therefore,

we tackle this problem next.

6.2 Channel Assignment Approaches

In the previous section, we showed that offline LN payments can indeed be realized in

a wireless mesh network utilizing WiFi or BLE. Now in this section, we will present

techniques to extend such a setup to a large number of users and channels, which

can be used in a real-life application within a community when they all lose Internet

connection at the same time due to a disaster such as a hurricane/earthquake etc. In

this direction, we first describe how to handle large-scale mesh topologies that change

over time (i.e., mobile) and then offer two different channel assignment techniques

for mobile community wireless mesh networks.

6.2.1 Problem Motivation and Handling Mobility

Opening and closing LN channels require Internet connection since they are on-chain

Bitcoin transactions broadcast to the Bitcoin network. This means that the users

have to open their channels before they go offline. Therefore, our problem boils down

to the following: Given a community of people moving around in a neighborhood

during a day, how to decide who opens a channel to who so that the overall success
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rate of the payments in the network will be satisfactory when people do not have

access to the Internet?

A good starting point for deciding how to open channels in a wireless mesh net-

work is by looking at the individual mesh connections of the users. We could open

an LN channel for every mesh link and have an LN topology that is the same as the

mesh topology. However, this will not be possible since we are dealing with a mobile

topology that changes over time. Additionally, opening a channel for every single

mesh link would be very costly as it would cause too many channels to be opened

that would require higher initial investment from all the users. Instead, a more

optimized way is to look at users’ mobility patterns and make channel assignments

based on these patterns to reduce the number of channels opened. Mobility pattern

of a user can be interpreted as how frequently the user move around other users and

how often it gets close to others. In real life, this corresponds to how often people

interact with each other or with stores, gas stations and markets around them.

Algorithm 3: Mobility-Aware Mesh Topology Generation

Input : Mesh distances data with following 4 columns: [source, target, time,
distance]

Output: Mobility-aware mesh topology Gmesh

1 define k; /* the metric to include the nodes in the new topology */

2 define d; // wireless coverage of the nodes

3 initialize empty Gmesh;
4 for each (source, target) in data do
5 count = 0; /* how many times two users get close enough */

6 for each time in data do
7 if distance ≤ d then count += 1;
8 end
9 if count ≥ k then

10 Gmesh.add edge(source, target);
11 end

12 end
13 return Gmesh;
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To model these mobility patterns, we need to analyze the mobility behavior of

the users for a period of time within a specific neighborhood. For instance, if we

can collect mobility traces for certain users during a day in a neighborhood, these

traces can then be merged to create instant mesh topologies at certain times. In

other words, we can get a snapshot of mesh topologies at certain intervals and then

identify the most probable neighbors of each user in average. This information can

be combined to create an average wireless mesh topology of users during a typical

day. This topology will give us a hint on how to assign channels. We came up with

Algorithm 3 to create this topology.

Algorithm 3 is pretty straightforward in the sense that it gets as input the

distance information between all possible users in the mesh at different times of

the day and outputs the mobility-aware mesh topology. For all given times (line

6), it checks the number of occurrences any two users (source, target) (line 4) get

close to each other less than the distance d (line 7). Here, d stands for the wireless

transmission range of the users. If the number of occurrences is at least k times

(line 9), we decide that these two users frequently interact with each other and add

them to the mobility-aware mesh topology (line 10).

6.2.2 Problem Definition and Formulation

Now that we have the mobility-aware mesh topology which is fixed (i.e., does not

change with time anymore), the next problem is how to assign the LN channels on

it. The problem of channel assignment for mobile ad-hoc networks can be modeled

based on one of the variants of the well-known transportation problem [App73].

Mainly, the goal in this problem is to move certain supplies from suppliers to ware-

houses through certain routes that come with specific costs. In our case, the supplies
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would correspond to payments, suppliers and warehouses would be users and the

cost of the route would be associated with the capacity (i.e., higher capacity chan-

nels are cheaper while lower capacity ones are expensive). However, in our case,

there is an additional problem since we are trying to prune the resultant topology

to reduce the number of channels opened. This problem is related to the connec-

tivity of the topology. From a given topology which represents an undirected graph

G (V,E) where V is the set of users and E are the wireless links among them, we

need to guarantee that the selected links eventually form a connected topology so

that any payment can reach any destination. This connectivity constraint makes

the problem intractable for sensor networks as shown in [SSSA11]. Therefore, we

opt to follow approaches which can offer connected topologies with minimal number

of links. Specifically, we will prune the topologies created by Algorithm 3.

To this end, one easy solution is to utilize spanning trees from graph theory which

has been widely used in the context of mobile ad-hoc networks for various purposes

[KSAU21], [BFG+03] since they guarantee connectivity with minimum number of

links. In graph theory, spanning tree of a given undirected graph G is a subgraph of

G that includes all the vertices of G with minimum number of edges. That means,

if G has n vertices, a spanning tree of G has n− 1 edges.

Finding the minimum spanning tree (MST) has been well studied, and there are

polynomial time algorithms such as Kruskal’s or Prim’s [WC04] to find the MST if

each link has an associated cost (i.e., weight). In our case, the different link costs

used for an MST are not applicable since once created, each link is equal in terms

of serving as an LN channel. In other words, each link will have the same cost.

Therefore, any spanning tree would be applicable to our solution. Nevertheless, we

recognize that even if the number of links (and thus the number of LN channels to

be opened) will be same for any spanning tree topology, the degree of nodes (i.e.,
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the number of neighbors for a node) may differ significantly. In other words, the

variance of the node degrees may change from topology to topology.

Therefore, we plan to pursue two approaches to form our spanning trees: Using

minimum connected dominating set (MCDS) [GK98] and uniform spanning tree

(UST) [PW98] concepts. Next two sections are dedicated to these approaches.

Algorithm 4: MCDS-based LN Topology Generation

Input : Mobility-aware mesh topology Gmesh

Output: MCDS-based LN topology GLNMCDS

1 GMCDS = compute MCDS(Gmesh); /* compute the MCDS graph using any

known MCDS algorithm */

2 GMCDSnocycles
= compute MST(GMCDS); /* compute MST of MCDS graph to

remove possible cycles */

3 GLNMCDS
= GMCDSnocycles

; /* initialize LN topology */

4 for each node in Gmesh do
5 if node not in GMCDS then
6 neighbors = Gmesh.neighbors(node);
7 possibilities = neighbors ∩ GMCDS ;
8 GLNMCDS

.add edge(node, possibilities[0]); /* choose the first

possibility */

9 end

10 end
11 return GLNMCDS

;

6.2.3 Minimum Connected Dominating Set Approach

As mentioned before, we are trying to assign minimum number of channels in the

network to reduce the burden on the users to open many channels which requires

monetary investment. In this direction, we can first find the core vertices of the

mobility-aware mesh topology graph and then follow this core to assign channels.

The rationale behind this is to form a topology such that any node can reach any

other node through this core with relatively shorter paths. This can indeed be

measured through metrics such as closeness centrality and betweenness centrality

[Gol13] from graph theory. Shorter paths increase the success rates because there
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are less channels on the payment path that might cause the payment to fail. The

other motivation behind determining a core is to allow any potential businesses to

be part of the core if they offer a wireless node to interact with the users.

Core vertices in a topology can be found with a minimum connected dominating

set (MCDS) algorithm. Connected dominating set D (i.e., dominator nodes) of a

graph G has the following properties:

• D forms a connected subgraph of G.

• If a vertex in G is not in D (i.e., a dominatee node), it is adjacent to a vertex

in D.

Thus, MCDS finds a D with minimum number of vertices. We present the pseu-

docode of our MCDS-based LN topology generation algorithm in Algorithm 4.

Mobility-aware mesh
topology (Gmesh) MCDS nodes 

Initial CDS-based 
LN topology (GMCDSnocycles) 

Complete CDS-based 
LN topology (GLNMCDS) 

a) b)

c)d)

Dominator
Node

Dominatee
Node

Figure 6.4: An illustration of the workflow of Algorithm 4

Algorithm 4 takes the mobility-aware mesh topology graph as an input and

returns a processed version with fewer number of links. We first compute the MCDS
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graph of the mobility-aware mesh topology graph (line 1). For finding the MCDS,

any known algorithm in the literature can be used [GK98]. However, when we find

it, we remove any cycles within this MCDS by computing its MST (line 2). This

resulting graph is also the starting point to create our LN topology thus we initialize

the LN topology graph to the MCDS graph with no cycles (line 3). The idea is to

enlarge the MCDS graph with no cycles until each dominatee node has a channel

to one dominator node. To do this, we iterate over each node in the mobility-aware

mesh topology graph that is not a member of the MCDS (i.e., dominatee nodes)

and get their neighbor set (line 4-6). In this neighbor set, we check for the nodes

that are in the MCDS (line 7). These nodes are potential candidates to open a

channel to because they are already in the MCDS and have a link to the dominatee

node in the mobility-aware mesh topology. We take the first candidate and add

this (dominatee, dominator) pair to the LN topology graph (line 8). In this way,

every node will be connected and there will not be any cycles, essentially another

spanning tree. Once this process is done for all the dominatees, we output the LN

topology graph. The way this algorithm works is also illustrated in Fig. 6.4.

6.2.4 Uniform Spanning Tree Approach

As an alternative to finding the MCDS, we can calculate spanning trees from the

mobility-aware mesh topology graph using another method. As mentioned, since

a graph can have multiple spanning trees, we can randomly select a spanning tree

among all possible spanning trees of G with equal probability. This is referred to as

Uniform Spanning Tree (UST). USTs can be found using Wilson’s algorithm which

uses loop-erased random walks to generate them [PW98]. We show an example UST

in Fig. 6.5 of the same graph in 6.4. The rationale behind this choice is to be able
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to compare random selection to a deliberate one (i.e., MCDS-based) and investigate

the impact through experimentation.

Mobility-aware mesh
topology (Gmesh) A UST of Gmesh 

a) b)

Figure 6.5: An example UST generated from Gmesh

6.3 Simulations

To test our proposed approaches explained in Section 6.2, we implemented a sim-

ulator in Python. It mostly utilizes the networkx and pandas libraries in Python

to create the graphs of the mesh and LN topologies and perform operations on

them. The full source code of our simulator is available in our GitHub page at

https://github.com/startimeahmet/LNMesh/tree/main/simulator.

6.3.1 Implementing Mobility

Before starting the simulations, we need to generate realistic mobility data to be able

to create our mesh network. For this, we used the BonnMotion software which is

a mobility scenario generation and analysis tool written in Java [AEGPS10]. Using

this software, we can generate mobility scenarios based on popular mobility models

within a given community. An example scenario generated by BonnMotion is shown

in Table 6.2. As can be seen, a scenario file created by BonnMotion has 4 columns
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in it which are [node, time, x, y ]. For example, row 694 in Table 6.2 is interpreted

as follows: Node 1 was at coordinates (260.0223, 453.6815) at time 79.8913.

Table 6.2: An example scenario created by BonnMotion for the duration of 21,600
seconds (6 hours) for 100 nodes

node time x y

row 1 0 0 640.9129 574.3036
row 2 0 18.1457 618.9429 574.0308
row 3 0 21.9939 618.9429 568.2012
. . . . .
. . . . .
row 692 0 21592.6878 302.5685 597.1364
row 693 1 0 268.3588 329.3055
row 694 1 79.8913 260.0223 453.6815
row 695 1 275.8172 464.9036 457.9410
. . . . .
. . . . .
row 1320 1 21600 474.0779 697.9201
. . . . .
. . . . .
row 70281 99 0 327.1091 598.0677
row 70282 99 141.9900 464.2400 603.2721
row 70283 99 198.8276 472.7828 505.9701
. . . . .
. . . . .
row 70859 99 21600 255.2838 574.6977

In short, a scenario includes nodes’ coordinates at different times for the dura-

tion of the scenario. Thus, a scenario is essentially a network topology that changes

over a period of time. We can also input real maps to the software to create more

realistic scenarios. In this direction, we first chose a specific neighborhood around

our school, Florida International University (FIU). Then, we extracted the map

of FIU’s Engineering Center Campus and its surroundings using the Java Open-

StreetMap Tool (JOSM)2. The map is shown in Fig. 6.6. The bounding box of our

2https://josm.openstreetmap.de/
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map in longitude/latitude format is [-80.3733, 25.7647, -80.3653, 25.7722 ]. With

this map, we generated a number of mobility scenarios on the BonnMotion software

using the Map-based Self-Similar Least-Action Walk (MSLAW) [SA13] algorithm.

MSLAW was a suitable option for our case since it best captures moving people in

a neighborhood and also it can take real maps as inputs. The scenario duration

was 6 hours, the min and max speed of the pedestrians were 0.5 m/s and 2 m/s

respectively. For the number of people (users), we chose 100, 200 and 300 where we

created 40 scenarios for each for statistical significance.

Figure 6.6: The map of FIU’s Engineering Center and its surroundings

Next, we preprocessed BonnMotion scenario files. The scenarios created by

BonnMotion have different time values for each node as can be seen in Table 6.2.

In order to get the network topology at a specific time, we need all the nodes to

have the identical time values. To achieve this, we grabbed the x-y coordinates of
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each node every 10 minutes from the scenario file and recorded the resulting data in

a new .csv file. In this way, every node had 6 hours/10 minutes = 36 rows in the

preprocessed scenario file.

With the preprocessed scenarios at hand, we could then create the mesh and LN

topologies for the simulation. Each preprocessed scenario has 36 mesh topologies in

it. To calculate a mesh topology from a scenario file for a given time, we first need to

calculate the distances between all the nodes for all times. This is a costly operation

to do at simulation run time, thus we opted for precomputing these distances and

saving them into a .csv file for each scenario. In this way, we can just read these

files in the simulation run time and calculate the mesh topologies much faster. After

this step, we also created the mobility-aware mesh topology for each scenario using

Algorithm 3. For the value of d, we used 90 meters to keep a conservative value for a

potential IEEE 802.11n/ac coverage considering urban environments [EA22]. For k,

we tried the following values: (2, 3, 4, 5, 6, 7, 8, 9, 10 ). When k was greater than

5, we started getting disconnected graphs for mobility-aware mesh topology. Values

less than 5 on the other hand generated topologies with too many links which is not

ideal. Thus, we chose 5 for the value of k. However, still we got 3 scenarios that did

not include some nodes in the mobility-aware mesh topology thus, we performed the

experiments with 37 scenarios instead.

6.3.2 Simulation Setup, Metrics and Baselines

Simulation Setup: Our aim in the simulations is to perform N arbitrary LN

payments every 10 minutes between M nodes. Amount A of a payment is arbitrarily

selected from the following list of values: (1, 5, 10, 20, 50, 100 ) satoshi. Across

the simulations, we varied N with the following list of values: (20, 30, 40, 50,
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Figure 6.7: Success rate for 100 nodes.
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Figure 6.8: Success rate for 200 nodes.
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Figure 6.9: Success rate for 300 nodes.
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Figure 6.10: Success rate for 100000
satoshi.
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Figure 6.11: Success rate for
200000 satoshi.
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Figure 6.12: Success rate for 400000
satoshi.
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60, 70, 80, 90, 100 ). For the number of nodes M in the simulations, we tested

the following values: (100, 200, 300 ). Basically, they match the number of nodes

we initially input to the MSLAW algorithm during the scenario generation. As

mentioned before, we used 37 scenarios for each value ofM. To have a fair comparison

across the simulations, the random selection of N payments with random amounts

A was done using fixed seed values. For channel capacities, we equally distributed

a total investment amount to all the channels in a simulation. The following total

investment amounts were used in the simulations: (50000, 100000, 200000, 300000,

400000 ) satoshi. For example, if there were 100 channels in a specific simulation

and the total investment amount was 100,000 satoshi, then each channel was funded

with 1,000 satoshi. Essentially, depending on the total investment and the total

number of channels, channel capacities across the simulations vary. The reason for

keeping the total investment amount fixed across simulations is to see the effect of

other simulation parameters more clearly and fairly. For the MCDS algorithm, we

used an existing Python implementation3 of the non-distributed MCDS algorithm

proposed by Rai et al. [RGVT09]. For generating USTs, we used DPPy package in

Python4 which has an implementation of the Wilson’s algorithm [PW98] for general

graphs.

Metrics: We use the payment success rate as our main metric on LN topologies

which shows the percentage of transactions that were successfully received by the

recipients. This metric depends on many parameters such as the total investment

amount, number of payments every 10 minutes, number of nodes in the network and

more importantly the selected channel assignment approach.

3http://sparkandshine.net/en/calculate-connected-dominating-sets-cds/

4https://dppy.readthedocs.io/en/latest/exotic_dpps/ust.html

125

http://sparkandshine.net/en/calculate-connected-dominating-sets-cds/
https://dppy.readthedocs.io/en/latest/exotic_dpps/ust.html


Baseline : To test the effectiveness of the CDS and ST approaches, we need a base-

line approach. The most intuitive candidate was the mobility-aware mesh topology

which can be directly used as an LN topology. Thus, for the baseline approach,

we opened an LN channel for each link in the mobility-aware mesh topology of the

respective mobility scenario.

6.3.3 Simulation Results

We conducted several experiments whose results are shown in Fig. 6.7-6.12. We

discuss each scenario in details below:

Impact of the number of nodes: Looking at Figures 6.7, 6.8, 6.9, we can see

that increasing the number of nodes in the network while keeping total investment

fixed negatively affects the success rate. This is because, when there are more nodes

in the network, there are also more channels. Since the total investment is kept

the same, the channel capacities are lower on the network with more nodes. Thus,

if we do not want to sacrifice on the success rate, we need to invest more money

into the network when there are more users. This is actually not an issue in real

life since each new user fund their channels with their own funds. Essentially, total

investment automatically increases when a new user joins the network. Regardless

of the number of nodes, increased number of payments deplete the channels quickly

and thus there is a reduction in success rate for all approaches.

Impact of total investment : We can see from Figures 6.10, 6.11, 6.12 that

increasing the total investment increases the success rates for all approaches dra-

matically. Specifically, when the total investment was increased from 50000 satoshi

to 400000 for 300 nodes, the success rates reached up to 95% for CDS, 95% for UST,

and 82% for the baseline approach. Such increase in the success rates makes a lot
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of sense because by increasing the total investment, we are essentially putting more

funds in each channel which helps the channels last longer and do not get depleted

as quick. We see that even when the total investment is low (i.e., 50,000 satoshi),

more than half of the payments in the network are successful for almost all cases.

Impact of using CDS and UST : The most interesting outcome of the results are

on the used approach. We can see from almost all the results that CDS consistently

performs the best while UST comes after CDS and baseline approach performs the

worst. To understand why CDS and UST have much higher success rate than the

baseline, we need to look at the number of channels in each case which are shown

in Table 6.3. These results are an average from 37 different mobility scenarios we

used for the simulations.

As can be seen, baseline approach has too many channels compared to the CDS

and UST. Since, we are keeping the total investment constant, the channel capaci-

ties in baseline experiments are very low compared to CDS and UST experiments.

This in turn causes the payments to fail frequently due to insufficient capacity on

the channels. The only exception was the case with Fig. 6.7 where UST performed

worse than baseline even though its number of channels is lower. This can be at-

tributed to the fact that there are much less users and alternative routes in this

particular case. The channel capacities can be quickly depleted using same the

routes for CDS and UST especially when the number of transactions increase. In

case of baseline, there may be other routes that still allow successful transactions.

When we increase the number of users to 300 in Fig. 6.10, we see that the trends

change completely since there are more users to offer more routes and thus baseline

approach suffers from low channel capacities. Thus, it can be concluded that having

fewer number of channels with higher capacities is more effective.
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Table 6.3: Average Number of Channels for Different Approaches from 37 Different
Scenarios

Average Number of Channels
Approach 100 nodes 200 nodes 300 nodes

CDS 99 199 299
UST 99 199 299

Baseline 665 2876 6381

In general, when we compare CDS and UST, we see that CDS has higher success

rate than UST in all experiments. To understand why this is the case, we checked

several properties of the CDS and UST graphs. First thing we noticed was CDS

graphs have vertices with high degrees (i.e., vertices with many edges) while the

vertex degrees in UST graphs were almost uniform. This causes payments to take

longer paths in UST case which results in payments to fail more frequently due

to channels with insufficient capacities along the payment path. CDS case on the

other hand essentially has vertices acting as hubs which can relay the payments to

recipients. As we predicted, this can be attributed to the closeness centrality (CC)

feature for CDS-based topologies which measures how short the shortest paths are

from a node i to all other nodes: CC(i) = N − 1/
∑

j d(i, j) where d(i, j) is the

length of the shortest path between nodes i and j and N is the number of nodes.

Due to the way we generate CDS-based topologies, there are hub nodes which enable

closeness centrality to be higher.

Analysis of failed payments : To better understand the performance difference

between CDS, UST and baseline approaches, we also analyzed the percentage for

failed payments in Table 6.4. These results presented are cumulatively calculated

from all of the simulations. Total number of payments for each case was 3,596,400.
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Table 6.4: Percentages of Payment Failures for a Total of 3,596,400 Payments from
45 Simulations

Not Enough Capacity No Mesh Path
Approach 100 nodes 200 nodes 300 nodes 100 nodes 200 nodes 300 nodes

CDS 15.45% 16.27% 19.2% 2.71% 2.43% 2.18%
UST 19.14% 20.83% 25.38% 2.86% 2.63% 2.47%

Baseline 15.17% 26.77% 40.20% 2.26% 1.75% 1.35%

Looking at the results, first thing we notice is that most payments fail because of

not having enough capacity on the channels. The rest of the failures are due to not

having paths on the mesh topology itself which are insignificant (i.e., only comprise

2-3% of all payments and approaches to zero when we have more nodes). Note that

we do not have failures due to not having paths on the LN topologies since we made

sure all LN topologies we generated are connected.

Unarguably, the most important observation from these results is the effective-

ness of CDS and UST approaches on reducing the payment failures from not having

enough channel capacities. We see an improvement around up to 50% over the

baseline. Overall, these results show that with the right number of nodes and in-

vestment amount, we can achieve a success rate close to 100% when using CDS-based

approach.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

LN has been formed as a new payment network to address the drawbacks of

Bitcoin transactions in terms of time and cost. In addition to the fast and cheap

transactions, LN provides a perfect opportunity for covert communications as no

transactions are recorded in the blockchain. Therefore, in this dissertation, we first

proposed a new covert hybrid botnet by utilizing the LN payment network formed

for Bitcoin operations. The idea was to control the C&C servers through commands

that are sent in the form of LN payments. The proof-of-concept implementation of

this architecture indicated that LNBot can be successfully created and commands

for attacks can be sent to C&C servers through LN with negligible costs yet with

very high anonymity. To improve on the cost and delay of sending the commands, we

proposed a slightly modified version of LNBot which utilizes a new feature of LN that

enables sending messages by embedding them into payments. Our evaluation results

showed an 98% improvement in both cost and delay metrics. Finally, we proposed D-

LNBot, a cost-free and distributed version of LNBot with faster command sending

times. Our evaluation results showed that, commands are propagated to all the

C&C servers in O(mlogn) time compared to LNBot’s O(na). To minimize the

impact of these proposed botnets, we offered several countermeasures that include

the possibility of searching for the botmaster.

In our second work, we proposed a secure and efficient protocol for enabling

IoT devices to use Bitcoin’s LN for sending and receiving payments. By introduc-

ing (2,2)-threshold scheme to LN and modifying LN’s existing peer protocol for

channel management and commitment transactions, a third peer (i.e., IoT device)

was added to the LN channels. The purpose was to enable resource-constrained

IoT devices that normally cannot interact with LN to interact with it and perform
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micro-payments with other users. IoT device’s interactions with LN are achieved

through an untrusted gateway node that has access to LN and thus can provide

LN services in return for a fee. A game theoretic security analysis was provided to

prove that the IoT device does not lose money when other channel peers attempt

to cheat. Our evaluation results showed that the proposed protocol is scalable and

enables IoT devices to use LN with negligible delay, cost, networking and energy

consumption overheads.

Finally, in the last work, we proposed using mobile community wireless mesh

networks to power offline LN payments so that people in a community/neighborhood

without active Internet connections can continue transacting among themselves. We

showed the feasibility of such a setup on a IP-over-BLE star network and a full WiFi

mesh network using 8 Raspberry Pis. Our experiments implied that the way the

channels are opened have a huge impact on the overall success rate of the payments

in the network. Additionally, assuming that the mesh users can also move around

complicates channel opening even more. Thus, we proposed two channel assignment

approaches taking into account the mobility of the users. First approach is based

on connected dominating set concept and the second one utilizes uniform spanning

tree. To test these approaches in a large-scale, we implemented a simulator and

extensively analyzed overall success rate of the payments on different settings. Our

results showed that, our proposed approaches work well and can achieve success

rates up to 95% on large mobile wireless mesh networks.

We list the potential future research to extend these works below:

• In D-LNBot, we examined the total command propagation time using a Python

simulator. A more realistic way to realize it would be by using Bitcoin’s Sim-

net. In Simnet, we can mine the blocks ourselves and deploy the nodes in a

programmatic way.
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• In LNGate2, thresholdizing the commitment points were left as a future work.

It prevents nodes from single-handedly revealing their revocation keys before

the channel state is updated. The implementation requires a new crypto-

graphic protocol since channel states utilize hash chains.

• In LNGate2, the security analysis section would benefit from a game theoretic

security analysis of the ransom attacks similar to the analysis of collusion

attacks. This is mainly to make the security analysis more formal.

• In LNMesh, we assumed that all nodes go offline and come back online at

the same time which makes sure that nodes cannot cheat against each other.

If this assumption is relaxed (i.e., some nodes go online before others), then

there will be a need to analyze and discuss the security of the scheme covering

more possibilities.

• In LNMesh, alternative channel assignment approaches other than spanning

trees can be tested to see if overall success rates can be increased even more.

Additionally, the effect of other parameters such as wireless coverage can be

investigated.

• There may be many other use cases of LN that need to be explored for their

feasibility and performance. Therefore, there is a need to identify potential use

cases of LN. This may include using it for any covert communication purposes,

community tools, web3 applications, and so on.
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