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ABSTRACT OF THE DISSERTATION 

NEUROIMAGING FEATURE FUSION AND MULTIMODAL CLASSIFICATION OF 

ALZHEIMER’S DISEASE 

by 

Mehdi Shojaie 

Florida International University, 2022 

Miami, Florida 

Professor Malek Adjouadi, Major Professor 

Alzheimer’s Disease (AD) is a neurodegenerative disorder and the most prevalent 

cause of dementia. Early detection of AD is critical for enabling early intervention and for 

slowing its progression. This dissertation aims to present effective machine learning 

frameworks using multimodal biomarkers for the diagnosis of AD, specifically in the 

earliest stage. Moreover, a transfer-learning framework is proposed to transfer model 

learning knowledge from a source domain with a large amount of labeled data to a target 

domain with insufficient data for creating an ML model from scratch.  

Accordingly, a feature ranking metric is formulated based on the mutual information 

index to assess the relevance and redundancy of regional biomarkers and improve the AD 

classification accuracy. The multivariate mutual information metric was utilized to capture 

the redundancy and complementarity of the predictors and develop a feature ranking 

approach. This was followed by evaluating the capability of single-modal and multimodal 

biomarkers in predicting the cognitive stage. Moreover, the Amyloid-Tau-

Neurodegeneration (AT(N)) biomarker framework was used to explore the misclassified 

cases. The F1-score show that although amyloid-β deposition is an earlier event in the 
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disease trajectory, tau PET with feature selection yielded a higher early-stage classification 

score (65.4%) compared to the modalities of amyloid-β PET (63.3%) and MRI (63.2%). 

The support vector classifier (SVC) multimodal scenario with feature selection improved 

the F1-score to 70.0% and 71.8% for the early and late-stage, respectively. 

As another research endeavor, an instance-based transfer-learning framework is 

presented based on the gradient boosting machine (GBM) to transfer knowledge from a 

source to a target domain. In our transfer learning version of GBM (TrGB) a weighting 

mechanism based on the residuals of the base learners is defined for the source instances. 

Consequently, instances with different distribution than the target data will have a lower 

impact on the target learner. Using the Mount-Sinai dataset as target domain, and the ADNI 

dataset as source domain, TrGB improved the classification scores by 4.5% for MCI 

diagnosis compared to the baseline. Also, for the early MCI vs. late MCI, using knowledge 

transfer from the NC vs. AD of the source domain, scores improved by 5%. 
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1. INTRODUCTION 

1.1 Background 

Alzheimer's Disease is a neurodegenerative disorder that impairs memory, thinking, 

and behavior. By 2050, the number of individuals with dementia is estimated to exceed 

13.8 million in the U.S. according to Alzheimer's Disease Facts and Figures [1]. A 

misfolding and abnormal deposition of specific proteins in the brain is recognized as the 

pathological cause for the initiation and progression of this neurodegenerative disease. AD 

is irreversible, causing significant memory and behavioral issues. Therefore, researchers 

are keen to identify its earliest manifestations, even at the pre-symptomatic stage, to plan 

for and more effectively take advantage of emerging early treatment and therapeutic  

interventions. Thus, effective diagnosis of AD and its early stage, i.e., mild cognitive 

impairment (MCI), specifically using computer-aided methods, has attracted extensive 

attention in recent years [2]-[14]. 

Several biomarkers associated with the pathology of AD have been identified and 

studied by researchers for decades. Magnetic Resonance Imaging (MRI) as a structural 

indicator for brain atrophy, measures of tau and amyloid-β (Aβ) from Cerebrospinal Fluid 

(CSF), and Aβ accumulation from regional Positron Emission Tomography (PET) and 

hypometabolism from fluorodeoxyglucose (FDG) PET are among the most remarkable 

biomarkers for AD. In recent years, several tau PET tracers such as (11)C-PBB3, (18)F-

AV1451, and (18)F-THK have been developed, which enable in-vivo visualization of tau 

pathology in brain regions. Tau imaging can help to facilitate disease staging and diagnosis. 

Compared to Aβ, tau is a delayed event and is more related to cognitive decline [15], [16]. 

The interrelatedness of these two biomarkers has been extensively studied [17]-[21]. 
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Moreover, the temporal ordering of biomarkers provides added insight into AD staging. 

Based on such biomarkers ordering, a disease progression score has been defined in [22]. 

Biomarkers of Aβ plaque, i.e., amyloid PET and CSF Aβ, represent the initiating events of 

AD that happen during the cognitively normal stage. On the other hand, biomarkers of 

neurodegeneration, including MRI, FDG-PET, and CSF total tau, are later events that 

correlate with cognitive decline [23]. Besides the pathological biomarkers, there are other 

contributing variables in AD diagnosis, such as risk factors (age, gender, and 

apolipoprotein E gene with the e4 allele (APOE e4)), and protective factors (cognitive 

reserve, brain resilience, and resistance). The variability of these factors, namely age, 

gender, APOE e4 genotype, and year of education between AD subtypes, can be used and 

investigated to address the disease heterogeneity to some extent. 

In various fields, such as computer vision, natural language processing, speech 

recognition, and intelligent humanoids, machine learning has achieved promising 

advances. In the medical domain, machine learning is used to create learning models as 

complementary tools for disease diagnosis [24], [25]. However, collecting and labeling 

medical data is costly and labor-intensive. Thus, some medical datasets may not have 

enough data required for training a robust machine learning model. On the other hand, 

combining various datasets may introduce new challenges such as differences in the 

marginal and conditional distribution of the data due to disparity in imaging machines and 

tools, data collection policies and standardization, and characteristics of the participants. 

In machine learning, it is often assumed that the feature and label spaces and their 

distribution are the same for the training and testing datasets. If the data distribution is not 

the same, a trained learner on a source dataset may perform poorly on a target  dataset. On 
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the other hand, the labeled data of the target domain may not be large enough to train a 

separate model. To handle this conflicting challenge, transfer learning is used to effectively 

transfer the information between domains while taking into consideration potential 

discrepancy in data distribution. This will make it possible to build predictive models in a 

target dataset with a limited amount of data [26]. In general, transfer learning can be used 

in a scenario where there is a link between the two learning tasks. If the connection between 

the domains is misleading or misinterpreted by the model, negative transfer may occur 

where information transfer has a negative impact on the target learner [27]. 

1.2 Research Purpose 

The objective of this research work is to develop computer-aided AD diagnosis 

approaches using multimodal neuroimaging data including MRI, Aβ PET, and tau PET. 

Tau imaging is a relatively new technology which has not yet been studied thoroughly in 

the machine learning-based AD diagnosis domain in comparison to other modalities. 

Various biomarkers can thus be studied either individually to gauge their unique merit but 

also in a multimodal manner to discover how they complement one another for enhanced 

classification and disease prediction. The spatial variation of tau and Aβ proteins in 

different stages of the disease is investigated. A feature selection methodology will be 

proposed to determine the relevancy and redundancy of the features. Then, machine 

learning architectures are utilized for multiclass and binary classification of MCI and AD 

patients. The structure of the model is designed so that the inter-modal information can be 

extracted effectively. To interpret the diagnosis results, the relationship between 

biomarkers profiles and the cognitive stage is also examined.  
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The machine learning-based diagnosis framework was also expanded to a secondary 

target dataset. However, since the amount of data in this dataset is not sufficient to build a 

separate classification model, a transfer learning approach is developed to transfer 

information through instances from a larger source dataset to the smaller target dataset. 

The transferred instances will facilitate the training process of the target learner and 

improve its performance. 

1.3 Research Problem 

In the procedure of developing machine learning models for AD classification and 

feature selection for determining disease-prone areas, the following steps are undertaken: 

• Biomarkers data exploratory: This analysis is to identify the most effective biomarkers 

and to investigate the fusion of multimodal data to enhance model performance. This step 

is essential for studying the temporal ordering of biomarkers and detecting the early 

biomarkers. Extracting various biomarkers profiles using defined cut-points and explaining 

them in the context of cognitive status can also be helpful. 

• Relevancy and redundancy of regional features: Identifying the relevance of the regional 

features for each modality in different stages of the disease could enhance the prospects for 

classification and prediction purposes. Also, in the process of integrating features, their 

redundancy as well as their complementarity should be considered to optimize the machine 

learning design and hence the classification/prediction process, while minimizing the 

computational requirements. 

• Designing the machine learning structure: In seeking that optimal design structure, there 

is need to identify the appropriate machine learning models for the given 
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classification/prediction problem. Developing such a structure to integrate multimodal 

regional data can effectively model both inter-modal and intra-modal relationships. 

Designing machine learning architectures to enable transfer learning to combine datasets 

with different data distributions is key in developing machine learning models that can be 

applied across data centers and even across disciplines. 

1.4 Theoretical Perspective and Literature Review 

While each neuroimaging modality provides distinct features and measures for AD 

diagnosis, their fusion consolidates their unique strengths when using effective machine 

learning and deep learning models [28]-[32]. In retrospect, few multimodal studies include 

tau imaging for computer-aided diagnosis of AD. 

An initial step required for the machine learning-based diagnosis is the optimal data 

representation through a feature extraction procedure. Feature extraction methods can be 

categorized as voxel-based, region of interest (ROI)-based, and patch-based techniques. 

Among them, ROI-based features are more common due to their consistency and lower 

dimensionality [28], [33]. In AD studies, the sample size is typically small, and the 

dimensionality of voxel-based and even ROI-based features is high. This makes it difficult 

for the machine learning model to generalize to unseen data while avoiding overfitting. 

Therefore, feature selection methods are used to remove the irrelevant features and reduce 

the dimensionality of the data. 

In some feature selection methods, the selection process is embedded in the learning 

algorithm, and the model accuracy or loss is then used to evaluate different subsets of 

features. With the use of these methods, an optimized combination of features can be 
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achieved; however, these approaches are subject to the curse of dimensionality. Another 

category of techniques known as filter methods uses a criterion such as Pearson’s 

correlation, ANOVA, t-test, chi-square test, and mutual information, among others, to 

evaluate the many features and determine their relevance to the target variable [34], [35]. 

In [36], the similarity between samples was computed, and their consistency metrics have 

been used for multimodal feature selection. In [37], a feature selection method was 

developed based on the Receiver Operating Characteristic (ROC) curve for each Volumes-

Of-Interest (VOI), where the classification true positive rate is plotted vs. the false positive 

rate using only that specific VOI. In [38], the linear discriminant analysis (LDA) and 

locality preserving projection (LPP) learning methods have been combined with a sparse 

regression model to determine discriminative features. Most filter methods use univariate 

metrics in which features are evaluated independently, and the interaction between them is 

often overlooked. Also, filter methods focus mainly on the linear relationship between 

variables, and any nonlinear dependencies are often neglected.  

In terms of associations between variables, there exist some research endeavors for 

incorporating the correlation and redundancy of the features. However, due to the nature 

of the used metrics, these approaches are mainly unsupervised, and the detected 

relationships are not necessarily connected to the target variable and hence may not be 

valuable concerning the classification problem. Another group of methods uses embedded 

regularization for sparse feature learning in which the interaction of all variables is taken 

into consideration [39]-[41]. However, in these models, the variable selection is less 

interpretable, limiting the flexibility and ability to further explore the discriminative 

features. 
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To present a biological definition of AD, biomarkers are pathologically grouped into 

three classes. This scheme is known as AT(N) with “A”, “T”, and “(N)” representing Aβ, 

tau, and neurodegeneration biomarker groups, respectively. Based on this system, each 

biomarker class is labeled as positive or negative through defined cut-points to determine 

the overall pathology status [42]. The so-called AT(N) framework attempts to reflect the 

interactions between neuropathological changes (characterized by biomarkers profiles) and 

the cognitive stage (determined clinically through symptoms). This framework can be 

extremely useful when interpreting results of a computer-aided diagnosis model. 

1.5 Transfer Learning – A Retrospective 

Transfer learning approaches can be classified into instance-based, feature-based, or 

model-based techniques. Instance-based approaches focus on transferring knowledge 

through the source domain instances while using a weighting scheme as a filtering 

criterion. In feature-based transfer learning, the source features are transformed, and a new 

feature space is built. The aim of the model-based transfer learning is to take a pre-trained 

model built on a primary dataset and fine-tune and use it for a smaller dataset [43]. Transfer 

Adaptive Boost (TrAdaBoost), which is an extension of the AdaBoost algorithm, has been 

presented in [44] as an instance-based method. In this iterative approach, the training data 

of the source and target domains are combined, and a model is trained. In each iteration, if 

an instance from the target domain is misclassified, a higher weight is assigned to it, while 

the misclassified instances from the source domain will receive a lower weight for the next 

step. Thus, the different-distribution training instances from the source domain will have a 

lower impact on the final model. An extended version of TrAdaBoost for multi -source 

transfer learning scenarios has been developed in [45] and is called MsTrAdaBoost. 
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Another multi-source transfer learning (MSTL) approach has been proposed in [46] to 

facilitate the utilization of knowledge from multiple source domains. In [47], a multi-

source ensemble transfer learning (METL) approach is presented, which consists of a 

single-source tri-transfer learning and a multi-source ensemble learning. 

Furthermore, deep learning models such as convolutional neural networks (CNNs) 

have been extensively used for the automatic extraction of discriminative features and 

classification. Since deep learning requires a massive amount of data points, they are ideal 

candidates for transfer learning [48]. For such situations, a part of the network will be 

transferred in a model-based manner. In a group of studies, the convolutional layers of 

feature extraction that are pre-trained on a general dataset are transferred for a specific task 

of disease diagnosis. In contrast, the classifier and fully connected layers are designed and 

trained for the desired classification task [49], [50]-[53]. Another approach to realizing 

model-based transfer learning is to add a pre-trained model from a source domain to the 

objective function of a target learner and transfer the source knowledge during the target 

training procedure. A version of this approach has been proposed in a Domain Adaptation 

Machine (DAM) in [54]. 

Progression of AD can be effectively investigated through longitudinal studies. 

Recurrent Neural Networks (RNNs) are perfect candidates for such studies due to the 

intrinsic power in learning long-short term dependencies of sequenced data. These RNNs 

can share information between series of data points through an additional hidden set of 

parameters. RNNs have been implemented in modeling the progression patterns of chronic 

diseases [55], [56]. In [57], Nguyen et al. trained an RNN-LSTM network over a seven-

year period to predict multiple AD biomarkers for one subsequent time point. In another 
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study, Wang et al. applied an RNN architecture with LSTM cells to predict the global 

staging of the Clinical Dementia Rating (CDR) score of the next visit using previous 

records [58]. Aghili et al. utilized LSTM and GRU models to classify AD subjects using 

longitudinal records of data over an 11-year period [59]. 
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2. FEATURE ENGINEERING 

2.1 Introduction 

To reduce the model complexity and enhance its performance, removing redundant 

and extraneous features by selecting the most informative ones remains a critical step [36], 

[60]-[62] in the development and design of any machine learning model. Also, feature 

selection can be used to understand the process under study by identifying those disease-

prone regions that contribute best to AD diagnosis and disease progression. 

In this study, the objective is to come up with a subset of features with minimum size 

and maximum possible information about the class variable. This can be achieved by 

preserving the most relevant features and dismissing the irrelevant and the redundant ones. 

Redundant features may not necessarily damage the system’s performance. However, to 

limit the feature space size and complexity, it is beneficial to remove the redundant features 

and keep the complementary ones to maximize the total amount of relevant information.  

Within this context, a new approach is thus proposed based on the Multivariate 

Mutual Information (MMI) criterion. We attempted to handle feature redundancy and 

complementarity in a supervised manner where the shared information between features is 

evaluated in terms of its capability to predict the target variable. A feature score is thus 

defined based on the features' relevance and redundancy, and the features are subsequently 

ranked based on their scores. 
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2.2 Materials and method 

2.2.1 Participants 

The clinical data used for our analysis were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in 2003 

as a public-private partnership, directed by Principal Investigator Michael W. Weiner, MD. 

The primary objective of ADNI has been to test whether serial MRI, PET, other biological 

markers, and clinical and neuropsychological assessments can be combined to measure the 

progression of mild cognitive impairment and early Alzheimer’s disease. For up-to-date 

information, see www.adni-info.org. 

In this study, the data were collected from three modalities in the ADNI 3 cohort, 

including amyloid PET (agent: (18)F-AV45), tau PET (agent: (18)F-AV1451), and MRI. 

For each participant, all modalities have been collected from the same visit. The MRI scan 

is a T1 weighted image that has gone through preprocessing steps, including gradient 

wrapping, scaling, B1 correction, and inhomogeneity correction. For the florbetapir and 

flortaucipir data, four preprocessing steps have been followed, including co-registered 

dynamic, averaged, standardized image and voxel size, and uniform resolution. T1 MRI 

scans have been processed through FreeSurfer for skull-stripping and segmentation of 

cortical and subcortical regions. In the next step, florbetapir and flortaucipir images have 

been co-registered to the subject’s MRI from the same visit. Finally, volume-weighted 

florbetapir and flortaucipir average are defined in each cortical and subcortical region of 

interest, and regional Standardized Uptake Value Ratio (SUVR) is then calculated. More 

information about the preprocessing steps and processing methods can be found at 

ida.loni.usc.edu. The florbetapir ((18)F-AV45) dataset analysis comprises reference region 
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options of the whole cerebellum, cerebellar grey matter, and brain stem in addition to 

cortical and summary of SUVR measurements. The participant demographics and Mini-

Mental State Examination (MMSE) score for each group (mean and standard deviation) 

are reported in Table 2.1.  

Table 2.1 Participant demographics and mini-mental state examination (MMSE) score for different diagnosis 

groups of the ADNI3 cohort. P-value is reported between MCI-CN and AD-CN populations. 

Groups Subject (f/m) 

Age (year) 

[P-value] 

Education (year) 

[P-value] 

MMSE 

[P-value] 

CN 

 

277(153/124) 

 

71.80±5.70 

[-] 

16.67±2.47 

[-] 

28.63±2.12 

[-] 

MCI 

 

378(155/223) 

 

71.26±7.66 

[0.179] 

16.25±2.61 

[0.027] 

26.87±4.20 

[<0.001] 

AD 

 

67(26/41) 

 

73.41±8.78 

[0.075] 

16.43±2.35 

[0.290] 

22.37±2.39 

[<0.001] 

 

Figure 2.1 illustrates the distribution of average SUVRs (among all regions) for the 

sample set. Since not all participants have undergone all tests, the dataset contains multiple 

instances with missing values which are dropped in some scenarios depending on the 

objective of the analysis. 
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Figure 2.1 Distribution of the mean value of amyloid-β and tau SUVRs in each disease group for ADNI3 

cohort participants; CN: Cognitively Normal, MCI: Mild Cognitive Impairment, AD: Alzheimer’s Disease 

In this study, different types of variables, including cortical thickness and SUVR 

values, non-tissue SUVR values, and AD risk factors, were used as features for the machine 

learning algorithm. In the preprocessing stage, the feature set is normalized to a common 

scale before feeding it to the classification model. It is worth noting that the SUVR values 

in non-brain areas represent off-target binding by the ligand and are not related to AD 

pathophysiology. Such SUVR values could still be potentially beneficial for the machine 

learning-based classification task despite the fact that they are not interpretable as 

biomarkers of AD. 

2.2.2 Method: Feature selection 

The high dimensionality of multimodal regional AD data relative to the sample size 

can diminish the model performance. The purpose of feature selection is to find a feature 

subset that yields an optimal classification score. This selection process can also help to 

enhance the generalization ability and interpretability of the model.  
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To determine the relevance of a feature, univariate filter-based feature selection measures 

can be used. With such measures, the relationship between each feature and the target 

variable is evaluated individually. One of the most common criteria for this task is the 

Pearson correlation coefficient which is a number between [-1,1], with +1, -1, and 0 

representing maximum linear correlation, maximum inverse linear correlation, and no 

linear correlation between the two variables, respectively. Other univariate criteria include 

mutual information, ANOVA test, and Chi-squared test, whose performance may vary 

depending on the type of the input and output variables (continuous or categorical 

variable). Mutual Information (MI) is a powerful statistical metric that measures common 

information between random variables and is relatively robust to the data type. Unlike the 

correlation measure, MI can also detect nonlinear relationships between variables. 

Moreover, it can be extended to more than two variables to determine the redundancy of 

multiple variables [62]. In this study, a methodology is proposed to rank features based on 

pairwise redundancy and complementarity of features using Multivariate Mutual 

Information (MMI). 

MI between two discrete random variables is defined as: 

 𝐼(𝑥;𝑦) = ∑ ∑ 𝑝(𝑥, 𝑦). 𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑦𝑥   (−) 

where x and y are random variables and p(.) is the probability of a random variable. MI is 

zero when x and y are independent and is positive when there is common information 

between them.  

At first, MI was calculated between each feature and its target variable. This 

determines the relevance of each feature. Next, to incorporate the interaction of features, 
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MI was calculated between a subset of features and a target variable as I(S;  y), where S is 

a subset of features and y is the target. For the case of a subset of two features (S={x1, x2}), 

the relationship between MI of S and y (I(x1, x2; y)) and MI of each feature and y (I(x1; y), 

I(x2; y)) is defined as follows: 

𝐼(𝑥1,𝑥2; 𝑦) = 𝐼(𝑥1; 𝑦) + 𝐼(𝑥2; 𝑦) − 𝐼(𝑥1;𝑥2; 𝑦)   (−) 

where the three terms on the right side can be calculated using (1). Based on (2), the amount 

of information that (x1,x2) have about y can be defined as the sum of the common 

information of x1 and y (I(x1; y)) plus that of x2 and y (I(x2; y)) minus the intersection of 

the first two terms, which is the common information of all three variables x1, x2 and y 

(I(x1; x2; y)). The last term is known as the Multivariate Mutual Information (MMI), which 

determines the shared information between multiple variables and is defined as follows:  

𝐼(𝑥1;𝑥2; 𝑦) = ∑ ∑ ∑ 𝑝(𝑥1, 𝑥2, 𝑦). 𝑙𝑜𝑔
𝑝(𝑥1 ,𝑥2 ,𝑦)

𝑝(𝑥1)𝑝(𝑥2)𝑝(𝑦)
𝑦𝑥2𝑥1

   (−) 

When MMI is positive, there is redundancy between x1 and x2, and the information 

of a subset of them is less than the sum of their individual information. On the other hand, 

when MMI is negative, x1 and x2 carry complementary information about y, and the 

information of x1 and x2 combined is more than the sum of their individual information. 

Therefore, in (2), the interaction of features is considered through the MMI term, which 

can be treated as a measure of redundancy and complementarity. 

To rank the features, a metric is defined for each feature based on the MI between 

that feature and the target variable and the redundancy or complementarity of that feature 

with every other feature. This new metric is defined as follows: 
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  𝐹𝑆𝑖 = 𝐼(𝑥𝑖 ;𝑦) − 𝛼 ∑ 𝐼(𝑥𝑖; 𝑥𝑗 ;𝑦)𝑗
𝑗≠𝑖

   (−) 

where FSi is the score of the ith feature, with α being a constant. The first term is the MI of 

the ith feature and the target variable, and the second term represents the pairwise 

interaction (redundancy/complementarity) of the i th feature and all other features, which 

can consist of positive and negative elements. When α is zero, the interaction term is 

ignored, and the feature scores only depend on the individual scores. As α increases, a 

larger weight is assigned to the redundancy term so that the overall score of redundant 

features decreases while that of complementary ones increases. To select the value of 

coefficient α, the classification experiment was conducted using different values of α, and 

the optimal value was determined as the one associated with the highest classification 

score. The FS score was then calculated for all features, and the top features were 

determined accordingly. To evaluate different scenarios, first, the top features were 

detected for each individual modality to find the prominent regions based on each 

biomarker.  Then, the process was repeated for the multimodal data so that the top regions 

in terms of all modalities combined were identified. Also, the importance of specific 

regions and biomarkers at various stages of the disease was evaluated. In the next step, to 

prove the effectiveness of the new metric for feature selection, multiple classification 

scenarios were implemented. 

2.3 Results and Discussion 

Various feature selection approaches were implemented under multiple classification 

scenarios. At first, conventional univariate criteria and methods, including Correlation 

coefficient, ANOVA (SelectKBest), ExtraTreesClassifier, and univariate mutual 
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information, were implemented. For the amyloid and tau PET modalities and the three-

class classification case (CN/MCI/AD), the heatmap of the feature scores based on the 

abovementioned metrics is shown in Fig. 2. A total number of 110 features (two features 

per region for left and right hemispheres) have been included in this analysis. As seen, 

entorhinal, inferior parietal, inferior temporal, amygdala, and bankssts are among the top 

features based on tau PET, while regions like frontal pole and accumbens are more 

prominent based on amyloid PET. 

 

Figure 2.2 Regional feature importance scores for amyloid PET SUVRs (AV45) and tau PET SUVRs 

(AV1451). The feature scores were determined using four filter-based feature selection measures, namely, 

SelectKBest (SKB-ANOVA), ExtraTreesClassifier (ETC), correlation coefficient (Corr), and mutual 

information (MI), as shown in the vertical axis. For each region shown in the horizontal axis, one feature is 

defined for amyloid SUVR and one for tau SUVR. The value of feature scores is normalized between 0 and 

1 and is illustrated by the color intensity of their corresponding box in the figure. Features with larger scores 

are more informative for the classification task. Based on the results, amyloid SUVRs including entorhinal, 

inferior parietal, inferior temporal, amygdala, and bankssts and tau SUVRs including frontal pole and 

accumbens are among the top features. 

Next, the proposed MMI-based feature selection method was implemented. Using 

equation (3), pairwise MMI was calculated for all features, and the results are presented as 

a heatmap in Figure 2.3. Again, the CN/MCI/AD case based on the amyloid and tau PET 

modalities is considered here. In the heatmap, the diagonal elements show the amount of 
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information that each feature has about the target variable. The brighter the color of a 

square, the more relevant is that particular feature. The non-diagonal elements show the 

degree of redundancy or complementarity of feature pairs concerning the target variable. 

The darker the color, the higher the redundancy, and the lower the complementarity. 

 

Figure 2.3 Heatmap of multivariate mutual information (MMI) between pairwise amyloid and tau SUVR 

values given the class variable (y), calculated using equation (3). The diagonal elements represent the amount 

of information that each individual feature carries about the target variable. Brighter colors correspond to a 

higher amount of information. For non-diagonal elements, a positive MMI value is an indication of redundant 

information between two features, which corresponds to darker colors in the heatmap. On the other hand, 

complementary features have a negative MMI represented by brighter colors in the heatmap. As seen, more 

pairwise redundancy (more dark non-diagonal elements) exists for inside-modality features compared to 

between-modality features. 

To select the most relevant and informative features, both the individual scores 

(diagonal) and the mutual scores (non-diagonal) should be considered as described in the 

method section. The feature scores (FS) were calculated using equation (4). As indicated 

earlier, for each feature, the summation of the second term of the equation represents the 

interaction of that feature with every other feature. The summation terms are equivalent to 

each row or column of the heatmap of Figure 2.3. The heatmap of the top 30 features based 
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on the proposed FS-score is illustrated in Figure 2.4 for different values of α. For α=0, the 

score of a given feature solely depends on the feature’s relevance. As seen in Figure 2.4, 

in this case, top features include highly relevant (brighter diagonal) but possibly redundant 

features (darker non-diagonal) at the same time. For higher values of α, the redundancy 

term comes into play so that more redundant features are removed from the list of the top 

features. This results in selecting features with brighter non-diagonal elements (less 

redundant), as shown in Figure 2.4 for higher values of α. This is a trade-off between 

feature relevance and redundancy, which is controlled by adjusting parameter α.  

Table 2.2 Top features (amyloid-β and tau SUVRs) based on the proposed feature ranking method. The 

SUVR values were ranked using the calculated feature scores, and the top amyloid-β and tau SUVR features 

are presented. Top features are more informative for the AD diagnosis classification task. 

T
a
u

 P
E

T
 

Left entorhinal Left vessel Third ventricle 

Left amygdala Left inferior temporal Right entorhinal 

Left middle temporal Right amygdala Right inferior temporal 

A
m

y
lo

id
-β

 P
E

T
 

Left medial orbitofrontal Left rostral anterior cingulate Right medial orbitofrontal 

Left accumbens area Left hippocampus cingulate cortex anterior 

Left frontal pole Right accumbens area cingulate cortex mid anterior 

Left lateral ventricle Right lateral ventricle cingulate cortex posterior 

Left inferior lateral ventricle Right frontal pole  

 



20 

 

 

Figure 2.4 Heatmap of top 30 features based on the FS-scores for different values of parameter α. For  α=0, 
the redundancy term is ignored, and the features are selected solely based on their relevance. In this case, 
dark non-diagonal elements of the heatmap represent more pairwise redundancy between features. For higher 
values of α, feature redundancy is decreased, and bright non-diagonal elements show less pairwise feature 

redundancy and more complementarity. 

It is worthwhile to add that too large values of 𝛼 should be avoided since, in this left 

inferior lateral ventricle situation, valuable features might be dropped only because they 

have some dependency on other features. For the specific case of α=0.005, the top features 

(amyloid-β and tau SUVRs) are listed in Table 2.2. Finally, the resulting scaled feature 

scores for the amyloid and tau SUVRs for different stages of the disease are represented in 

Figure 2.5. 

 
Figure 2.5 Regional feature importance scores for amyloid PET SUVR (AV45) and tau PET SUVR 

(AV1451) based on the proposed feature selection method. As a supervised approach, the features scoring 
procedure was performed for four different classification tasks, including CN/MCI/AD, CN/MCI, MCI/AD, 
and CN/MCI/AD as shown in the vertical axis. For each region shown in the horizontal axis, one feature is 
defined for amyloid SUVR and one for tau SUVR. The value of feature scores is normalized between 0 and 
1 and is illustrated by the color intensity of their corresponding box in the figure. Features with larger scores 
are more informative for the classification task. For tau SUVRs, entorhinal and amygdala were among the 

top features for all classification tasks, while pallidum and hippocampus were more informative for the 
CN/MCI case, and inferior parietal, inferior temporal, precuneus, and precentral for the MCI/AD case . On 
the other hand, for amyloid SUVRs, top features include frontal pole for all classification tasks, in ferior 
lateral ventricle for the CN/MCI, and medial orbitofrontal, pars triangularis, and rostral anterior cingulate for 

the MCI/AD. 

𝛼=0                 𝛼=0.003                 𝛼=0.005              𝛼=0.007 
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2.4 Conclusion and Discussion 

The objective of this chapter was to determine the dependencies between different 

features. For the model variables, including amyloid and tau PET SUVR values and cortical 

thickness, a trade-off was made between variables relevance and redundancy using an 

information theory-based metric. The advantage of the proposed approach is to incorporate 

the effect of feature complementarity and redundancy to maximize the total amount of 

information in the feature set. By incorporating a moderate redundancy coefficient into the 

calculations for tau SUVRs, entorhinal and amygdala were among the top regions for all  

stages of AD, with amygdala being most informative for the CN/MCI case. Abnormal tau 

deposition in these regions is known as a biomarker for preclinical AD by previous studies 

[18], [20], [63]. It is reported in the literature that amygdala shows early atrophy 

independent of amyloid deposition, and it might be related to neurofibrillary tangles instead 

[64], [65]. Other prominent regions include pallidum and hippocampus based on tau PET 

for CN/MCI case, and inferior parietal, inferior temporal, precuneus, and precentral for the 

MCI/AD case. It is stated in [66]-[68] that tau burden in these specific ROIs is correlated 

with cognitive decline. On the other hand, for amyloid PET SUVRs, frontal  pole for all 

stages, and inferior lateral ventricle for the CN/MCI case, and medial orbitofrontal, pars 

triangularis, and rostral anterior cingulate for the MCI/AD case are among the more 

prominent variables. These findings are consistent with previous studies [69]-[71].  

By incorporating the effect of redundancy and synergy, some features experienced a 

score change. For instance, the score of frontal pole amyloid SUVR (but not tau SUVR) 

for the early stage increased significantly, so this region is considered a complementary 

variable for the classification task. This is in agreement with the literature [64], [72], where 
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it is reported that the frontal pole shows early amyloid deposition while atrophy and tau 

deposition are later events. Some amyloid and tau SUVR values that experienced a boost 

in their score include the hippocampus, inferior lateral ventricle, and lateral ventricle, 

which are known to be critical for AD diagnosis in previous studies. On the other hand, a 

score drop was seen in some of the tau SUVRs, including fusiform, inferior parietal, 

inferior temporal, isthmus cingulate, orbitofrontal, middle temporal, precuneus, and 

bankssts (these are cortical areas around superior temporal sulcus). A lower score does not 

necessarily disqualify a feature. Instead, the model tries to replace the most redundant 

features with a possibly less relevant but complementary one so that additional information 

is added to the analysis. 
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3. CLASSIFICATION AND INTERPRETATION USING THE ATN 

FRAMEWORK 

3.1 Introduction 

In recent years, artificial intelligence has proved to be a promising tool for diagnosing 

and predicting the trajectory of the disease. In this chapter, neuroimaging data, including 

MRI, Amyloid-β PET, and tau PET data from the ADNI cohort were used in this 

multimodal study. The effect of modalities on the disease staging was evaluated both 

individually and combined. Machine learning models, including Support Vector Machine 

(SVM), Random Forest (RF), and eXtreme Gradient Boosting (XGB), were used for the 

classification of different stages of the disease and the effect of the proposed feature 

selection method on the classification performance was evaluated. Before implementing 

the classification task, the feature space was scaled in the range between zero and one. To 

evaluate the models and also to optimize the models’ parameters, k-fold cross-validation 

was used. In order to prevent data leakage between these two tasks, a nested cross-

validation technique was implemented. 

Lastly, the AT(N) biomarkers framework was used to investigate the interconnection 

between the biomarkers’ profile and the cognitive stage to assess the classification 

performance degradation due to biomarker insufficiency. 

3.2 Method: Classification 

In this section, machine learning models were used for AD diagnosis at different 

stages using single-modality and multimodality data. The scaling estimator was built solely 

based on the training data (to avoid data leakage from the test set) and was applied to each 

feature individually in both training and test sets so that each feature is in the [0-1] interval. 
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The models used for the classification task include Support Vector Classifier (SVC), 

Random Forest (RF) of decision trees, and eXtreme Gradient Boosting (XGB). SVC is a 

classifier that attempts to categorize data points based on their classes in a high-

dimensional space by a hyperplane. By mapping the data points onto a higher-dimensional 

space, SVC can classify non-linearly separable data using nonlinear kernels like 

polynomial and radial basis function (RBF). To alter the bias and variance of the model, 

the regularization parameters C and gamma of the SVC can be adjusted. The parameters 

control the trade-off between the training accuracy and model generalization ability for the 

testing stage. As the next model, the RF algorithm relies on the key concept of decision 

trees and leverages the ensembling and voting mechanisms to enhance the classification 

and prediction accuracy while preventing overfitting. The model parameters include the 

number of trees, sample size, maximum depth of each tree, and the maximum number of 

features used for each split. XGB, on the other hand, is a learning technique that consists 

of an ensemble of weak learners, such as decision trees, that operate in a sequence where 

each subsequent learner attempts to correct the errors of the previous learner. The number 

of trees, the maximum depth of a tree, and the sample size for each step are among the 

XGB control parameters. Nested cross-validation was performed for hyperparameter 

optimization, and an outer cross-validation was used for validation and reporting the model 

scores. The structure of the data for the classification task is shown in Figure 3.1. Multiple 

single modality and multimodality experiments were performed for binary and multiclass 

classification. A similar set of experiments were then implemented after applying the 

proposed feature selection approach. Finally, to include the risk and protective factors in 
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the analysis, covariates including age, APOE e4, gender, and education level were 

integrated into the feature set, and the classification process was repeated. 

 

Figure 3.1 Structure of the used data for the classification process. 

3.3 Interconnection between AD neuropathology and cognitive stage 

In this chapter, MRI and PET scans have been used for automatic classification and 

prediction of the cognitive stage. However, the classification task remains challenging due 

to the heterogeneity of the disease. A critical factor that can degrade the model performance 

is the lack of sufficient biomarkers that are informative enough to perfectly determine the 

cognitive stage. We tried to explore the available biomarkers to investigate the performance 

limitation imposed by the dataset.  

Due to biomarker insufficiency, cognitive symptoms are not perfectly linked to AD 

neuropathological changes measured by available biomarkers. Simply put, symptoms are 

not specific to AD, nor do abnormal AD biomarkers guarantee the existence of symptoms. 

Neuropathologic changes in Alzheimer’s disease are determined by postmortem 

inspections and measured in vivo through biomarkers. Clinical AD, on the other hand, is 

defined based on the cognitive stage and is measured through the symptoms’ manifestation. 
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A percentage of individuals with clinical AD do not have postmortem evidence of AD 

pathology. 

Similarly, some individuals in the cognitively normal elderly group show signs of 

AD pathology at autopsy. This may result in false-negative and false-positive outcomes in 

our classification task. To study this effect, we investigated the available biomarkers and 

their corresponding cognitive stage based on the AT(N) biomarker profile system 

introduced in [42]. The AT(N) framework of the National Institute on Aging—Alzheimer’s 

Association is an effort toward investigating the interaction between AD neuropathology 

and cognitive status. In this biomarker grouping system, the biomarkers are classified into 

three categories based on their underlying pathologic process. The label “A” represents 

amyloid PET and CSF Aβ as biomarkers of cortical Aβ, “T” denotes tau PET and CSF 

phosphorylated tau (P-tau) as biomarkers of fibrillar tau, and neurodegeneration is labeled 

as “(N)” measured by CSF total tau (T-tau), FDG PET, and MRI.  

The imaging and CSF biomarkers are expressed in continuous values; however, in 

certain situations such as research studies and treatment trials, a binary grouping of 

biomarkers (positive/negative) may be preferred. To achieve such types of 

positive/negative results, appropriate cut-points are defined for each biomarker. For 

florbetapir (AV45) SUVR cut-points, we adopted the values reported in [73]. Summary 

SUVR is defined as the weighted average of florbetapir uptake in lateral temporal and 

parietal, lateral and medial frontal, anterior, and posterior cingulate normalized by the 

uptake in the whole cerebellum. Then, a cut-point of 1.11 is applied to this summary 

SUVR, which is equivalent to the 95th percentile of the biomarker distribution of the young 

control normal group. For tau PET SUVRs and MRI cortical thickness, the cut-points 
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determined in [74] by Clifford R. Jack Jr. were used. A tau PET summary SUVR is defined 

based on the volume-weighted average of the SUVR in inferior temporal, middle temporal, 

entorhinal, amygdala, parahippocampal, and fusiform ROIs normalized to the cerebellar 

crus grey. For the tau PET summary SUVR, cut-points of 1.19 and 1.32 are defined based 

on the specificity method (the 95th percentile of the biomarker distribution of the young 

control normal individuals) and the accuracy of impaired versus age-matched control 

normal method, respectively. From MRI, the surface-area weighted average is determined 

for the cortical thickness in entorhinal, inferior temporal, middle temporal, and fusiform 

regions. Cortical thickness cut-points of 2.69 and 2.57 mm are selected, respectively based 

on specificity and accuracy methods which were also used in the tau PET case. 

Based on the defined cut-points, various biomarker profiles can be identified in the 

AT(N) framework. These biomarkers grouping and their relationship with the cognitive 

stages are shown in Table 3.1. As seen in the table, the A-T-N- group represents individuals 

with normal AD biomarkers. Participants with amyloid positive but normal tau pathology 

and neurodegeneration biomarkers (A+T-N-) are tagged as “Alzheimer’s pathologic 

change.” Those with evidence of amyloid deposition along with tau pathology and 

regardless of neurodegeneration condition (A+T+N+/-) are considered to belong to the 

“preclinical Alzheimer’s disease” group. Amyloid-negative individuals with abnormal tau 

or neurodegeneration biomarkers (A-T-N+, A-T+N-, A-T+N+) are defined as “suspected 

non-Alzheimer’s pathology change”. Finally, the A+T-N+ category represents 

simultaneous “Alzheimer’s pathologic change” and “non-AD neurodegeneration”. 

Although the biomarker signature carries some information about the cognition status, each 

biomarker profile can belong to any cognitive stage.  
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Table 3.1 Interaction between clinically diagnosed cognitive stage and AT(N) biomarkers [42] 

  Cognitive stage (Clinical diagnosis) 

  Cognitively normal (CN) Mild Cognitive Impairment 

(MCI) 

Dementia 

B
io

m
a

r
k

e
r
 P

r
o

fi
le

 

A-T-N- Normal AD biomarkers, and CN Normal AD biomarkers with MCI Normal AD biomarkers 

with dementia 

A+T-N- AD pathologic change, and CN AD pathologic change with MCI AD pathologic change with 

dementia 

A+T+N- Preclinical AD with no cognitive 

impairment 

AD biomarkers with MCI AD biomarkers with 

dementia A+T+N+ 

A+T-N+ Alzheimer’s and concomitant 

suspected non-Alzheimer’s 

pathologic change, and CN 

Alzheimer’s and concomitant 

suspected non-Alzheimer’s 

pathologic change with MCI 

Alzheimer’s and 

concomitant suspected non-

Alzheimer’s pathologic 

change with dementia 

A-T+N- non-Alzheimer’s pathologic 

change, and CN 

non-Alzheimer’s pathologic 

change with MCI 

non-Alzheimer’s pathologic 

change with dementia 

A-T-N+ 

A-T+N+ 

A: Aggregated amyloid-β, T: Aggregated tau, N: Neurodegeneration 

+/-: The value of a biomarker summary measure is higher/lower than the cut-point 

 

The AT(N) framework combined with the described cut-points were used to establish 

the biomarker profile groups for our dataset. We then identified the sub-groups that are 

more susceptible to misclassification and explored their underlying causes. This is done by 

focusing on those groups in which the biological AD biomarkers cannot be an informative 

representation of the cognitive stage. For instance, individuals with normal AD biomarkers 

but clinical AD diagnosis are likely to be classified as non-AD class. Also, subjects with 
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abnormal AD biomarkers but no cognitive impairment might be identified as AD class by 

the model. The number of subjects in each AT(N) group was calculated for our dataset, 

and the probability of occurring false positive and false negative outcomes is measured, 

representing the contribution of biomarker shortage to the classification error. 

3.4 Results and Discussion 

3.4.1 Classification Results 

After data preprocessing, exploratory data analysis, and feature selection, 

classification models (SVC, RF, and XGB) were implemented for MCI, and AD diagnosis 

and their performance were compared. Since the data is unbalanced, various evaluation 

metrics, including precision, recall, and F1-score, are reported besides accuracy. 

Experiments were conducted using different modalities, both separately and combined. 

Amyloid PET, tau PET, and MRI as single modalities, and combinations of {amyloid PET 

& tau PET}, and combinations of {amyloid PET & tau PET & MRI}, as multimodal 

scenarios were investigated, and the results are presented in Table 3.2. 
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Table 3.2 Classification results before feature selection for three single-modality scenarios including amyloid 

PET SUVRs (tracer: AV45), tau PET SUVRs (tracer: AV1451), and MRI (cortical thickness) and two 

multimodality scenarios including “amyloid PET SUVRs & tau PET SUVRs” and “amyloid PET SUVRs & 

tau PET SUVRs & MRI cortical thickness”. Three machine learning models, including SVC, RF, and XGB 

were used, and four scores, including accuracy, precision, recall, and F1-score are reported. 

  CN/MCI/AD CN/MCI 

 M
o

d
a

lity
 

 C
la

ssifie

r
 

ACC PRE REC F1 ACC PRE REC F1 

 a
m

y
lo

id
-β

 

P
E

T
 

 SVC 60.2 52.6 49.7 50.4 68.9 65.2 61.6 61.9 

RF 58.6 46.4 44.5 44.5 66.9 62.4 60.1 60.3 

XGB 63.5 54.2 50.8 51.4 67.2 62.8 60.4 60.7 

 ta
u

 

P
E

T
 

 SVC 64.7 57.8 48.5 49.9 69.4 65.9 62.1 62.5 

RF 62.9 55.3 48.9 50.4 68.2 64.1 61 61.3 

XGB 63.1 55.8 49.3 50.9 69.2 65.5 62.8 63.2 

 M
R

I 

SVC 59.5 52.5 50.2 51.1 69.7 67.4 62.1 62.3 

RF 63.3 58.7 50.5 52.1 69 66.4 61.4 61.5 

XGB 62.6 57.5 50.2 52.2 65.5 61.1 58.8 58.8 

 A
m

y
lo

id
-β

 P
E

T
 

 &
 ta

u
 P

E
T

 
SVC 64.2 56.2 49.9 51.3 67.8 63.7 61.3 61.7 

RF 64.9 56.5 50.7 52 71.8 69.5 64.6 65.2 

XGB 64.9 64.4 53.5 56.5 67 62.8 61.1 61.4 

 A
m

y
lo

id
-β

 P
E

T
 

 &
 ta

u
 P

E
T

 

&
 M

R
I 

SVC 69.3 63 55.3 57.8 73.8 70.6 66.2 67.2 

RF 69 61.8 51.7 54.1 78 76.1 71.7 73 

XGB 68.8 62.9 54.6 57 78.3 78.1 70.5 72.2 
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MCI/AD CN/AD 

 M
o

d
a

lity
 

 C
la

ssifie

r
 

ACC PRE REC F1 ACC PRE REC F1 

 a
m

y
lo

id
-β

 

P
E

T
 

 SVC 74.9 66.2 64 64.8 88.6 78.8 76.3 77.4 

RF 75.9 67.6 64 65.2 89.6 81.3 76.9 78.8 

XGB 75.4 66.7 63 64.1 88.3 78.4 74.4 76.1 

 ta
u

 

P
E

T
 

 SVC 75.4 66.4 60.9 62 90.9 86.6 75.9 79.9 

RF 79.7 74.4 67.2 69.2 90.6 85.4 75.7 79.4 

XGB 77.5 70.4 69.2 69.7 90.6 85.4 75.7 79.4 

 M
R

I 

SVC 75.4 65.1 63.1 63.9 91.6 85.3 79.9 82.3 

RF 77.5 68.1 62.5 63.9 92.5 88.2 80.5 83.7 

XGB 78.2 69.5 64 65.5 90.8 83.5 77.6 80.1 

 A
m

y
lo

id
-β

 P
E

T
 

 &
 ta

u
 P

E
T

 

SVC 76.5 67.8 62.4 63.7 89.9 82.7 74.9 78 

RF 78.6 71.9 65.2 67 91.5 87.3 77.6 81.3 

XGB 80.7 75.5 68.8 70.8 91.2 84.8 79.1 81.6 

 A
m

y
lo

id
-β

 P
E

T
 

 &
 ta

u
 P

E
T

 

&
 M

R
I 

SVC 81 74.9 65.4 67.7 91.4 83.5 74.4 77.9 

RF 78.9 69.9 65.1 66.6 92.6 87.7 76.4 80.6 

XGB 78.2 68.5 61.5 63 91 81.4 75.5 78 

CN: Cognitively normal, MCI: Mild cognitive impairment, AD: Alzheimer’s disease 

ACC: Accuracy, PRE: Precision, REC: Recall, F1: F1-score 

Amyloid-β PET: SUVR values with AV45 tracer. Tau PET: SUVR values with AV1451 tracer. MRI: 

Cortical thickness 

 

In terms of machine learning models, generally, SVC yields slightly less accurate 

scores compared to the other two models. The F1-scores of the three models for various 

scenarios can be seen in Figure 3.2. 
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Figure 3.2 Classification F1-score before feature selection for the three machine learning models, SVC, RF, 

and XGB, for different classification scenarios including CN/MCI/AD, CN/MCI, MCI/AD, and CN/AD; (a) 

Single modality; tau PET, (b) Multimodality; tau and amyloid PET, (c) Multimodality; tau and amyloid PET 

and MRI. 

Among single modality cases, tau PET has slightly higher scores for CN/MCI 

classification (early stages), and tau PET and MRI have improved results for MCI/AD and 

CN/AD cases. Multimodal scenarios resulted in enhanced performance in the three-class 

CN/MCI/AD and CN/MCI cases while not in the MCI/AD case. This is due to the fact that 

the feature selection has not yet been applied, and thus, in multimodal cases, the feature 

space is of high dimensionality, and the model could not handle it effectively. This issue is 

reinvestigated in the next section, where the feature selection is applied before fitting the 

models. 

The classification scores with feature selection are shown in Table 3.3. The SVC 

results have improved in most cases, while the RF and XGB results have not changed 

significantly since these two algorithms have an embedded feature selection process and 

are not affected substantially by external feature selection. Figure 3.3 shows the feature 

selection effect on SVC and XGB F1-scores for three scenarios. In most cases, SVC with 

feature selection yields the highest scores, which proves the effectiveness of the proposed 

feature selection approach. 
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Table 3.3 Classification results after feature selection for three single-modality scenarios including amyloid 

PET SUVRs (tracer: AV45), tau PET SUVRs (tracer: AV1451), and MRI (cortical thickness) and two 

multimodality scenarios including “amyloid PET SUVRs & tau PET SUVRs” and “amyloid PET SUVRs & 

tau PET SUVRs & MRI cortical thickness”. Three machine learning models, including SVC, RF, and XGB 

were used, and four scores, including accuracy, precision, recall, and F1-score are reported. 

 M
o

d
a

lity
 

 C
la

ssifier 

CN/MCI/AD CN/MCI 

ACC PRE REC F1 ACC PRE REC F1 

 a
m

y
lo

id
-β

 

P
E

T
 

 

SVC 62.4 57.9 52.1 53.9 69.7 66.2 62.8 63.3 

RF 61.3 52.4 49.6 50.1 68.7 64.8 61.4 61.7 

XGB 61.1 52.5 50.7 51.2 65.7 61 59.4 59.7 

 ta
u

 

P
E

T
 

 

SVC 65.3 55.9 53 53.9 71.9 69.6 64.7 65.4 

RF 64.9 57.9 50.4 52.1 68.7 64.8 61.9 62.3 

XGB 64.2 57 52 53.2 68.4 64.5 62.2 62.6 

 

M
R

I 

SVC 59.5 52.5 50.2 51.1 68.2 64.8 62.8 63.2 

RF 63.3 56.8 49 50.5 69.2 66.4 62.2 62.4 

XGB 62 56.8 49.2 51 68.7 65.4 62.8 63.2 

 A
m

y
lo

id
-β

 P
E

T
 

 &
 ta

u
 P

E
T

 

SVC 67.1 61.7 54.8 56.5 73.8 73.8 65.6 66.4 

RF 64.9 59.1 51.6 53.6 72.3 70.2 65.1 65.9 

XGB 64.2 56.4 51.5 52.7 70 66.7 63.7 64.3 

 A
m

y
lo

id
-β

 P
E

T
 

 &
 ta

u
 P

E
T

 

&
 M

R
I 

SVC 71.5 66.5 58.5 61.2 75.9 73.6 68.7 70.0 

RF 70.7 64.3 51.2 53.6 77.7 76.6 70.3 71.8 

XGB 69.9 62.9 55 57.3 75.6 73.1 68.5 69.7 
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 M
o

d
a

lity
 

 C
la

ssifier 

MCI/AD CN/AD 

ACC PRE REC F1 ACC PRE REC F1 

 a
m

y
lo

id
-β

 

P
E

T
 

 

SVC 78.1 71 68.2 69.3 90.9 84.6 78.5 81.1 

RF 78.1 71.4 65.5 67.1 89.6 81.6 76 78.4 

XGB 75.9 67.7 64.7 65.7 89 80.5 73.9 76.6 

 ta
u

 

P
E

T
 

 

SVC 77.5 70.2 66.5 67.8 89 80.9 73.1 76.1 

RF 79.1 72.9 68.2 69.8 92.2 89.2 79.2 83.1 

XGB 75.9 68.1 66.8 67.3 89.9 83.1 75.4 78.4 

 

M
R

I 

SVC 76.4 66.8 64.8 65.6 92.1 86.3 80.8 83.2 

RF 80.3 73.3 67.4 69.3 92.7 87.6 82.4 84.7 

XGB 79.2 71.2 67.7 69 91 84.6 77.1 80.2 

 A
m

y
lo

id
-β

 P
E

T
 

 &
 ta

u
 P

E
T

 

SVC 77 68.8 64.9 66.1 92.5 89.4 79.9 83.6 

RF 77 68.8 63.4 64.8 91.2 87.7 75.6 80 

XGB 75.9 67.1 64.1 65.1 90.6 84.4 76.1 79.4 

 A
m

y
lo

id
-β

 P
E

T
 

 &
 ta

u
 P

E
T

 

&
 M

R
I 

SVC 82.4 76.6 69.5 71.8 93.3 88.9 79.4 83.2 

RF 81.7 76.9 65.9 68.4 90.6 80.5 74 76.7 

XGB 80.3 73 65 67 91.8 86.4 73.3 77.9 

CN: Cognitively normal, MCI: Mild cognitive impairment, AD: Alzheimer’s disease  

ACC: Accuracy, PRE: Precision, REC: Recall, F1: F1-score 

Amyloid-β PET: SUVR values with AV45 tracer. Tau PET: SUVR values with AV1451 

tracer. MRI: Cortical thickness 
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Figure 3.3 Classification F1-score before and after feature selection (FS) using two machine learning models, 

SVC and XGB, for different classification scenarios including CN/MCI/AD, CN/MCI, MCI/AD, and 

CN/AD; (a) Single modality; amyloid PET, (b) Multimodality; tau and amyloid PET, (c) Multimodality; tau 

and amyloid PET and MRI 

Next, Figure 3.4 compares the individual modality and multimodality results. In the 

single modality classification, tau PET has higher scores, specifically in the CN vs. MCI 

case. This proves the effectiveness of tau PET compared to amyloid PET and MRI in mild 

cognitive impairment diagnosis, which conforms with previous studies [21]. Generally, 

multimodal data enhances the scores, which is more notable when feature selection is 

applied. 
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Figure 3.4 Classification scores for single-modal and multimodal scenarios after feature selection; (a) 

Accuracy, (b) Precision, (c) Recall, (d) F1-score 

To investigate the effect of age, gender, APOE e4, and education on the classification 

performance, we added them to the model variables and repeated the experiments using 

the best-performing model and top regional features. Figure 3.5 presents the classification 

scores with and without the covariates age, gender, APOE4, and education. In most cases, 

the classification scores increased. The binary classification cases, MCI/AD and CN/AD, 

experienced the highest performance improvement which can be due to the higher 

interclass variance of covariates such as age for these classes. On the other hand, the scores 

for the three-class classification case, CN/MCI/AD, remained almost unchanged, which 
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can be due to the lower interclass variance of age between the CN and MCI classes and 

also the more complex nature of the multiclass classification task. 

 

Figure 3.5 Classification scores with and without the covariates age, gender, APOE4, and education using 

the SVC model and top selected features for classification tasks (a) CN/MCI/AD, (b) CN/MCI, (c) MCI/AD, 

(d) CN/AD. 

3.4.2 Biomarker Profile Grouping Results 

The merit of using the National Institute on Aging—Alzheimer’s Association AT(N) 

framework was examined to address the challenge in ascertaining discrepancies between 

cognitive stage (determined clinically) and biological AD (determined by the classification 

model using biomarkers). Biomarker profiles were thus defined based on 

amyloid/tau/neurodegeneration (A/T/N) positivity and negativity, as summarized in Table 

3.1. The study participants were categorized according to their biomarker signature and 

cognitive stage. The total number of subjects falling under each category is reported in 

Table 3.4. The numbers are reported for two sets of cut-points; {1.11, 1.32, 2.57} and 

{1.11, 1.19, 2.69} for {amyloid SUVRs, tau SUVRs, and MRI cortical thickness}, 

respectively. The former set has a larger cut-point for tau and a smaller cut-point for MRI 

(confident scenario, resulting in less positive cases) compared to the second set 

(conservative scenario, with more positive cases). Based on this table, the inconsistencies 
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between the neuropathologic biomarkers and clinical diagnosis can be investigated 

specifically in challenging categories such as normal AD biomarkers with a dementia 

diagnosis and preclinical AD with cognitively unimpaired diagnosis. In the studied cohort, 

the “normal AD biomarker (A-T-N-) with an AD diagnosis” group includes 2 and 1 

individuals based on the confident and conservative cut-points, respectively. Although this 

inconsistency between the biomarkers and clinical diagnosis might be partially caused by 

inaccurate binary biomarker grouping, it can potentially be one of the contributors to 

misclassification. Another controversial case is related to individuals with “preclinical 

Alzheimer’s disease biomarkers” (A+T+N- and A+T+N+). As seen in Table 3.4, this group 

has a considerable number of subjects in all three cognitive stages making the classification 

task even more challenging. 
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Table 3.4 Grouping the study participants into AT(N) biomarkers categories and their corresponding 

clinically diagnosed cognitive stage (CN, MCI, and AD). The AT(N) groups are defined using two different 

cut-points for each biomarker. Confident cut-points {1.11, 1.32, 2.57} and conservative cut-points {1.11, 

1.19, 2.69} were used for amyloid SUVRs, tau SUVRs, and MRI cortical thickness, respectively. The 

distribution of subjects shows that in each biomarker profile specifically for the preclinical AD group 

(A+T+N- and A+T+N+), subjects can belong to any of the three cognitive stages, which is due to the 

heterogeneity of the disease. This results in a more challenging classification of the cognitive stage. For the 

confident cut-points, more subjects are categorized in the A-T-N- and A+T-N- groups, while for the 

conservative cut-points, groups with more positive biomarkers include a larger number of subjects. This is 

expected as the confident cut-point case has a larger threshold for tau SUVR and a smaller threshold for 

cortical thickness compared to the conservative cut-point case. 

 Clinically diagnosed cognitive stage 

 Confident cut-points  Conservative cut-points 

 CN MCI AD  CN MCI AD 

A- T- N-  82 38 2  56 23 1 

A+ T- N- 41 15 5  23 9 2 

A+ T+ N- 

9 14 12 

 

22 21 16 

A+ T+ N+  

A+ T- N+ 2 3 2  7 2 1 

A- T+ N- 

4 9 0 

 

30 24 1 A- T- N+  

A- T+ N+  

CN: Cognitively normal, MCI: Mild cognitive impairment, AD: Alzheimer’s disease 

A: Aggregated amyloid-β, T: Aggregated tau, N: Neurodegeneration 
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Table 3.5 Grouping the study participants into AT(N) biomarkers categories and their corresponding clinical 

and predicted cognitive stage (CN, MCI, and AD). The AT(N) groups are defined using confident cut-points 

{1.11, 1.32, 2.57} for amyloid SUVRs, tau SUVRs, and MRI cortical thickness, respectively. For the normal 

biomarker profile (A-T-N-), more subjects were predicted as the CN class (compared to the clinical 

diagnosis) due to the dominance of CN subjects in this specific AT(N) group. The Alzheimer’s pathological 

change group (A+T-N-) experienced a similar but less severe situation than the previous group. In the 

preclinical AD group (A+T+N- and A+T+N+), all three cognitive classes include a significant portion of 

subjects for both clinical and predicted cases. 

 Clinical cognitive stage  Predicted cognitive stage 

 CN MCI AD  CN MCI AD 

A- T- N-  137 52 4  160 33 0 

A+ T- N- 66 20 8  71 17 6 

A+ T+ N- 

13 24 18 

 

15 25 15 

A+ T+ N+  

A+ T- N+ 2 4 3  3 2 4 

A- T+ N- 

5 9 0 

 

6 8 0 A- T- N+  

A- T+ N+  

CN: Cognitively normal, MCI: Mild cognitive impairment, AD: Alzheimer’s disease 

A: Aggregated amyloid-β, T: Aggregated tau, N: Neurodegeneration 

 

To further investigate this scenario, we reconstructed the AT(N) biomarker-cognition 

table for the predicted cognitive stage aside from the clinically diagnosed cognitive stage. 

Table 3.5 represents the results for the clinical and predicted diagnosis side by side. It 

should be noted that here we used a different case study than Table 3.4. As can be seen 

from the results, for the normal biomarker group (A-T-N-), all dementia subjects and some 

of the MCI subjects were misclassified as the CN group (false negative). A less severe 

outcome is seen for the AD pathological change group (A+T-N-), where some AD and 
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MCI subjects were misclassified as CN. As for the challenging preclinical AD group 

(A+T+N- and A+T+N+), a clear conclusion cannot be drawn solely from Table 3.5. Thus, 

a classification confusion matrix was constructed for the specific case of preclinical AD, 

as shown in Table 3.6. From this table, it is clear that many CN subjects were misclassified 

as MCI, and a large number of AD subjects were misclassified as MCI. 

Table 3.6 Classification confusion matrix for the AT(N) preclinical AD group (biomarker profiles A+T+N- 

and A+T+N+). For the CN class (true label), a significant portion of subjects (6 out of 13) was classified 

(predicted label) as MCI and AD, which can be related to those preclinical AD individuals that have not yet 

advanced to AD. On the other hand, a considerable number of AD subjects (true label) were classified 

(predicted label) as MCI and CN, which could belong to those AD subtypes with a different pattern and less 

severe biomarker levels. Overall, the classification scores for this preclinical AD category are: 

accuracy=56.4% , precision=57.3% , recall=56.4% , f1-score=55.5% . 

 

True/Pred CN MCI AD 

CN 7 4 2 

MCI 7 14 3 

AD 1 7 10 

 

As described in this study, one challenge in the classification problems is biomarker 

insufficiency. This may result in a disconnection between biomarkers and clinical 

diagnosis to some extent. Studies revealed that almost 30% of clinically unimpaired elderly 

participants have AD in postmortem examinations or have abnormal amyloid deposition 

[42], [74]. In our study, in one of the scenarios (Table 6), 6.5%-16% (9-22 individuals) of 

the CN group have preclinical AD with abnormal amyloid and tau pathology for the two 

cut-point levels, as seen in Table 6. It is anticipated that the classification model classifies 

some of these individuals as MCI or AD groups since both AD-specific biomarkers 
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(amyloid and tau) are abnormal in this case (false positive). This was confirmed in Table 

8, where almost half of the CN subjects were misclassified as MCI and AD. Moreover, for 

the same preclinical AD group, a large number of AD subjects were misclassified. This 

can be explained by the heterogeneity of AD, where some AD subjects with less severe 

biomarkers are predicted by the model as non-AD and vice versa. The results proved the 

preclinical AD subjects to be one of the most challenging groups for the model, with a 

classification accuracy of 56%, which is lower than the overall accuracy of 65% for all 

subjects of the scenario presented in Table 7. These outcomes were expected since the 

preclinical biomarker profile includes subjects in all three cognitive stages which is due to 

the heterogeneity of the disease and the lack of sufficient biomarkers required for a more 

accurate delineation of the classes. Similarly, the “normal AD biomarker” (A-T-N-) and 

“non-Alzheimer’s pathologic change” (A-) groups are also susceptible to misclassification 

as they have non-AD-specific biomarkers, but some are labeled as MCI (AD prodromal 

stage) and AD in the ADNI dataset. It has been shown in other studies that 10% to 30% of 

clinically diagnosed AD cases do not have AD at autopsy or have normal AD biomarkers 

[42], [74]. In the ADNI cohort used in our study, 10-20% of subjects were detected with 

the described condition. In the classification process, the normal biomarkers are likely to 

predict a cognitively normal stage rather than AD (false negative). These results can be 

explained by the fact that the clinical diagnosis and cognitive labeling practices are 

generally based on symptoms and are independent of the biomarkers. The outcomes reveal 

the insufficiency of the available biomarkers in making an accurate prediction of the 

clinically defined cognitive stage. 
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4. TRANSFER LEARNING 

4.1 Introduction 

In this chapter, a transfer learning framework is presented for building classification 

models for a target dataset with a limited amount of labeled data. For this purpose, a dataset 

with a sufficient amount of data is used as the source for transferring knowledge. The 

proposed approach uses the boosting mechanism to penalize source instances with different 

distributions than the target data. The framework is built on top of the GBM algorithm, and 

the residuals of the GBM base learners are used for defining weights for the source and 

target instances. A detailed description of the proposed algorithm is presented. To evaluate 

the effectiveness of the model, a set of experiments are conducted. The model performance 

is compared to two baseline scenarios where a model is trained solely based on either the 

source data or the target data. The results support the satisfactory performance of our 

boosting-based transfer learning model for multimodal multiclass classification in a source 

and target domain setup with different distribution of feature and label spaces. 

4.2 Data domains for transfer learning 

In the transfer learning scenario, if the target domain does not include any label 

information, it is known as transductive learning, while if labeled data is available, the 

problem is referred to as inductive transfer learning [43]. Transfer learning approaches can 

also be explained based on the degree of consistency between the target and source 

domains. Let XS and XT be the feature space of the source and target domains, and YS and 

YT be the label spaces, respectively. The subscripts S and T refer to the source and target 

domains. The data of the two domains may vary in different aspects. When the feature 
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spaces or the label spaces are different (XS ≠ XT, YS ≠ YT), the problem is known as 

heterogeneous transfer learning. In contrast, homogeneous transfer learning is the case 

when the source and target domains have the same features and labels [26]. For instance, 

in the AD classification, if different regional features or different modali ties are used for 

the source and target domains, we are dealing with a heterogeneous transfer learning 

problem. Alternatively, the feature spaces could be the same, but their marginal distribution 

can be different (P(XS) ≠ P(XT)). Some studies only try to mitigate this discrepancy 

between the marginal distributions, which is known as sample selection bias [75], [76]. As 

an example, a medical dataset may only include completely healthy subjects, while another 

dataset might have a minimum requirement of cognitive concern even for the cognitively 

normal group. Similarly, for the AD group, different datasets may differ in the severity of 

the biomarkers and the disease progression. These situations can lead to a shift in the 

distribution of the input data. 

The other transfer learning scenario is when the source and target domains have 

different conditional probability distributions (P(YS|XS) ≠ P(YT|XT )). This condition is 

known as context feature bias. In this case, given identical input features, the target variable 

differs for the two domains. In the AD context, subjects with similar biomarkers may be 

mapped to different diagnosis groups due to various reasons. This can be partially due to 

the subjective procedure of data annotation and also heterogeneity of the disease, which 

can be explained by the AD subtypes and the risk and protective factors. For instance, in 

an AD group, younger subjects tend to have different levels and patterns of biomarkers 

than older ones, and if age is not considered, those subjects might be mapped to the wrong 

cognitive group.  
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Besides the marginal and conditional probability distributions of the input X, there 

can be a mismatch between the class space for the source and target domains (YS ≠ YT). 

The label space of the two domains may vary in terms of the number of classes and the 

class labels themselves. In our study, the source domain might be dealing with a binary 

classification between the CN and AD groups, while the target domain may focus on a 

multiclass classification or a binary classification with different labels such as early MCI 

and late MCI. The other scenario is when the data is unbalanced between the two sources 

resulting in a disparity between the probability distribution of the labels (P(Ys) ≠ P(YT)). 

In the ADNI dataset, there is a lower number of AD subjects compared to CN and MCI, 

while the Mount Sinai dataset has balanced AD and CN but more MCI subjects. In this 

study, the feature space of the two datasets is the same, while their marginal and conditional 

distributions can be different. As for the label space, there is a mismatch between the class 

labels and their distributions in some scenarios.  

4.3 Data  

4.3.1 Participants 

For our analysis, the clinical data were obtained from two datasets. For the target 

domain, the participants are part of the 1Florida Alzheimer's Disease Research Center 

(ADRC) in a 5-year study since 2015 at the Mount Sinai Medical Center. The number of 

subjects for each group of CN, MCI, and AD in this dataset is 53, 141, and 45, respectively. 

As part of the 1Florida ADRC baseline analysis, a wide range of neuropsychological and 

clinical tests were performed, as well as neuroimaging studies such as structural MRI and 

PET/CT scans to measure fibrillar amyloid plaques. Each participant underwent clinical 
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assessments, including the Clinical Dementia Rating (CDR) and the Mini Mental State 

Examination (MMSE). The neuropsychological examination also incorporates the Hopkins 

Verbal Learning Test-Revised (HVLT-R). For each participant, structural MRI was 

acquired at Mount Sinai Medical Center using a Siemens Skyra 3T MRI scanner. The 

FreeSurfer software was used for brain segmentation using a 3D T1-weighted sequence 

(MPRAGE) with isotropic resolution of 1.0 mm. A 3D Hoffmann brain phantom was used 

for PET scan acquisition. PET tracer [18-F] florbetaben 300 MBQ was infused 70-90 

minutes before scanning. Each subject was scanned on a Siemens Biograph 16 PET/CT 

scanner (55 slices/frame, 3 mm slice thickness, 128 × 128 matrix). The scans were then 

transformed to a 128 × 128 × 63 dimension with the size of 0.21 × 0.21 × 0.24 cm. 

On the other hand, the Alzheimer's Disease Neuroimaging Initiative (ADNI) database 

(http://adni.loni.usc.edu) was used as the source domain. ADNI was launched in 2003 as a 

public-private partnership, directed by Principal Investigator Michael W. Weiner, MD. The 

primary objective of ADNI has been to test whether serial MRI, PET, other biological 

markers, and clinical and neuropsychological assessments can be combined to measure the 

progression of MCI and early AD. For up-to-date information, see http://www.adni-

info.org. The participants' demographics and Mini-Mental State Examination (MMSE) 

scores for ADNI 3 cohort used in this study are given in Table 4.1. The modalities MRI 

and amyloid PET (agent: 18F-AV45) were included in the analysis. The T1 weighted MRI 

scans have gone through preprocessing, gradient wrapping, scaling, shading artifact, and 

inhomogeneity corrections. For skull stripping and cortical and subcortical segmentation 

of the T1 images, the FreeSurfer package was used. The segmented MRI scans were then 

co-registered with the florbetapir scans to measure the volume-weighted average of 
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amyloid deposition in regions of interest and compute the standardized uptake value ratio 

(SUVR). Besides these neuroimaging biomarkers, AD risk and protective factors, 

including age, gender, APOE4, and education, are also used as independent variables for 

each subject. These variables, when combined with the biomarkers, can help with the 

disease heterogeneity challenge. 

Table 4.1 Participant demographics and mini-mental state examination (MMSE) score for different 

diagnosis groups of the ADNI3 cohort. 

Groups Subject (f/m) Age (year) 

Education 

(year) MMSE 

CN 277(153/124) 71.80±5.70 16.67±2.47 28.63±2.12 

MCI 378(155/223) 71.26±7.66 16.25±2.61 26.87±4.20 

AD 67(26/41) 73.41±8.78 16.43±2.35 22.37±2.39 

 

4.3.2 MRI artifact restoration 

One of the important preprocessing steps for the Mount Sinai dataset was MRI 

shading artifact correction. Shading artifact occurs due to low signal intensity in some parts 

of the image. Some causes of signal intensity artifact include non-uniform excitation in 

some of the nuclei, improper coil positioning and tuning, and magnetic field 

inhomogeneity. Artifacts can affect the interpretation and diagnostic quality and should be 

addressed before further analysis [77]. To compensate for the shading artifact, bias field 

correction is implemented. Also, the effect of artifact correction on the Grey Matter (GM) 

and White Matter (WM) is studied. 
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4.3.2.1 Bias field correction 

Two experiments have been conducted using the Statistical Parametric Mapping 

(SPM) tool. First, the whole image went through the SPM bias field correction. For a 

sample T1 MRI scan, Figure 4.1 shows the original image, bias field, SPM corrected image, 

and the corrected regions. The corrected regions are the voxel-wise subtraction of the 

original image and the corrected one. As seen, the most affected regions are the top and 

bottom of the image. Moreover, some other parts of the image are also affected. The effect 

of these changes on the GM and WM volumes will be discussed in the next section. 
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Figure 4.1 Bias field correction using SPM 

The bias field correction can be limited to only the top and bottom portions of the 

image since the concerned shading artifact is mainly in those regions. For this purpose, the 

bias field and correction images from the previous step can be used. Using an edge 

detection operator, the desired affected regions (top and bottom) are filtered to create mask. 
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Then, using a Gaussian filter with a standard deviation of ϭ=8, the edges are smoothened, 

as shown in the figure. The process of creating the mask is shown in Figure 4.2. 

 

Figure 4.2 Creating a Gaussian mask for top and bottom shading correction 

Next, the gaussian mask was used to implement bias field correction on specific 

regions of the image. The resulting corrected image and also the corrected regions (voxel-

wise subtraction of the original image and the corrected one) are illustrated in Figure 4.3. 

As seen, the image is just corrected in the top and bottom regions, and other parts are intact. 

 

Figure 4.3 Bias field correction using Gaussian mask 

4.3.2.2 Segmentation 

In this section, the effect of bias field correction on GM and WM segmentation is 

investigated. Figure 4.4 presents the GM, WM, and CSF segmentation of the original 

images (before correction) using SPM.  
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Figure 4.4 Gray matter (top), White matter (middle), and Cerebrospinal fluid (bottom) segmentation using 

SPM. 

Next, the segmentation is accomplished for the corrected images with and without a 

mask, and the results are shown in Figure 4.5. The most noticeable correction can be seen 

in region C (bottom), where the GM and WM are restored in the corrected images 

compared to the original image. Moreover, some other differences between the original 

and corrected images can be identified as marked in regions A and B. For example, in 

region A, the GM volume is lower, and the WM volume is higher in the corrected image 

without a mask (Figure 4.5 (b)) compared to the original one (Figure 4.5 (a)). In contrast, 
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in the same region A, the GM volume in the corrected image with mask (Figure 4.5 (c)) is 

the same as the original image since, in this approach, that region of the image was 

intentionally left untouched. 

          (a)                (b)     (c) 

Figure 4.5 GM and WM segmentation for (a) the original image, (b) corrected without mask, and (c) corrected 

with mask. 

However, for region B, the GM volume is higher for the corrected image (b) than the 

original image (a). The ratio of WM/GM volume for the original and corrected images is 

0.8060, 0.8232, and 0.8300, respectively.  

In sum, if shading artifact occurs in specific regions, the bias field correction can only 

be implemented in those regions. The effectiveness of this correction can be investigated 

using the WM and GM segmentation performance and the WM/GM contrast.  The contrast 

can be calculated as follow:  

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
(mIWM – mIGM)

( mIWM + mIGM) 
×100  (−) 
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where mIWM and mIGM are the mean intensity of white matter and gray matter. For a 

sample MRI slice, the contrast for the original image and the first and second corrected 

scenarios is 0.4260, 0.4524, and 0.4400, respectively. 

The contrast alone cannot be a comprehensive measure of the GM/WM segmentation 

performance. This is because the bias field correction not only changes the voxels 

intensities but also changes the volumes and GM/WM borders. Thus, although the contrast 

of the SPM corrected MRI is the highest, it cannot be concluded that this approach provides 

the best segmentation performance. One solution is that the segmentation results are 

visually investigated by experts. The other point is that the defined GM/WM contrast will 

provide a single measure for the whole image. However, after the correction, the image 

contrast may be improved in some regions but deteriorated in other regions. Thus, it may 

be beneficial to compute the contrast in small patches of the image. For this purpose, a 3×3 

contrast operator is defined and convolved with the image. The resulting matrix can be 

called the contrast matrix. Figure 4.6 illustrates the contrast matrix of the original and the 

corrected images. 

 

             (a)              (b)              (c) 

Figure 4.6 The contrast matrix for (a) the original image, (b) the corrected image without mask, and (c) the 

corrected image with mask 
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The relative contrast (subtraction) of the three scenarios is calculated and represented 

in Figure 4.7. As seen, the SPM is affecting the contrast all over the image, while the 

SPMM is just focusing on the top/bottom regions. 

 

Figure 4.7 Relative contrast for the original and corrected images 

Finally, the resulting corrected MRI and the original MRI are shown in Figure 4.8 for 

one MRI slice of three different subjects. 
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             (a)            (b)                        (c) 

Figure 4.8 The bias field correction results for three subjects, (a) the original image, (b) the corrected image 

without mask, and (c) the corrected image with mask 

4.4 Method: The proposed transfer learning approach 

A source domain can contribute to a target domain learner directly through 

transferring the data. This category of transfer learning is known as instance-based transfer, 

which is the base of the approach of this study. Initially, the source data is added to the 

training set since the labeled target data is usually not enough to train an effective model. 

The main idea is to take advantage of the same-distribution portion of the source data and 

gradually fade the effect of the misleading part with a different distribution. To do so, we 

present an extended version of GBM for transfer learning (TrGB). GBM, which was first 

introduced in [78] by J. H. Friedman, is a boosting-based learning algorithm that combines 
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a sequence of base learners. Each base learner focuses on the error (residuals) of the 

previous learner, and this process is repeated until the error is less than a predefined 

threshold. A final prediction is made based on the combination of the response of all 

learners. The overall model variance is low because of using simple base learners, and a 

low bias is achieved through the boosting and ensembling mechanism. To extend the GBM 

idea to transfer learning, an instance weighting mechanism is added to penalize those 

source domain instances with a different distribution than the target instances. The instance 

weights are a function of the power of a base learner and the residual of the instance 

prediction using the model of the previous step. If an instance of the source domain is 

misclassified, based on its residual, a weight smaller than 1 is assigned to it so that its effect 

on the next iteration will reduce. The structure of the presented transfer learning approach 

is summarized in Figure 4.9. 

 

Figure 4.9 The structure of the proposed gradient boosting-based transfer learning approach (TrGB) 
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Algorithm1: TrGB 

Input: Labeled source data: {(𝑥𝑖,𝑦𝑖)}𝑖=1
𝑚 , and labeled target data {(𝑥𝑖, 𝑦𝑖)}𝑖=𝑚+1

𝑛 . 

A differentiable loss function 𝐿(𝑦𝑖, 𝐹(𝑥)). 
The number of iterations T. 

a. Initialize the model as 𝐹0(x) = arg𝑚𝑖𝑛𝛾∑ 𝐿(𝑦𝑖, 𝛾)
𝑛
𝑖=1   

b. For t=1 to T: 
1. Calculate the pseudo-residuals: 

𝑟𝑖𝑡 = −[
𝜕𝐿(𝑦𝑖 ,𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]
𝐹(𝑥𝑖)= 𝐹𝑡−1(𝑥𝑖)

for i=1, …, n.  

 

2. Calculate the performance of each weak learner (λ) based on the residuals of target 
domain data: 

[𝑟𝑡−𝑎𝑣𝑔]𝑖=𝑚+1

𝑛
  

λ =
1

2
log (

1− 𝑟𝑡−𝑎𝑣𝑔
𝑟𝑡−𝑎𝑣𝑔

) 

 
3. Calculate weights for both source and target domain instances: 

𝑤𝑖𝑡 = 1                 𝑖𝑓 (
1

2
− 𝑟𝑖𝑡)λ > 0 

𝑤𝑖𝑡 = {
𝑒−2

(𝑟𝑖𝑡−
1

2
)λ        for i = 1,… ,m 

𝑒2
(𝑟𝑖𝑡−

1

2
)λ     for i = m + 1,… , n

       𝑖𝑓 (
1

2
− 𝑟𝑖𝑡)λ < 0  

  
4. Fit a base learner (e.g., decision tree) to pseudo-residuals using weighted source and 

target domain instances {𝑤𝑖𝑡𝑥𝑖, 𝑟𝑖𝑡}𝑖=1
𝑛   i = 1, …, m (source); i = m+1, …, n (target). 

5. Optimizing the following equation and determining the corresponding 𝛾𝑚: 
 

𝛾𝑚 = arg𝑚𝑖𝑛𝛾∑ 𝐿(𝑦𝑖, 𝐹𝑚−1(x𝑖) + 𝛾ℎ𝑚(𝑥𝑖))
𝑛

𝑖=1
 

6. Updating the model: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥)+ 𝛾𝑚ℎ𝑚(𝑥) 

 

The framework of the proposed TrGB model is presented in Algorithm 1. The 

algorithm is built on top of the original GBM structure with proper modifications to enable 

transfer learning. As seen, the input data includes the source data (i = 1, …, m) and the 

labeled part of the target data (i = m+1, …, n). Since the loss gradient plays a crucial role 

in GBM, a differentiable loss function is required. For the binary classification problem, 

we used negative log-likelihood as the loss function as follows 
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−∑ 𝑦𝑖 log(𝑝) + (1 − 𝑦𝑖)log (1 − 𝑝)
𝑛

𝑖=1
 

(4-2) 

where yi is the actual class label for the i th instance and p is the predicted probability. In 

step a, the model is initialized with a γ value that minimizes the loss function. To do so, 

the derivative of the loss function is calculated, which is equal to the residuals (p-yi) for 

the log-likelihood loss function. Thus, for all instances, the initial model would be the mean 

value of yi in terms of probabilities and 0.5log((1+yavg)/(1-yavg)) in terms of log(odds) as 

shown in the original GBM algorithm [78]. In the next step, for the first decision tree (t=1), 

pseudo-residuals (rit) are calculated for both source and target instances using the gradient 

of the loss function as follows: 

𝑟𝑖𝑡 = −[
𝜕𝐿(𝑦𝑖 , 𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]
𝐹(𝑥𝑖)= 𝐹𝑡−1(𝑥𝑖)

 
(4-3) 

where rit is the pseudo-residuals for the ith instance and tth iteration tree. For the loss 

function used in this study, pseudo-residuals are simply the difference between the 

predicted probability and the true values (yi-p). Next, the effectiveness of the t th learner 

denoted by λ is determined as follows 

λ =
1

2
log (

1 − 𝑟𝑡−𝑎𝑣𝑔
𝑟𝑡−𝑎𝑣𝑔

) 
(4-4) 

where rt-avg is the average of the absolute value of residuals over the target data instances. 

Since λ is defined as a measure of the goodness of a learner, the source domain instances 

are not included in it. This equation maps the value of r t-avg, which is between [0, 1], into 

values between [-ꝏ, +ꝏ]. Lower values of rt-avg close to 0 are associated with large negative 

values of λ, and values of rt-avg close to 1, correspond to larger positive values of λ. Thus, 

a good model will have low rt-avg and high positive λ. 
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Using the λ parameter and the residuals, weight coefficients are calculated and 

assigned to the instances. For a positive value of λ (powerful model) and an instance with 

a small residual (correctly classified), the weight of the instance will not be changed for 

the next iteration. However, for a positive value of λ, and a misclassified instance, a 

different weight is assigned to the instance depending on the fact that the data is from the 

source or target domain. If the misclassified instance comes from the target dataset, a large 

weight is given to the instance in order for the model to strengthen its impact on the model 

for the next iteration. On the other hand, a misclassified instance from the source data is 

given a lower weight to have a more negligible effect on the model. The weights equation 

is given below. 

𝑤𝑖𝑡 = {
𝑒−2(𝑟𝑖𝑡−

1
2
)λ        for i = 1, … ,m 

𝑒2(𝑟𝑖𝑡−
1
2
)λ    for i = m + 1,… , n

       𝑖𝑓 (
1

2
− 𝑟𝑖𝑡)λ < 0 

(4-5) 

where wit is the weight of the ith instance in the tth iteration. The reasoning for such a 

weighting mechanism is that a misclassified instance from the source domain is likely to 

have a different distribution than the target data, and its effect needs to be minimized. The 

equations in step b.3 of the algorithm implement the described weighting procedure. 

The next steps are similar to the original GBM algorithm. First, a base regression 

learner such as a decision tree is trained using weighted source and target instances as the 

input data and pseudo-residuals as the target variable. This learner will try to fix the errors 

(residuals) of the previous tree by minimizing the loss function, as shown in step b.5 of the 

algorithm. Finally, the model is updated using the new predictions of the regression tree 

(step b.6). The whole process will be repeated for the next value of t until it reaches the 

maximum value of iterations or until the loss is lower than a predefined threshold. 
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4.5  Results and Discussion 

To evaluate the effectiveness of our transfer learning framework, a set of experiments 

was conducted on the Mount Sinai data as the target domain and ADNI as the source 

domain datasets. The regional cortical thickness from MRI and SUVR values from amyloid 

PET was used as the feature set for our predictive models. Two single modality scenarios 

for MRI and amyloid PET and one multi-modality scenario for the combination of MRI 

and PET have been tested. As for the clinical diagnosis groups, the Mount Sinai dataset 

includes Normal, PreMCI Clinical, PreMCI Neuropsychology, non-amnestic MCI, Early 

MCI, Late MCI, and Dementia. In this study, four class labels including Normal, Early 

MCI, Late MCI, and Dementia from the Mount Sinai dataset and three class labels 

including Cognitively Normal, MCI, and AD from the ADNI dataset were used. For the 

label space, two main scenarios were investigated. First, the same label spaces were used 

for both source and target domains. The purpose of this test was to use the knowledge in 

the source model for the same classification problem (e.g., CN/MCI, or CN/AD) in the 

target domain. In the second step, the knowledge was transferred between different label 

spaces. More specifically, the information from the CN vs. AD classification task from the 

source domain (ADNI) was used for the Early MCI vs. Late MCI classification in the target 

domain. As explained, this is one of the scenarios of the transfer learning that is useful here 

as the amount of labeled data for the Early MCI, and Late MCI groups is too limited for 

building a model from scratch. In order to report the classification metrics, a 5-fold cross-

validation was implemented. Since the datasets are imbalanced, besides accuracy, other 

evaluation metrics, including Precision, Recall, and F1-score, are also calculated and 

reported. 



61 

 

For comparison purposes, a baseline case is defined where no information from the 

source data is used, and a model is learned solely based on the labeled data from the target 

domain. In another case, we assumed that there are no labeled instances from the target 

domain, and a model is trained on the source data and tested on the target data. The final 

scenario uses the proposed TrGB approach, which is expected to outperform the other two 

cases. As a first step, an experiment is conducted on the ADNI dataset without making use 

of transfer learning. The classification scores for the three tasks of binary and multiclass 

classification using multimodal data are presented in Table 4.2. It should be noted that the 

target data is not included in this experiment. As expected, the most challenging tasks 

remain the multiclass classification and the binary classification of the CN/MCI cases. 

Table 4.2 Classification scores for three classification tasks using the ADNI dataset 

 CN-AD CN-MCI CN-MCI-AD 

Accuracy 94.5 65.3 56.6 

Precision 92.9 59.3 61.1 

Recall 91.8 58.7 54.1 

F1-score 92.3 58.5 56.6 

 

Table 4.3 to Table 4.5 compare the TrGB and baseline cases for the AD diagnosis 

and for the three modality scenarios. As seen, while TrGB could improve the classification 

scores for all three situations, it has been most effective for the MRI modality case. The 

classification accuracy of the TrGB is 7%, 1.3%, and 2.8% higher than that of the baseline 

using MRI, PET, and multimodal data, respectively. When using the source model for 

target testing, the scores are slightly lower than those of the baseline. This situation can be 

compared with the CN/AD case of Table 4.2 where the source model was tested on the 
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source data. It can be concluded that the scores of the CN/AD classification using the 

source model decreased by almost 10% when the target domain was used as the test data. 

This shows the detrimental effect of data distribution shift between the source and target 

domains on the classification performance.  

Table 4.3 CN/AD classification scores for the baseline, source-model, and TrGB scenarios for the MRI 

modality 

 Baseline Source-model TrGB 

Accuracy 72.0 70.3 78.7 

Precision 70.9 68.7 77.8 

Recall 71.1 70.4 78.3 

F1-score 71.0 71.3 78.0 

 

Table 4.4 CN/AD classification scores for the baselines, source-model, and TrGB scenarios for the PET 

modality 

 Baseline Source-model TrGB 

Accuracy 80.0 78.7 81.3 

Precision 79.2 78.2 80.8 

Recall 78.9 78.1 80.0 

F1-score 79.0 79.3 80.3 

Table 4.5 CN/AD classification scores for the baselines, source-model, and TrGB scenarios using the 

multimodal data 

 Baseline Source-model TrGB 

Accuracy 82.7 80.0 85.3 

Precision 82.0 79.5 84.9 

Recall 81.7 80.6 84.4 

F1-score 81.8 79.6 84.6 
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Table 4.6 and Table 4.7 report the results for the two tasks of MCI and multiclass 

classification. Again, TrGB could improve the scores significantly. More specifically, the 

F1-score of the two tasks increased by 8.3% and 9.3%, respectively. It can also be seen that 

the source model has the worst performance when the MCI subjects are involved in the 

analysis. This outcome suggests that the MCI group of the two datasets has a more 

significant discrepancy in terms of marginal and conditional distributions. Figure 4.10 

summarizes the results through F1-scores of the three methods (baseline, source-model, 

and TrGB) for the three classification tasks considered. 

Table 4.6 CN/MCI classification scores for the baselines, source-model, and TrGB scenarios using the 

multimodal data 

 Baseline Source-model TrGB 

Accuracy 75.6 75.2 77.1 

Precision 60.3 42.5 65.9 

Recall 54.9 50.0 61.7 

F1-score 54.6 46.0 62.9 

Table 4.7 CN/MCI/AD classification scores for the baselines, source-model, and TrGB scenarios using the 

multimodal data 

 Baseline Source-model TrGB 

Accuracy 57.4 50.1 61.9 

Precision 56.5 31.6 60.9 

Recall 43.8 30.6 51.9 

F1-score 45.2 30.7 54.5 

 



64 

 

 

Figure 4.10 F1-score using the three methods, baselines, source-model, and TrGB for the three classification tasks, 

CN/MCI/AD, CN/MCI, and CN/AD, using multimodal data 

Finally, an experiment for the early MCI vs. late MCI classification in the target 

domain was conducted by transferring the knowledge from the CN vs. AD classification 

of the source domain. The TrGB algorithm could enhance the performance of this task 

compared to the baseline. The results prove the effectiveness of the proposed transfer 

learning model for challenging classification tasks where the two classes are very similar, 

and the number of labeled instances is limited (Table 4.8).  

Table 4.8 Early MCI vs. late MCI classification scores for the baselines and TrGB scenarios using the 

multimodal data 

 Baseline TrGB 

Accuracy 57.4 60.4 3 

Precision 46.9 53.2 6.3 

Recall 47.9 52.8 4.9 

F1-score 46.6 52.6 6 

 

While the proposed transfer learning approach can boost the classification 

performance for a target dataset, there are some limitations associated with it. First, this 

approach increases the model complexity, which requires more training time and resources. 
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Also, since the model is based on GBM, the process of creating base learners is sequential, 

which is computationally intensive. For faster implementations and superior performance, 

alternative algorithms, including Extreme Gradient Boosting (XGB) and Light Gradient 

Boosting Machine (Light GBM), could be used. Another important circumstance in 

transfer learning techniques is negative transfer, where the transferred information from 

the source domain has a detrimental effect on the performance of the target  model. In the 

proposed model, the defined weighting scheme aims to transfer as much information as 

possible from the source domain while avoiding negative transfer at the same time. Thus, 

selecting appropriate weights is essential to make a balance between these two conflicting 

requirements. 
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5. LONGITUDINAL PREDICTION OF AD USING RECURRENT 

NEURAL NETWORKS 

5.1 Introduction 

In addressing the barriers impeding AD research, scientists have proposed statistical 

and machine learning techniques for robust diagnosis. Until recently, most efforts were 

dedicated to modeling the disease at a single time point using cross-sectional datasets [79], 

[80]. However, these approaches could not provide enough information about the future 

status of patients. At later stages of AD, where the brain has already suffered from atrophy, 

treatment would be too late to be effective. Early diagnosis of the disease allows for early 

intervention and facilitates development of effective healthcare services. This initiates a 

new line of research aiming at enhancing the effect of treatment by predicting the onset of 

the disease before the occurrence of acute neurodegeneration. The objective of these 

studies is to leverage temporal information from longitudinal data to model the progression 

of AD. Multiple classification and regression models have been proposed to predict disease 

progression and level of disease severity. The feature space is either based on the 

information available at baseline or a concatenation of features from multiple previous time 

points [81]-[84]. The integration of features into a single observation window creates a 

high-dimensional input space which is not only difficult to deal with but also disregards 

temporal connections between consecutive time points [57], [85]. With the gradual nature 

of AD progression, these methods could not efficiently exploit the longitudinal 

information. 

Recurrent Neural Networks (RNNs) were introduced in 1986 and recently gained 

more popularity. Using the inherent correlations of sequential data, RNNs proved their 
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potential in predicting AD-related biomarkers for a future time point. Although effective, 

these studies limit themselves to predicting only a single future interval. This work 

broadened the scope and application of the RNNs by predicting the progression of AD over 

multiple future time points simultaneously. Employing three records of data for each 

subject, the RNN surpassed other machine learning methods not only in estimating the 

categorical variable for a multiclass classification task, but also in assessing the numerical 

value of the AD biomarker. Furthermore, two variations of RNN, GRU and LSTM, are 

investigated for the challenging task of drawing the delineation boundary of subjects in a 

multiclass classification scenario and also for predicting the trajectories of cognitive scores 

for the next two years. 

5.2 Methodology 

5.2.1 Recurrent Neural Network (RNN) 

Processing sequences of data, RNNs have the capability to effectively incorporate 

temporal dependencies in longitudinal data. Figure 5.1 illustrates an RNN with data 

sequences of k time steps. At each time point (t i), besides the input features (Xti), the 

internal state (memory) of the cell from the previous time step (h t(i-1)) are fed to the cell. 

Thus, unlike feedforward neural networks, RNNs can identify patterns hidden in sequences 

of data. However, due to a lack of long-term memory in basic RNNs, each time point is 

mainly affected by previous intervals in close vicinity. Therefore, they are not capable of 

leveraging long-term relationships in historical data, and older information tends to fade 

away. This setback is known as “vanishing gradient” in which the network gradually 

forgets older traces. 
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Figure 5.1 Recurrent Neural Network architecture. 

  

To address this issue, GRU and LSTM-based RNN architectures with the capability 

of capturing long-term memories have been proposed [86], [87]. The structure of LSTM 

and GRU cells as the building blocks of an improved version of RNN is shown in Figure 

5.2. In an LSTM cell, three gates denoted by sigmoid functions (σ) decide whether the 

previous cell state (C), the input (X), and the output (h) need to be passed to the next time 

step. This will make the memorizing capability of the cell more intelligent and durable. 

The following equations describe the operation principle of an LSTM cell. 

𝑓𝑡𝑘 = 𝜎(𝑊𝑓(𝑋𝑡𝑘, ℎ𝑡𝑘−1) + 𝑏𝑓) 

𝑖𝑡𝑘 = 𝜎(𝑊𝑖(𝑋𝑡𝑘, ℎ𝑡𝑘−1) + 𝑏𝑖) 

𝑖̂𝑡𝑘 = 𝑡𝑎𝑛ℎ(𝑊𝑖̂(𝑋𝑡𝑘, ℎ𝑡𝑘−1) + 𝑏𝑖̂) 

𝐶𝑡𝑘 = 𝐶𝑡𝑘−1 ∗ 𝑓𝑡𝑘 + 𝑖̂𝑡𝑘 ∗ 𝑖𝑡𝑘  

𝑜𝑡𝑘 = 𝜎(𝑊𝑜(𝑋𝑡𝑘, ℎ𝑡𝑘−1) + 𝑏𝑜) 

ℎ𝑡𝑘 = 𝑜𝑡𝑘 ∗ tanh (𝐶𝑡𝑘) 

 

 

 

(5-1) 

where tk refers to the kth time step; 𝑋𝑡𝑘, 𝐶𝑡𝑘 , and ℎ𝑡𝑘 represent the input, state, and output 

of the cell at the kth time step; and 𝑓𝑡𝑘, 𝑖𝑡𝑘, and 𝑜𝑡𝑘 are the outputs of the forget, input, and 

output gates. Also, W and b are the weights of the neural networks. 
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In the gating mechanism of GRU, two gates known as reset and update gates 

determine the amount of the current input and output of the previous time step that needs 

to be preserved.  

 

Figure 5.2 The structure of LSTM and GRU cells 

 

Figure 5.3 Heat-map of features used in this study 

With the same notations of 𝑋𝑡𝑘  and ℎ𝑡𝑘 as the input and output of the cell for the kth 

time step, the mathematical equations of a GRU cell are summarized as follows. 
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𝑧𝑡𝑘 = 𝜎(𝑊𝑧(𝑋𝑡𝑘, ℎ𝑡𝑘−1)+ 𝑏𝑧) 

𝑟𝑡𝑘 = 𝜎(𝑊𝑟(𝑋𝑡𝑘, ℎ𝑡𝑘−1) + 𝑏𝑟) 

ℎ̂𝑡𝑘 = 𝑡𝑎𝑛ℎ(𝑊ℎ̂(𝑋𝑡𝑘 ,𝑟𝑡𝑘 ∗ ℎ𝑡𝑘−1) + 𝑏ℎ̂) 

ℎ𝑡𝑘 = (1 − 𝑧𝑡𝑘)∗ ℎ𝑡𝑘−1 + 𝑧𝑡𝑘 ∗ ℎ̂ 𝑡𝑘 

ℎ𝑡𝑘 = 𝑜𝑡𝑘 ∗ tanh (𝐶𝑡𝑘) 

 

 

(5-2) 

where 𝑧𝑡𝑘 and 𝑟𝑡𝑘 are the outputs of the update and reset gates. 

5.2.2 Feature Selection 

Referring to previous studies [59], which shed light on the possible overfitting of 

RNNs on the original feature space, feature analysis, and ranking has been performed on 

the data. Consequently, to address the highly correlated features, L1 feature selection was 

employed to extract the most important features. Using L1 regularization, 25 features with 

the highest variance in the feature space have been selected. The correlation matrix (heat 

map) of the features is illustrated in Figure 5.3. 

5.2.3 Longitudinal AD Prediction using RNN 

The proposed framework uses the memorization capability of the LSTM/GRU cell 

to capture historical dependencies from three records of subjects in order to predict the 

progression of AD at three next future time points. Therefore, a many-to-many RNN 

architecture with LSTM/GRU cells has been developed to carry out two tasks of 

longitudinal multiclass classification and regression.  

The structure of the network for the LSTM case is demonstrated in Figure 5.4. In the 

developed network, the three inputs (𝑋𝑡1 , 𝑋𝑡2𝑎𝑛𝑑 𝑋𝑡3) represent the feature space 

associated with three-time points of M0 (Baseline), M6 (after 6 months), and M12 (after 12 
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months). The information is transferred from one time point to the next one using the cell 

state (C) and output (Y). The outputs  𝑡𝑖 are the Mini-Mental State Examination 

 

 

Figure 5.4 The RNN architecture used to predict the progression of AD using historical data 

Table 5.1 Statistics of the Dataset Used in This Study 

 

 

 

 

 

 

 

(MMSE) score for regression model or status of patients (CN, MCI, and AD) for 

classification model. The time steps  t4 and t5 are associated with the future time points M24 

(24 months after the baseline) and M36 (36 months after baseline). The next section 

discusses the material and experimental results. 

Category 

Subjects 

(f/m) Age Education(y)  MMSE 

AD 

336 

(150/186) 74.93±7.81 15.17 ±2.99 23.18 ± .06 

MCI 

864 

(354/510) 73.03±7.60 15.91±2.85 27.59±1.81 

CN 

521 

(268/253) 74.25±5.79 16.37±2.70 29.06±1.14 
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5.3 Results and Discussion 

5.3.1 Data 

The data used in this study is obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (http://adni.loni.usc.edu/). ADNI was launched in 2003 as a 

public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether structural Magnetic Resonance Imaging 

(MRI), Positron Emission Tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and 

early AD. 

Longitudinal medical records from 1458 subjects (341 CN, 255 EMCI, 529 LMCI, 

and 333 AD) have been incorporated in this dataset. During an 11-year study, each patient 

has been recalled for a follow-up visit every six months. These subjects have undergone 

several medical screening tests including MRI, PET, genetic tests, CSF tests, and cognitive 

impairment assessments. At each visit, an expert monitors the test results and updates the 

diagnosis for the participants. This categorical diagnosis (AD, MCI, NC) is used as the 

label for the multiclass classification experiment proposed in this study and the numerical 

Mini-Mental State Examination (MMSE) scores, an indicator of the AD cognitive 

impairment, with a range of 0-30 is adopted for the regression experiment. Characteristics 

of the dataset used in this study are summarized in Table 5.1. 

5.3.2 Longitudinal Data Preprocessing 

Initially, the data is preprocessed to alleviate any inconsistencies caused by utilizing 

different data modalities and various protocols. Subjects who have participated at all five 
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consecutive intervals including baseline, six months after the first visit (M 06), twelve 

months after the first visit (M12), twenty-four months after the first visit (M24), and thirty-

six months after the first visit (M36) have been considered. In the initial step of the 

experiments, data cleaning [88], [89], mean centering, data 

Table 5.2 Summary Of Multimodal Features Utilized In This Study 

Source Features 

Cognitive 

tests 

Everyday Cognition (ECog) questionnaire 

measurements, FAQ, MOCA, RAVLT, CDRSB 

MRI Ventricular volume, Hippocampus volume, Whole 

Brain volume, Entorhinal Cortical thickness, 

Fusiform, Middle temporal gyrus, ICV 

PET FDG, PIB amyloid, AV45 amyloid 

Genetic APOE4 

Demographic Age, Gender, Education 

CSF Amyloid Beta, Phosphorylated Tau, Total Tau 

Table 5.3 Regression Results 

Algorithm 

M12 M24 M36 Total 

RMSE Corr RMSE Corr RMSE Corr MSE 

Ridge 2.07 0.58 2.66 0.62 2.99 0.63 6.82 

SVR 2.14 0.59 2.86 0.61 3.17 0.58 7.68 

LSTM 1.97 0.63 2.33 0.69 2.54 0.72 5.26 

GRU 1.97 0.63 2.33 0.69 2.54 0.72 5.24 

Ridge + FS* 2.02 0.62 2.67 0.65 2.93 0.65 6.65 

SVR + FS* 2.16 0.60 2.76 0.65 3.26 0.62 7.70 

LSTM + FS* 1.85 0.63 2.25 0.70 2.48 0.70 4.98 

GRU + FS* 1.82 0.63 2.21 0.71 2.44 0.70 4.77 

*Feature selection 
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normalization, missing feature handling, and univariate feature analysis has been 

performed to discard uninformative features. Furthermore, subjects whose medical 

diagnosis are not reported are removed from further analysis. 

5.3.3 Simulation and Results 

This study evaluates the performance of two RNN variations, LSTM and GRU, on 

the ADNI cohort for the two tasks of classification and regression. The experiment 

proceeds with the selection of historical records from subjects at three intervals (baseline, 

M06, and M12) to predict the status of the subjects in three future time points of M12, M24 

and M36. Estimating the MMSE scores of subjects is pursued as a regression problem and 

predicting the diagnosis labels is defined as multiclass classification problem. The data has 

been split randomly to a 75% training set, a 10% validation set, and a 15% testing set. Grid 

search has been utilized to select the best hyperparameters for regression and classification 

networks separately. In order to feed the longitudinal feature space into the RNNs, the data 

has been framed in the tensor form of [samples, time steps, features], which in this case is 

3-time steps of the 532 samples with 34 features involving MRI, PET, Cerebrospinal fluid 

(CSF) and cognitive test scores as provided in Table 5.2. 

The performance of LSTM and GRU, implemented using the Keras deep learning 

library, are compared with state-of-the-art methods. It is worth noting that conventional 

methods cannot incorporate historical records of subjects to enhance prediction accuracy. 

This limitation has been compensated by concatenating all three-historical feature sets. 

Competing methods are then trained on this new feature space to find an individual direct 
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map between the feature space from past intervals with the corresponding future time 

points. 

As regression, RMSE and R-Correlation factor are used as evaluation metrics to 

compare Ridge and SVR from Scikit-learn library with LSTM and GRU, and the Results 

are reported in Table 5.3.  
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Table 5.4 Classification Results 

 

 

 

 

 

 

 

 

 

 

 

 

  

Method 
M12 

ACC PRE REC F1 

SVM 0.66±0.04 0.44±0.05 0.66±0.05 0.52±0.04 

LSTM 0.84±0.10 0.86±0.06 0.84±0.10 0.81±0.16 

GRU 0.61±0.09 0.95±0.00 0.60±0.09 0.74±0.07 

LSTM 

+ FS 
0.88±0.03 0.89±0.02 0.90±0.02 0.89±0.02 

GRU + 

FS 
0.68±0.09 0.95±0.00 0.68±0.09 0.79±0.07 

Method 

M24 

ACC ACC ACC ACC 

SVM 0.61±0.04 0.61±0.04 0.61±0.04 0.61±0.04 

LSTM 0.82±0.12 0.82±0.12 0.82±0.12 0.82±0.12 

GRU 0.37±0.06 0.37±0.06 0.37±0.06 0.37±0.06 

LSTM 

+ FS 
0.87±0.01 0.87±0.01 0.87±0.01 0.87±0.01 

GRU + 

FS 
0.28±0.11 0.28±0.11 0.28±0.11 0.28±0.11 

Method 
M36 

ACC PRE REC F1 

SVM 0.61±0.03 0.38±0.04 0.61±0.03 0.48±0.04 

LSTM 0.80±0.09 0.84±0.06 0.80±0.09 0.78±0.15 

GRU 0.61±0.04 0.98±0.00 0.61±0.04 0.75±0.03 

LSTM 

+ FS 
0.88±0.02 0.87±0.03 0.88±0.02 0.87±0.03 

GRU + 

FS 
0.51±0.08 0.98±0.00 0.51±0.08 0.67±0.04 
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Similarly, the classification problem is defined as the diagnosis of subjects at three 

future time points based on three previous intervals. For the classification task, SVM from 

Scikit-learn library is selected as the competitive alternative to evaluate performance of the 

LSTM and GRU. F-score, precision, recall, accuracy has been utilized as the classification 

metrics and the results are summarized in Table 5.4. 

From Table 5.3 and Table 5.4, it can be observed that the LSTM and GRU on the 

original feature space demonstrate lower performance in comparison to the competitive 

methods in some cases. Incorporating L1 has led to a noticeable improvement in the 

prediction accuracy, which could be associated with the overfitting of networks. Since 

RNNs have a high number of variables and weights, they require a larger number of 

samples for training. The approach investigated in this work employs the L1 feature 

selection to overcome the limited number of samples for training an effective network, 

which can predict the future status of AD subjects using their historical measurements.  
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6. CONCLUSION 

In this dissertation, various machine learning frameworks have been explored for 

multimodal feature engineering and multiclass classification of mild cognitive impairment 

(MCI) and Alzheimer's disease (AD). Moreover, to overcome data shortage in smaller 

datasets, a transfer learning technique has been developed to combine multiple data 

domains with different data distributions. 

A feature selection approach based on information theory-based metrics has been 

proposed for multimodal neuroimaging biomarkers, including amyloid and tau PET SUVR 

values and cortical thickness. A trade-off was made between the relevance and redundancy 

of the attributes using the mutual information metric. The advantage of the proposed 

approach is to incorporate the effect of feature complementarity and redundancy to 

maximize the total amount of relevant information in the feature set. This will also reduce 

the computational burden while preserving the accuracy in the classification and prediction 

results. It is important to note that the redundancy part should not be overweighted since 

highly relevant features can also be partially redundant. This situation was depicted in 

Figure 2.4 for larger values of the coefficient α, where feature relevance is sacrificed for 

even a minor redundancy. 

In the classification part, tau PET modality produced more accurate results than 

amyloid PET and MRI modalities, specifically in the most challenging CN/MCI 

classification (early stage). On the other hand, multimodal scenarios have achieved the 

highest F1-scores in most cases, especially in the critical early stages of the disease. Feature 

selection was most effective in the SVC case, making SVC achieve higher scores compared 
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to RF and XGB in many cases. This was expected as RF and XGB have internal feature 

selection, with less room for improvement. In retrospect, these findings suggest that the 

classification of high-dimensional multimodal datasets would be most accurate when 

feature selection is carried out most effectively, with the relevance of each feature 

quantified through a ranking score metric as proposed in this dissertation. When such 

measures are taken, reducing the dimensionality of the feature space can be accomplished 

while still maintaining high accuracy in the classification results. More specifically, Fig. 9 

(d) showed that the F1-score of the multimodal case with feature selection is up to 5% 

higher than in other scenarios. 

One of the major challenges in the AD diagnosis is the heterogeneity of the disease 

related to the AD subtypes (hippocampal-sparing, limbic-predominant, typical AD). It is 

shown that the AD risk factors as well as the protective factors have a meaningful variance 

among the AD subtypes [90]. As seen in the result section, the inclusion of these covariates 

into the model variables could improve the classification scores. This can be explained 

through the characteristics of different subtypes and the variation of risk factors among 

them. Typical AD subtype cases experience more severe pathology compared to other 

subtypes, while limbic-predominant cases have more typical biomarkers than 

hippocampal-sparing subjects. Since typical AD is more prevalent than other subtypes, if  

the classification model only relies on biomarkers, it might be biased toward this group and 

hence could yield false-negative results for other AD subtypes as they have less severe 

biomarkers and are also less prevalent. Therefore, these other categories of subjects with 

minimal atrophy and non-typical biomarkers might be misclassified as CN and MCI 

classes. At this stage, these risk and protective factors can complement the biomarkers and 
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help to correctly classify these subtypes as the AD group and thus alleviate the complexity 

of the heterogeneity issue. Concerning the risk factors, subjects with typical and limbic-

predominant AD tend to be older than those with hippocampal-sparing AD. On the other 

hand, the hippocampal-sparing category includes fewer APOE4 carriers and highly 

educated individuals compared to other groups. In terms of gender, females are more 

frequent in the limbic-predominant group. 

Since the biomarkers might not be accessible in many situations, clinical diagnosis is 

made solely based on symptoms as ascertained through cognitive tests. The AT(N) 

biomarker framework establishes a biomarker-based definition of AD and emphasizes the 

independence of the biological and clinical definitions of AD, yet it tries to clarify the 

interaction between the two. This can be valuable for in-depth research purposes as well as 

personalized medicine. The AT(N) framework shows that the cognitive stage cannot be 

entirely determined through the AT(N) biomarkers since any particular biomarker profile 

can belong to any cognitive stage. The fact that a wide range of biomarker profiles can 

define a specific cognitive stage is due to the heterogeneity of the disease, which can be 

explained by the subtypes of AD (hippocampal-sparing, limbic-predominant, typical AD). 

Different subtypes have similar amyloid loads; however, tau and neurodegeneration 

pathology and concomitant non-AD pathologies vary across subtypes. Also, other 

contributing factors to differentiate between AD subtypes include risk factors (age, gender, 

education, and APOE) and protective factors (cognitive reserve, brain resilience, and brain 

resistance). Assimilation of these factors in the context of the AT(N) system can be a step 

forward for a more in-depth analysis of the computer-aided diagnosis of AD and for 

augmenting the research prospects for more effective personalized medicine. 
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One of the limiting factors faced in our analysis was the considerable amount of 

missing data, specifically for the tau PET modality. This issue is more critical when we are 

interested in subjects with all modalities being available, which is a requirement for having 

a fair comparison between single modality scenarios. Also, the study could be more 

valuable if longitudinal data were available so that the effect of biomarker change through 

time could be considered. Longitudinal tau PET data is very limited in the ADNI dataset 

since tau PET is a relatively new technology, and its longitudinal data collection and 

processing are still in progress. Also, the missing data issue is even more severe for the 

longitudinal data.  

Moreover, in the data collection process, a time difference may exist between 

capturing the MRI and PET scans for some participants. This time lag between modalities 

is inevitable in many follow up situations in medical practice. While small time-lags might 

be neglected in some studies, more significant delays can be included in the analysis with 

appropriate considerations. In our study, we have not integrated this variable in our analysis 

due to the lack of such information for some of the participants, which would result in 

additional missing values for the dataset. In this study, we conducted a cross-sectional 

study and handled the missing values by mean-value imputation and by making use of 

models that are more robust to missing values. Moreover, using the AT(N) analysis, the 

intra-class biomarker variance was studied so that the contribution of biomarker shortage 

on the classification performance was determined. 

To transfer knowledge from an auxiliary dataset to a target dataset with insufficient 

training data for a classification task, a novel transfer learning framework based on the 

gradient boosting machine (TrGB) was proposed. Like the GBM algorithm, the TrGB base 
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learners focus on the residual of their previous learners. In addition, the residuals are used 

to assign a weight to the source and target instances such that misleading instances of the 

source domain have a more negligible effect on the learning process. The experimental 

results show that the TrGB achieved superior performance for MCI and AD classification 

compared to the baseline case, where a model is trained only using the labeled instances of 

the target domain. It was shown that the MCI group has more data distribution shift 

between the two datasets than the AD group. Transfer learning was also beneficial for the 

early MCI vs. late MCI classification in the target dataset using the knowledge in the CN 

vs. AD classification model of the source domain. 

For tracking the progression of the AD at multiple future intervals and gauging the 

merits and gradual effects of any potential treatment plan in longitudinal AD studies, an 

approach based on Recurrent Neural Networks (RNN) was presented. Three historical time 

points from subjects in three categories of CN, MCI, and AD were selected to form a 

feature space. Then, the model is trained on 75% of the data to predict three future MMSE 

scores and diagnosis labels of the subjects with two different variations of RNN (LSTM 

and GRU). It was observed that by employing L1 feature extraction prior to application of 

the RNNs lead to a higher performance in both regression and classification models in 

comparison to other state-of-the-art algorithms, as supported by the results provided in 

Table 5.3 and Table 5.4. 
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